
EECS 252 Graduate Computer
Architecture

Lec 15 – T1 (“Niagara”)
and Papers Discussion

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

3/13/2006 CS252 s06 T1 2

Review
• Caches contain all information on state of

cached memory blocks
• Snooping cache over shared medium for smaller

MP by invalidating other cached copies on write
• Sharing cached data ⇒ Coherence (values

returned by a read), Consistency (when a written
value will be returned by a read)

• Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping => uniform memory access)

• Directory has extra data structure to keep track
of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory access

3/13/2006 CS252 s06 T1 3

Outline
• Consistency
• Cross Cutting Issues
• Fallacies and Pitfalls
• Administrivia
• Sun T1 (“Niagara”) Multiprocessor
• 2 paper discussion

3/13/2006 CS252 s06 T1 4

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved ⇒ assignments before ifs above

– SC: delay all memory accesses until all invalidates done

3/13/2006 CS252 s06 T1 5

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not an issue for most programs; they are synchronized

– A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since
most programs are synchronized; characterized by their
attitude towards: RAR, WAR, RAW, WAW
to different addresses

3/13/2006 CS252 s06 T1 6

Relaxed Consistency Models: The Basics

• Key idea: allow reads and writes to complete out of order, but
to use synchronization operations to enforce ordering, so that
a synchronized program behaves as if the processor were
sequentially consistent

– By relaxing orderings, may obtain performance advantages
– Also specifies range of legal compiler optimizations on shared data
– Unless synchronization points are clearly defined and programs are

synchronized, compiler could not interchange read and write of 2 shared
data items because might affect the semantics of the program

• 3 major sets of relaxed orderings:
1. W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that
operate under sequential consistency operate under this model,
without additional synchronization. Called processor consistency

2. W → W ordering (all writes completed before next write)
3. R → W and R → R orderings, a variety of models depending on

ordering restrictions and how synchronization operations
enforce ordering

• Many complexities in relaxed consistency models; defining
precisely what it means for a write to complete; deciding when
processors can see values that it has written

3/13/2006 CS252 s06 T1 7

Mark Hill observation

• Instead, use speculation to hide latency from
strict consistency model
– If processor receives invalidation for memory reference

before it is committed, processor uses speculation recovery
to back out computation and restart with invalidated
memory reference

1. Aggressive implementation of sequential
consistency or processor consistency gains
most of advantage of more relaxed models

2. Implementation adds little to implementation
cost of speculative processor

3. Allows the programmer to reason using the
simpler programming models

3/13/2006 CS252 s06 T1 8

Cross Cutting Issues: Performance
Measurement of Parallel Processors

• Performance: how well scale as increase Proc
• Speedup fixed as well as scaleup of problem

– Assume benchmark of size n on p processors makes sense: how
scale benchmark to run on m * p processors?

– Memory-constrained scaling: keeping the amount of memory
used per processor constant

– Time-constrained scaling: keeping total execution time,
assuming perfect speedup, constant

• Example: 1 hour on 10 P, time ~ O(n3), 100 P?
– Time-constrained scaling: 1 hour ⇒ 101/3n⇒ 2.15n scale up
– Memory-constrained scaling: 10n size ⇒ 103/10 ⇒ 100X or 100

hours! 10X processors for 100X longer???
– Need to know application well to scale: # iterations, error

tolerance

3/13/2006 CS252 s06 T1 9

Fallacy: Amdahl’s Law doesn’t apply
to parallel computers

• Since some part linear, can’t go 100X?
• 1987 claim to break it, since 1000X speedup

– researchers scaled the benchmark to have a data set size
that is 1000 times larger and compared the uniprocessor
and parallel execution times of the scaled benchmark. For
this particular algorithm the sequential portion of the
program was constant independent of the size of the input,
and the rest was fully parallel—hence, linear speedup with
1000 processors

• Usually sequential scale with data too

3/13/2006 CS252 s06 T1 10

Fallacy: Linear speedups are needed to
make multiprocessors cost-effective

• Mark Hill & David Wood 1995 study
• Compare costs SGI uniprocessor and MP
• Uniprocessor = $38,400 + $100 * MB
• MP = $81,600 + $20,000 * P + $100 * MB
• 1 GB, uni = $138k v. mp = $181k + $20k * P
• What speedup for better MP cost performance?
• 8 proc = $341k; $341k/138k ⇒ 2.5X
• 16 proc ⇒ need only 3.6X, or 25% linear speedup
• Even if need some more memory for MP, not linear

3/13/2006 CS252 s06 T1 11

Fallacy: Scalability is almost free
• “build scalability into a multiprocessor and then

simply offer the multiprocessor at any point on
the scale from a small number of processors to a
large number”

• Cray T3E scales to 2048 CPUs vs. 4 CPU Alpha
– At 128 CPUs, it delivers a peak bisection BW of 38.4 GB/s, or

300 MB/s per CPU (uses Alpha microprocessor)
– Compaq Alphaserver ES40 up to 4 CPUs and has 5.6 GB/s of

interconnect BW, or 1400 MB/s per CPU

• Build apps that scale requires significantly more
attention to load balance, locality, potential
contention, and serial (or partly parallel) portions
of program. 10X is very hard

3/13/2006 CS252 s06 T1 12

Pitfall: Not developing SW to take advantage
(or optimize for) multiprocessor architecture

• SGI OS protects the page table data structure
with a single lock, assuming that page
allocation is infrequent

• Suppose a program uses a large number of
pages that are initialized at start-up

• Program parallelized so that multiple processes
allocate the pages

• But page allocation requires lock of page table
data structure, so even an OS kernel that allows
multiple threads will be serialized at
initialization (even if separate processes)

3/13/2006 CS252 s06 T1 13

Answers to 1995 Questions about Parallelism

• In the 1995 edition of this text, we concluded the
chapter with a discussion of two then current
controversial issues.

1. What architecture would very large scale,
microprocessor-based multiprocessors use?

2. What was the role for multiprocessing in the
future of microprocessor architecture?

Answer 1. Large scale multiprocessors did not
become a major and growing market ⇒ clusters
of single microprocessors or moderate SMPs

Answer 2. Astonishingly clear. For at least for the
next 5 years, future MPU performance comes
from the exploitation of TLP through multicore
processors vs. exploiting more ILP

3/13/2006 CS252 s06 T1 14

Cautionary Tale

• Key to success of birth and development of ILP in
1980s and 1990s was software in the form of
optimizing compilers that could exploit ILP

• Similarly, successful exploitation of TLP will
depend as much on the development of suitable
software systems as it will on the contributions of
computer architects

• Given the slow progress on parallel software in the
past 30+ years, it is likely that exploiting TLP
broadly will remain challenging for years to come

3/13/2006 CS252 s06 T1 15

CS 252 Administrivia

• Wednesday March 15 MP Future Directions and
Review

• Monday March 20 Quiz 5-8 PM 405 Soda
• Monday March 20 lecture – Q&A, problem sets with

Archana
• Wednesday March 22 no class: project meetings in

635 Soda
• Spring Break March 27 – March 31
• Chapter 6 Storage
• Interconnect Appendix

3/13/2006 CS252 s06 T1 16

T1 (“Niagara”)

• Target: Commercial server applications
– High thread level parallelism (TLP)

» Large numbers of parallel client requests
– Low instruction level parallelism (ILP)

» High cache miss rates
» Many unpredictable branches
» Frequent load-load dependencies

• Power, cooling, and space are major
concerns for data centers

• Metric: Performance/Watt/Sq. Ft.
• Approach: Multicore, Fine-grain

multithreading, Simple pipeline, Small
L1 caches, Shared L2

3/13/2006 CS252 s06 T1 17

T1 Architecture

• Also ships with 6 or 4 processors

3/13/2006 CS252 s06 T1 18

T1 pipeline

• Single issue, in-order, 6-deep pipeline: F, S, D, E, M, W
• 3 clock delays for loads & branches.
• Shared units:

– L1 $, L2 $
– TLB
– X units
– pipe registers

• Hazards:
– Data
– Structural

3/13/2006 CS252 s06 T1 19

T1 Fine-Grained Multithreading

• Each core supports four threads and has its own
level one caches (16KB for instructions and 8 KB
for data)

• Switching to a new thread on each clock cycle
• Idle threads are bypassed in the scheduling

– Waiting due to a pipeline delay or cache miss
– Processor is idle only when all 4 threads are idle or stalled

• Both loads and branches incur a 3 cycle delay
that can only be hidden by other threads

• A single set of floating point functional units is
shared by all 8 cores

– floating point performance was not a focus for T1

3/13/2006 CS252 s06 T1 20

Memory, Clock, Power
• 16 KB 4 way set assoc. I$/ core
• 8 KB 4 way set assoc. D$/ core
• 3MB 12 way set assoc. L2 $ shared

– 4 x 750KB independent banks
– crossbar switch to connect
– 2 cycle throughput, 8 cycle latency
– Direct link to DRAM & Jbus
– Manages cache coherence for the 8 cores
– CAM based directory

• Coherency is enforced among the L1 caches by a directory
associated with each L2 cache block

• Used to track which L1 caches have copies of an L2 block
• By associating each L2 with a particular memory bank and

enforcing the subset property, T1 can place the directory at L2
rather than at the memory, which reduces the directory
overhead

• L1 data cache is write-through, only invalidation messages are
required; the data can always be retrieved from the L2 cache

• 1.2 GHz at ≈72W typical, 79W peak power consumption

Write through
• allocate LD
• no-allocate ST

3/13/2006 CS252 s06 T1 21

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1.5 MB;
32B

1.5 MB;
64B

3 MB;
32B

3 MB;
64B

6 MB;
32B

6 MB;
64B

L2
 M

is
s

ra
te

TPC-C

SPECJBB

Miss Rates: L2 Cache Size, Block Size

T1

3/13/2006 CS252 s06 T1 22

0

20

40

60

80

100

120

140

160

180

200

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

L2
 M

is
s

la
te

nc
y

TPC-C
SPECJBB

Miss Latency: L2 Cache Size, Block Size

T1

3/13/2006 CS252 s06 T1 23

CPI Breakdown of Performance

4.80.21 1.65 6.60 SPECWeb99

5.70.18 1.40 5.60 SPECJBB

4.40.23 1.80 7.20 TPC-C

Effective
IPC for
8 cores

Effective
CPI for
8 cores

Per
core
CPI

Per
Thread

CPIBenchmark

3/13/2006 CS252 s06 T1 24

Not Ready Breakdown

• TPC-C - store buffer full is largest contributor
• SPEC-JBB - atomic instructions are largest contributor
• SPECWeb99 - both factors contribute

0%

20%

40%

60%

80%

100%

TPC-C SPECJBB SPECWeb99

Fr
ac

tio
n

of
 c

yc
le

s
no

t r
ea

dy

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

3/13/2006 CS252 s06 T1 25

Performance: Benchmarks + Sun Marketing

14,74016,061
NotesBench (Lotus Notes

performance)

4,850 (2850 with two dual-core
Xeon processors)7,88114,001

SPECweb2005 (Web server
performance)

24,208 (SC1425 with dual single-
core Xeon)61,78963,378

SPECjbb2005 (Java server software)
business operations/ sec

Dell PowerEdgeIBM p5-550 with 2
dual-core Power5 chips

Sun Fire
T2000Benchmark\Architecture

Space, Watts, and Performance
3/13/2006 CS252 s06 T1 26

HP marketing view of T1 Niagara
1. Sun’s radical UltraSPARC T1 chip is made up of individual

cores that have much slower single thread performance when
compared to the higher performing cores of the Intel Xeon,
Itanium, AMD Opteron or even classic UltraSPARC
processors.

2. The Sun Fire T2000 has poor floating-point performance, by
Sun’s own admission.

3. The Sun Fire T2000 does not support commerical Linux or
Windows® and requires a lock-in to Sun and Solaris.

4. The UltraSPARC T1, aka CoolThreads, is new and unproven,
having just been introduced in December 2005.

5. In January 2006, a well-known financial analyst downgraded
Sun on concerns over the UltraSPARC T1’s limitation to only
the Solaris operating system, unique requirements, and
longer adoption cycle, among other things. [10]

• Where is the compelling value to warrant taking such a risk?

• http://h71028.www7.hp.com/ERC/cache/280124-0-0-0-121.html

3/13/2006 CS252 s06 T1 27

Microprocessor Comparison

4331Instruction issues
/ clock / core

12513011079Power (W)
389206199379Die size (mm2)
276230233300Transistor count (M)
1.93.22.41.2Clock rate (GHz)

1.9 MB
shared

1MB/
core

1MB /
core

3 MB
sharedL2 per core/shared

64/32
12K
uops/16 64/6416/8L1 I/D in KB per core

SMTSMTNo
Fine-
grainedMultithreading

8668Peak instr. issues
/ chip

2228Cores
IBM Power 5Pentium DOpteronSUN T1Processor

3/13/2006 CS252 s06 T1 28

Performance Relative to Pentium D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

SPECIntRate SPECFPRate SPECJBB05 SPECWeb05 TPC-like

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 P
en

tiu
m

 D

+Power5 Opteron Sun T1

3/13/2006 CS252 s06 T1 29

Performance/mm2, Performance/Watt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

SPECInt
Rate/

mm
2̂

SPECInt
Rate

/W
att

SPECFP
Rate

/m
m^2

SPECFP
Rate

/W
att

SPECJB
B05

/m
m

2̂
SPECJB

B05
/W

att
TP

C-C
/m

m
2̂

TPC-C
/W

att

Ef
fic

ie
nc

y
no

rm
al

iz
ed

 to
 P

en
tiu

m
 D

+Power5 Opteron Sun T1

3/13/2006 CS252 s06 T1 30

Niagara 2
• Improve performance by increasing threads

supported per chip from 32 to 64
– 8 cores * 8 threads per core

• Floating-point unit for each core, not for each
chip

• Hardware support for encryption standards EAS,
3DES, and elliptical-curve cryptography

• Niagara 2 will add a number of 8x PCI Express
interfaces directly into the chip in addition to
integrated 10Gigabit Ethernet XAU interfaces and
Gigabit Ethernet ports.

• Integrated memory controllers will shift support
from DDR2 to FB-DIMMs and double the
maximum amount of system memory. Kevin Krewell

“Sun's Niagara Begins CMT Flood -
The Sun UltraSPARC T1 Processor Released”

Microprocessor Report, January 3, 2006

3/13/2006 CS252 s06 T1 31

Amdahl’s Law Paper
• Gene Amdahl, "Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities", AFIPS
Conference Proceedings, (30), pp. 483-485, 1967.

• How long is paper?
• How much of it is Amdahl’s Law?
• What other comments about parallelism besides

Amdahl’s Law?

3/13/2006 CS252 s06 T1 32

Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study

of Novice Parallel Programmers." International Conference for High
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What did they study?
• What is argument that novice parallel programmers

are a good target for High Performance Computing?
• How can account for variability in talent between

programmers?
• What programmers studied?
• What programming styles investigated?
• How big multiprocessor?
• How measure quality?
• How measure cost?

3/13/2006 CS252 s06 T1 33

Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study

of Novice Parallel Programmers." International Conference for High
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What hypotheses investigated?
• What were results?
• Assuming these results of programming productivity

reflect the real world, what should architectures of
the future do (or not do)?

• How would you redesign the experiment they did?
• What other metrics would be important to capture?
• Role of Human Subject Experiments in Future of

Computer Systems Evaluation?

