EECS 252 Graduate Computer
Architecture

Lec 18 — Storage

David Patterson
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http:/Ivisi.cs.berkeley.edu/cs252-s06

Review

Virtual Machine Revival

— Overcome security flaws of modern OSes

— Processor performance no longer highest priority

— Manage Software, Manage Hardware
“... VMMs give OS developers another opportunity
to develop functionality no longer practical in
today’s complex and ossified operating systems,
where innovation moves at geologic pace .”

[Rosenblum and Garfinkel, 2005]

Virtualization challenges for processor, virtual
memory, I/O

— Paravirtualization, ISA upgrades to cope with those difficulties
Xen as example VMM using paravirtualization

— 2005 performance on non-l/O bound, /O intensive apps: 80% of
native Linux without driver VM, 34% with driver VM

Opteron memory hierarchy still critical to
performance

CS252 s06 Storage

Case for Storage

 Shift in focus from computation to
communication and storage of information
— E.g., Cray Research/Thinking Machines vs. Google/Yahoo

— “The Computing Revolution” (1960s to 1980s)
= “The Information Age” (1990 to today)

» Storage emphasizes reliability and scalability as
well as cost-performance
* What is “Software king” that determines which
HW acually features used?
— Operating System for storage
— Compiler for processor

» Also has own performance theory—queuing
theory—balances throughput vs. response time

CS252 s06 Storage

Outline

Magnetic Disks

RAID

Administrivia

Advanced Dependability/Reliability/Availability
I/10 Benchmarks, Performance and Dependability
Intro to Queueing Theory (if we have time)
Conclusion

CS252 s06 Storage

Disk Figure of Merit: Areal Density

< Bits recorded along a track
— Metric is Bits Per Inch (BPI)
* Number of tracks per surface
— Metric is Tracks Per Inch (TPI)
» Disk Designs Brag about bit density per unit area
— Metric is Bits Per Square Inch: Areal Density = BPI x TPI
Year Areal Density 1,000,000

1973 2
1979 8 100,000 -
1989 63
1997 3,090 %‘10-000
2000 17,100 g 1]000 |
2006 130,000 a

= 100 -

o

< 10 -

l T T T

1970 1980 1990 2000 2010

Historical Perspective

1956 IBM Ramac — early 1970s Winchester
— Developed for mainframe computers, proprietary interfaces
— Steady shrink in form factor: 27 in. to 14 in.
Form factor and capacity drives market more than performance
1970s developments
— 5.25 inch floppy disk formfactor (microcode into mainframe)
— Emergence of industry standard disk interfaces
Early 1980s: PCs and first generation workstations
Mid 1980s: Client/server computing
— Centralized storage on file server
» accelerates disk downsizing: 8 inch to 5.25
— Mass market disk drives become a reality
» industry standards: SCSI, IPIl, IDE
» 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces
1900s: Laptops => 2.5 inch drives

2000s: What new devices leading to new drives?

CS252 s06 Storage

Future Disk Size and Performance

» Continued advance in capacity (60%/yr) and
bandwidth (40%!/yr)

» Slow improvement in seek, rotation (8%/yr)
* Time to read whole disk

Year Sequentially Randomly

(1 sector/seek)
1990 4 minutes 6 hours
2000 12 minutes 1 week(!)
2006 56 minutes 3 weeks (SCSI)
2006 171 minutes 7 weeks (SATA)

CS252 s06 Storage

Use Arrays of Small Disks?

*Katz and Patterson asked in 1987:
«Can smaller disks be used to close gap in
performance between disks and CPUs?

Conventional:
4 disk —e [1
designs 3.5” 5.25” 10” 14” -

Disk Array:
1 disk design

35 —p e === =5

CS252 s06 Storage

v
R -

Advantages of Small Formfactor

Disk Drives

100

525" (357

35—t s cuft

24

-

N
5.25:Y [cu k)

N
165 W& 60 W
34
Yaume

170

st

Cost and Environmental Efficiencies

g B g a0 2

—\

04

36w

Low cost/MB
High MB/volume
High MB/watt o

008 \DW
ooz

Low cost/Actuator S

10.5"

52| 38"

WE 7,500

Fl1320 F

1,000

765 200

MBlwal| 454

20

588

2013 | 200

MEfcuit| 313

388

2,500

8,500 | 10,000

CS252 s06 Storage

10,000

1,000

Potwert B o
100 [watts)

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity
Volume
Power
Data Rate
/0 Rate
MTTF
Cost

IBM 3390K IBM 3.5" 0061

x70

20 GBytes 320 MBytes 23 GBytes

97 cu. ft.
3 KW
15 MB/s
600 I/Os/s
250 KHrs
$250K

0.1 cu. ft. 11 cu. ft. 9X
11W 1KW 3X
1.5MB/s 120 MB/s 8X
551/Os/s 3900 IOs/s 6X
50 KHrs 7?7 Hrs
$2K $150K

Disk Arrays have potential for large data and
I/0 rates, high MB per cu. ft., high MB per KW,
but what about reliabilityvtaqe

Array Reliability

* Reliability of N disks = Reliability of 1 Disk + N

50,000 Hours + 70 disks = 700 hours

Disk system MTTF: Drops from 6 years to 1 month!

* Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

CS252 s06 Storage

Redundant Arrays of (Inexpensive) Disks

Files are "striped" across multiple disks
Redundancy yields high data availability

— Availability: service still provided to user, even if some
components failed

Disks will still fail
Contents reconstructed from data redundantly

stored in the array
= Capacity penalty to store redundant info
= Bandwidth penalty to update redundant info

CS252 s06 Storage

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing
recovery

N =
o 0 o

* Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved
* Bandwidth sacrifice on write:
Logical write = two physical writes
* Reads may be optimized
* Most expensive solution: 100% capacity overhead

« (RAID 2 not interesting, so skip)

CS252 s06 Storage

Redundant Array of Inexpensive Disks
RAID 3: Parity Disk

10010011 N
11001101 Ei;;j E;;;j 5
10010011
/ \
1

logical record 1/ 1
Striped physical | 2 \\21 2

records 0 0
P contains sum of 0 0
other disks per stripe ¢ 0
mod 2 (“parity”) 1 0 1
If disk fails, subtract 4 1 1

P from sum of other
disks to find missing information

CS252 s06 Storage

RAID 3

« Sum computed across recovery group to
protect against hard disk failures, stored in P
disk

* Logically, a single high capacity, high
transfer rate disk: good for large transfers

» Wider arrays reduce capacity costs, but
decreases availability

» 33% capacity cost for parity if 3 data disks
and 1 parity disk

CS252 s06 Storage

Inspiration for RAID 4

* RAID 3 relies on parity disk to discover
errors on Read

» But every sector has an error detection field

* To catch errors on read, rely on error
detection field vs. the parity disk

» Allows independent reads to different disks
simultaneously

CS252 s06 Storage

Redundant Arrays of Inexpensive Disks

RAID 4: High I/O Rate Parity Incceasing

Lk A AL Logical
“I|| Do D1 D2 D3 P Disk
\| Insides of Address
5 disks D4 | [/ D5|f D6 D7} | P
Y . D8 D9 D10 D11 P
Example: |D12 D13| |D14| [p15| | P N .. .
small read Stripe
DO & D5’ D16 D17 D18 D19 P
large write
D12-D15 D20| |D21| |D22| |D23 P
\| . RiskGolymns

Inspiration for RAID 5

+ RAID 4 works well for small reads

* Small writes (write to one disk):

— Option 1: read other data disks, create new sum and write to
Parity Disk

— Option 2: since P has old sum, compare old data to new data,
add the difference to P

* Small writes are limited by Parity Disk: Write to DO, D5
both also write to P disk

-
D1 D2 | D3 P
m D5 D6 | D7 P

CS252 s06 Storage

Redundant Arrays of Inexpensive Disks
RAID 5: High I/0 Rate Interleaved Parity

LR EHED 1 |increasing
Ml D D1 D2 3
Independent ||| L®° D3| | P Logica
writes D4 D5 D6 M Addresses
possible P D7
because of
interleaved D8 | (D9| | P | |D10| (D11
arit
p y D12 P D13 D14 D15
Example:
write to P | [p16| |p17| |p18| [D19
DO, D5

uses disks D20| |p21| |p22| |D23 P
0,1, 3,4

: _Disk Column
CS252 s06 étsoragg u s

Problems of Disk Arrays:
Small Writes

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

DO’ Do D1 D2 D3 P
new old old
data data (1-Read) parity (2. Read)
OR\G)
XOR
(3. Write) (4. Write)

o DEI:SL52 D2$t ragL D3 E

CS252: Administrivia

 Wed 4/12 — Mon 4/17 Storage (Ch 6)

* RAMP Blue meeting Today 3:30-4 380 Soda

* Makeup Pizza: LaVal’s on Euclid, 6-7 PM

* Project Update Meeting Wednesday 4/19

* Monday 4/24 Quiz 2 5-8 PM (Mainly Ch 4 to 6)
 Wed 4/26 Bad Career Advice / Bad Talk Advice
* Project Presentations Monday 5/1 (all day)

* Project Posters 5/3 Wednesday (11-1 in Soda)

» Final Papers due Friday 5/5 (email Archana, who
will post papers on class web site)

CS252 s06 Storage

CS252: Administrivia

* Fri 4/14 Read, comment RAID Paper and
Homework. Be sure to answer
— What was main motivation for RAID in paper?

— Did prediction of processor performance and disk capacity
hold?

— How propose balance performance and capacity of RAID 1 to
RAID 5? What do you think of it?

— What were some of the open issues? Which were significant

— Inretrospect, what do you think were important contributions?
What did the authors get wrong?

CS252 s06 Storage

RAID 6: Recovering from 2 failures

* Why > 1 failure recovery?

— operator accidentally replaces the wrong disk during a
failure

— since disk bandwidth is growing more slowly than disk
capacity, the MTT Repair a disk in a RAID system is
increasing
=increases the chances of a 2nd failure during repair since
takes longer

—reading much more data during reconstruction meant
increasing the chance of an uncorrectable media failure,
which would result in data loss

CS252 s06 Storage

RAID 6: Recovering from 2 failures

* Network Appliance’s row-diagonal parity or RAID-DP

» Like the standard RAID schemes, it uses redundant
space based on parity calculation per stripe

» Since it is protecting against a double failure, it adds
two check blocks per stripe of data.
— If p+1 disks total, p-1 disks have data; assume p=5
* Row parity disk is just like in RAID 4
— Even parity across the other 4 data blocks in its stripe

» Each block of the diagonal parity disk contains the
even parity of the blocks in the same diagonal

CS252 s06 Storage

Examplep =5

* Row diagonal parity starts by recovering one of the 4 blocks
on the failed disk using diagonal parity

— Since each diagonal misses one disk, and all diagonals miss a
different disk, 2 diagonals are only missing 1 block

¢ Once the data for those blocks is recovered, then the
standard RAID recovery scheme can be used to recover
two more blocks in the standard RAID 4 stripes

* Process continues until two failed disks are restored

Data Data Data Data ﬁ;)m iagon:

Disk 0 Disk 1 Disk 2 Disk 3 Pan% | Pam¥ |
1 2 3 4 0 1
2 3 4 0 1 2
3 4 0 1 2 3
4 0 1 2 3 4
0 1 2 3 4 0
CS252 s06 Storage

Berkeley History: RAID-I

« RAID-I (1989)
— Consisted of a Sun 4/280
workstation with 128 MB of DRAM,
four dual-string SCSI controllers, 28
5.25-inch SCSI disks and
specialized disk striping software
» Today RAID is $24 billion
dollar industry, 80% nonPC
disks sold in RAIDs

CS252 s06 Storage

Summary: RAID Techniques: Goal was
performance, popularity due to reliability of

storage
e Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"
Logical write = two physical writes
100% capacity overhead

 Parity Data Bandwidth Array (RAID 3)
Parity computed horizontally
Logically a single high data bw disk

e High I/O Rate Parity Array (RAID 5)

Interleaved parity blocks

) 30 O-F
10 (6 -0

Independent reads and writes

00 (-

Logical write = 2 reads + 2 writes
CS252 s06 Storage

gm0 -0

Definitions

» Examples on why precise definitions so important
for reliability

* |s a programming mistake a fault, error, or failure?

— Are we talking about the time it was designed
or the time the program is run?

— If the running program doesn’t exercise the mistake,
is it still a fault/error/failure?
« If an alpha particle hits a DRAM memory cell, is it a
fault/error/failure if it doesn’t change the value?
— Is it a fault/error/failure if the memory doesn’t access the changed bit?

— Did a fault/error/failure still occur if the memory had error correction
and delivered the corrected value to the CPU?

CS252 s06 Storage

IFIP Standard terminology

Computer system dependability: quality of delivered service
such that reliance can be placed on service

Service is observed actual behavior as perceived by other
system(s) interacting with this system’s users

Each module has ideal specified behavior, where service
specification is agreed description of expected behavior

A system failure occurs when the actual behavior deviates
from the specified behavior

failure occurred because an error, a defect in module
The cause of an error is a fault

When a fault occurs it creates a latent error, which becomes
effective when it is activated

When error actually affects the delivered service, a failure
occurs (time from error t&*faiflifg s error latency)

Fault v. (Latent) Error v. Failure

» An error is manifestation in the system of a fault,
a failure is manifestation on the service of an error

* Is If an alpha particle hits a DRAM memory cell, is it a
fault/error/failure if it doesn’t change the value?
— Is it a fault/error/failure if the memory doesn’t access the changed bit?

— Did a fault/error/failure still occur if the memory had error correction
and delivered the corrected value to the CPU?

* An alpha particle hitting a DRAM can be a fault
« if it changes the memory, it creates an error
 error remains latent until effected memory word is read

« if the effected word error affects the delivered service,
a failure occurs

CS252 s06 Storage

Fault Categories

1. Hardware faults: Devices that fail, such alpha particle hitting
a memory cell

2. Design faults: Faults in software (usually) and hardware
design (occasionally)

3. Operation faults: Mistakes by operations and maintenance
personnel

4. Environmental faults: Fire, flood, earthquake, power failure,
and sabotage

¢ Also by duration:
1. Transient faults exist for limited time and not recurring

2. Intermittent faults cause a system to oscillate between
faulty and fault-free operation

3. Permanent faults do not correct themselves over time

CS252 s06 Storage

Fault Tolerance vs Disaster Tolerance

» Fault-Tolerance (or more properly, Error-
Tolerance): mask local faults
(prevent errors from becoming failures)
— RAID disks
— Uninterruptible Power Supplies
— Cluster Failover

» Disaster Tolerance: masks site errors
(prevent site errors from causing service
failures)

— Protects against fire, flood, sabotage,..
— Redundant system and service at remote site.
— Use design diversity

From Jim Gray's "Talk at UC Berkeley on Fault Tolerance " 11/9/00
CS252 s06 Storage

Case Studies - Tandem Trends
Reported MTTF by Component

450 Mean Time to System Failure (years)
by Cause

400 4 .
maintenance
350 —+
300 +

250 +

environment
<

50

hardware

200

operations
150 P

100

software
7~— total A

1985 1987 1989

1985 1987 1990
SOFTWARE 2 53 33 Years
HARDWARE 29 91 310 Years
MAINTENANCE 45 162 409 Years
OPERATIONS 99 171 136 Years
ENVIRONMENT 142 214 346 Years
SYSTEM 8 20 21 Years

Problem: Systematic Under-reporting

From Jim Gray's "Talk at UC Berkeley on Fault Tolerance * 11/9/00
X Y nggé% s06 Storage

Is Maintenance the Key?
* Rule of Thumb: Maintenance 10X HW

— so over 5 year product life, ~ 95% of cost is maintenance

Y Cause of System Crashes
= 100%
g e 18% 2% O Other: app, power,
S 80% 1 network failure
N 6004 m} Sys_tem management:
=} 0 sa% actions + N/problem
% 40% i o B Operating System
S failure
5 20% O Hardware failure
u 2
E 0% 10% B

1985 1993 2001 (est)

» VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01

» Sys. Man.: N crashes/problem, SysAdmin action
— Actions: set params bad, bad config, bad app install

* HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?

52 s06 Storage

HW Failures in Real Systems: Tertiary

Disks _ : , :
*A cluster of 20 PCs in seven 7-foot high, 19-inch wide

racks with 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks.
The PCs are P6-200MHz with 96 MB of DRAM each.
They run FreeBSD 3.0 and the hosts are connected via
switched 100 Mbit/second Ethernet

Component Total in System Total Failed % Failed
SCSI Controller 44 1 2.3%
SCSI Cable 39 1 2.6%
SCSI Disk 368 7 1.9%
IDE Disk 24 6 25.0%
Disk Enclosure -Backplane 46 13 28.3%
Disk Enclosure - Power Supply 92 3 3.3%
Ethernet Controller 20 1 5.0%
Ethernet Switch 2 1 50.0%
Ethernet Cable 42 1 2.3%
CPU/Motherboard 20 0 0%

CS252 s06 Storage

Does Hardware Fail Fast? 4 of 384
Disks that failed in Tertiary Disk

Messages in system log for failed disk No. log Duration

msgs (hours)

Hardware Failure (Peripheral device write fault 1763 186
[for] Field Replaceable Unit)

Not Ready (Diagnostic failure: ASCQ = Component 1460 90
ID [of] Field Replaceable Unit)

Recovered Error (Failure Prediction Threshold 1313 5

Exceeded [for] Field Replaceable Unit)

Recovered Error (Failure Prediction Threshold 431 17
Exceeded [for] Field Replaceable Unit)

CS252 s06 Storage

High Availability System Classes
Goal: Build Class 6 Systems

Unavailable | Availability | Availability
System Type (min/year) Class
Unmanaged 50,000 | 90.% 1
Managed 5,000 | 99.9% 2
Well Managed 500 | 99,99 3
Fault Tolerant 50 | 99.99% 4
High-Availability 5 | 99.999% 5
Very-High-Availability 5 | 99.9999% 6
Ultra-Availability .05 | 99.99999%, 7

UnAvailability = MTTR/MTBF
can cut it in %2 by cutting MTTR or MTBF

From Jim Gray's "Talk at UC Berkeley on Fault Tolerance " 11/9/00
CS252 s06 Storage

How Realistic is "5 Nines"?

* HP claims HP-9000 server HW and HP-UX OS can
deliver 99.999% availability guarantee “in certain
pre-defined, pre-tested customer environments”

— Application faults?
— Operator faults?
— Environmental faults?

» Collocation sites (lots of computers in 1 building on
Internet) have

— 1 network outage per year (~1 day)
— 1 power failure per year (~1 day)
» Microsoft Network unavailable recently for a day due

to problem in Domain Name Server: if only outage
per year, 99.7% or 2 Nines

CS252 s06 Storage

Outline

* Magnetic Disks

 RAID

* Administrivia

» Advanced Dependability/Reliability/Availability

 1/0 Benchmarks, Performance and Dependability

* Intro to Queueing Theory (if we have time)
e Conclusion

CS252 s06 Storage

/O Performance

. Response
Metrics: 0| e (me) /

Response Time
vs. Throughput 200 /

100 /

J—

0% 100%

Throughput
(% total BW)

Queue
Proc I | | I I0C —

Response time = Queue + Device Service time

CS252 s06 Storage

/0 Benchmarks

For better or worse, benchmarks shape a field

— Processor benchmarks classically aimed at response time for fixed
sized problem

— 1/0 benchmarks typically measure throughput, possibly with upper
limit on response times (or 90% of response times)

» Transaction Processing (TP) (or On-line TP=OLTP)

— If bank computer fails when customer withdraw money, TP system
guarantees account debited if customer gets $ & account
unchanged if no $

— Airline reservation systems & banks use TP
« Atomic transactions makes this work
« Classic metric is Transactions Per Second (TPS)

CS252 s06 Storage

I/0 Benchmarks: Transaction Processing

Early 1980s great interest in OLTP
— Expecting demand for high TPS (e.g., ATM machines, credit cards)
— Tandem’s success implied medium range OLTP expands

— Each vendor picked own conditions for TPS claims, report only CPU
times with widely different I/O

— Conflicting claims led to disbelief of all benchmarks = chaos

1984 Jim Gray (Tandem) distributed paper to Tandem
+ 19 in other companies propose standard benchmark

Published “A measure of transaction processing
power,” Datamation, 1985 by Anonymous et. al

— To indicate that this was effort of large group

— To avoid delays of legal department of each author’s firm

— Still get mail at Tandem to author “Anonymous”
Led to Transaction Processing Council in 1988

— www.tpc.org

CS252 s06 Storage

I/O Benchmarks: TP1 by Anon et. al

» DebitCredit Scalability: size of account, branch, teller,
history function of throughput
TPS Number of ATMs Account-file size

10 1,000 0.1 GB
100 10,000 1.0 GB
1,000 100,000 10.0 GB
10,000 1,000,000 100.0 GB

— Each input TPS =>100,000 account records, 10 branches, 100 ATMs

— Accounts must grow since a person is not likely to use the bank more
frequently just because the bank has a faster computer!

* Response time: 95% transactions take <1 second

* Report price (initial purchase price + 5 year
maintenance = cost of ownership)

» Hire auditor to certify results

CS252 s06 Storage

Unusual Characteristics of TPC

* Price is included in the benchmarks

— cost of HW, SW, and 5-year maintenance agreements
included = price-performance as well as performance

* The data set generally must scale in size as
the throughput increases

— trying to model real systems, demand on system and size
of the data stored in it increase together

* The benchmark results are audited

— Must be approved by certified TPC auditor, who enforces
TPC rules = only fair results are submitted

» Throughput is the performance metric but
response times are limited
— eg, TPC-C: 90% transaction response times < 5 seconds
* An independent organization maintains the
benchmarks
— COO ballots on chéfigesimeetifigs, to settle disputes...

TPC Benchmark History/Status

Benchmark Data Size (GB) Performance
Metric

A: Debit Credit (retired) 0.1to 10 transactions/s
B: Batch Debit Credit 0.1to 10 transactions/s
(retired)
C: Complex Query 100 to 3000 new order
OLTP (min. 07 * tpm) trans/min (tpm)
D: Decision Support 100, 300, 1000 queries/hour
(retired)
H: Ad hoc decision 100, 300, 1000 queries/hour
support
R: Business reporting 1000 queries/hour
decision support (retired)
W: Transactional web ~ 50, 500 web inter-

actions/sec.

App: app. server & web Web Service
services Interactions/sec
(SIPS)

CS252 s06 Storage

1st Results

Jul-90
Jul-91

Sep-92
Dec-95
Oct-99
Aug-99

Jul-00

Jun-05

/0 Benchmarks via SPEC

» SFS 3.0 Attempt by NFS companies to agree on
standard benchmark
— Run on multiple clients & networks (to prevent bottlenecks)
— Same caching policy in all clients
— Reads: 85% full block & 15% partial blocks
— Writes: 50% full block & 50% partial blocks
— Average response time: 40 ms
— Scaling: for every 100 NFS ops/sec, increase capacity 1GB

* Results: plot of server load (throughput) vs. response
time & number of users
— Assumes: 1 user => 10 NFS ops/sec
— 3.0 for NSF 3.0

» Added SPECMail (mailserver), SPECWeb (webserver)
benchmarks

CS252 s06 Storage

2005 Example SPEC SFS Result:
NetApp FAS3050c NFS servers

* 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM
per processor, 1GB of Non-volatile memory per system

« 4 FDDI networks; 32 NFS Daemons, 24 GB file size
» 168 fibre channel disks: 72 GB, 15000 RPM, 2 or 4 FC

controllers

2 processors

4 processors

0 10000 20000 30000 40000 50000 60000

Operations/second
CS252 s06 Storage

Availability benchmark methodology

Goal: quantify variation in QoS metrics as events occur
that affect system availability

Leverage existing performance benchmarks
— to generate fair workloads
— to measure & trace quality of service metrics

Use fault injection to compromise system

— hardware faults (disk, memory, network, power)

— software faults (corrupt input, driver error returns)

— maintenance events (repairs, SW/HW upgrades)
Examine single-fault and multi-fault workloads

— the availability analogues of performance micro- and macro-
benchmarks

CS252 s06 Storage

Example single-fault result

220 [
Linux 2o ,
205

[N}

—
!
[

[

ion— = T
o 200 4 ﬁReconstructlon J >
< i — — — — — F 0w
O 195 - A e
o
g 190 T T T T T T §
.6 0 10 20 30 40 50 60 70 80 90 100 110 »
2 160 g
i | T L 23
2 l 22
T 140

—] l<=—Reconstruction 3

Solaris ™7 T Py weva

100 4 ‘ —_— Hits_/sec
_J — - #failures tolerated || 0

80

0 10 20 30 40 50 60 70 80 90 100 110
Time (minutes)

» Compares Linux and Solaris reconstruction

— Linux: minimal performance impact but longer window of vulnerability
to second fault

— Solaris: large perf. impact but restores redundancy fast
CS252 s06 Storage

Reconstruction policy (2)

» Linux: favors performance over data availability
— automatically-initiated reconstruction, idle bandwidth
— virtually no performance impact on application
— very long window of vulnerability (>1hr for 3GB RAID)
» Solaris: favors data availability over app. perf.
— automatically-initiated reconstruction at high BW
— as much as 34% drop in application performance
— short window of vulnerability (10 minutes for 3GB)
* Windows: favors neither!

— manually-initiated reconstruction at moderate BW
— as much as 18% app. performance drop
— somewhat short window of vulnerability (23 min/3GB)

CS252 s06 Storage

Introduction to Queueing Theory

Arrivals Departures

* More interested in long term, steady state than in
startup => Arrivals = Departures

 Little’s Law:
Mean number tasks in system = arrival rate x
mean reponse time

— Observed by many, Little was first to prove

» Applies to any system in equilibrium, as long as

black box not creating or destroying tasks

CS252 s06 Storage

Deriving Little’s Law

* Time e = €lapsed time that observe a system

* Number,y = number of task during Time e

* Time,..umuaeq = SUM Of elapsed times for each task
Then

* Mean number tasks in system = Time .. mulateq/ TiMe
* Mean response time = TiMe ..umuiated /! NUMDET g
 Arrival Rate = Number,, / Time
Factoring RHS of 15t equatio
¢ Timeaccumulated/Timeobserve =T

observe

observe

eaccumulated I'N umbertask X

umbertask / Tlmeobserve

Then get Little’s Law:
* Mean number tasks in system = Arrival Rate x

Mean response time
CS252 s06 Storage

A Little Queuing Theory: Notation

System

Queue server

* Notation: Proc Em ¢

Timeg.,,., average time to service a task
Average service rate =1/ Time,,,, ., (traditionally p)
Time,,q,. average time/task in queue
Time average time/task in system
. = Tlmequeu + Tl_meserver can
Arrival rate avg no. of arriving tasks/sec (traditionally A)
Lengthg,,,., average number of tasks in service
Length,,.,. average length of queue
Lengthg ..., average number of tasks in service

. y = Lengthqueue+ Lengthserver .
Little’s Law: Lengthg,,, ., = Arrival rate X Timege, ¢
(Mean number tasks = arrival rate x mean service times

CS252 s06 Storage

system

Server Utilization

» For a single server, service rate =1/ Time, ¢

» Server utilization must be between 0 and 1, since
system is in equilibrium (arrivals = departures);
often called traffic intensity, traditionally p)

e Server utilization = mean number tasks in
service = Arrival rate x Timeserver

* What is disk utilization if get 50 1/O requests per
second for disk and average disk service time is
10 ms (0.01 sec)?

» Server utilization = 50/sec x 0.01 sec = 0.5
» Or server is busy on average 50% of time

CS252 s06 Storage

Time in Queue vs. Length of Queue

* We assume First In First Out (FIFO) queue

* Relationship of time in queue (Time) to mean
number of tasks in queue (Length,.,.) ?

° Timequeue = Lengthqu_euex Timeserver .
+ “Mean time to complete service of

task when new task arrives if server is busy”

* New task can arrive at any instant; how predict
last part?

* To predict performance, need to know sometime
about distribution of events

queue

CS252 s06 Storage

Poisson Distribution of Random Variables

» A variable is random if it takes one of a specified
set of values with a specified probability
— you cannot know exactly what its next value will be, but you may know
the probability of all possible values
* 1/0 Requests can be modeled by a random variable
because OS normally switching between several
processes generating independent I/O requests
— Also given probabilistic nature of disks in seek and rotational delays
» Can characterize distribution of values of a random
variable with discrete values using a histogram
— Divides range between the min & max values into buckets
— Histograms then plot the number in each bucket as columns
— Works for discrete values e.g., number of /O requests?

What about if not discrete? Very fine buckets

CS252 s06 Storage

Characterizing distribution of a random
variable

* Need mean time and a measure of variance

* For mean, use weighted arithmetic mean(WAM):
« f,=frequency of task i

e Ti = time for tasks |

weighted arithmetic mean
=fIxT1 + f2xT2 + . .. +fnxTn

* For variance, instead of standard deviation, use
Variance (square of standard deviation) for WAM:

e Variance = (f1xT12 + f2xT22 + . . . +fnxTn2) — WAM?

— If time is miliseconds, Variance units are square milliseconds!

* Got a unitless measure of variance?

CS252 s06 Storage

Squared Coefficient of Variance (C?)

» C2=Variance /| WAM?
— Unitless measure
« C = sqrt(Variance)/WAM = StDev/IWAM
¢« Trying to characterize random events, but to predict

performance need distribution of random events where math
Is tractable

¢ Most popular such distribution is exponential distribution,
where C =1
* Note using constant to characterize variability about the mean

— Invariance of C over time = history of events has no impact on
probability of an event occurring now

— Called memoryless, an important assumption to predict behavior

— (Suppose not; then have to worry about the exact arrival times of
{eqtieg}s')relailve to each other = make math considerably less
ractable!

* Most widely used exponential distribution is
Poisson

CS252 s06 Storage

Poisson Distribution

* Most widely used exponential distribution is
Poisson

» Described by probability mass function:
Probability (k) = e x ak / k!
— where a = Rate of events x Elapsed time

« If interarrival times are exponentially distributed and
use arrival rate from above for rate of events,
number of arrivals in time interval t is a Poisson
process

* Time in Queue vs. Length of Queue?
%2 x Arimetic mean x (1 +C2)

CS252 s06 Storage

Summary

Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s

TPC: price performance as normalizing configuration feature
— Auditing to ensure no foul play
— Throughput with restricted response time is normal measure

Fault = Latent errors in system = Failure in service
Components often fail slowly

Real systems: problems in maintenance, operation as well as
hardware, software

Queuing models assume state of equilibrium:
input rate = output rate

Little’s Law: Length, .., =rate x Timeg, ...,
(Mean number customers = arrival rate x mean servite ime)

System

Queue server

Proc —>|:|:D—* 10C

CS252 s06 Storage

