
Network Architecture

CINS/F1-01

Objectives of Lecture

• Show how network architecture can be
understood using a layered approach.

• Introduce the OSI seven layer reference model.
• Introduce the concepts of internetworking and

routing.
• Understand the difference between network

protocols and services.

Contents

1.1 Extended example: how the Internet
protocols fetch a web page

1.2 The concept of protocol layering
1.3 Internetworking and routing
1.4 The OSI seven layer model

Protocols

• The term protocol refers to a well-known set of rules
and formats to be used in order to perform a task. For
example, a task of communicating between processes.

• Parts of a protocol:
– A specification of a sequence of messages that

must be exchanged.
– A specification of the format of the data in the

messages.
• Existence of well-known (standard) protocols enables

the separate components of the distributed systems to
be developed independently in different languages and
on different platforms.

Four elements of a protocol:

A set of rules governing the communication between two peer
entities. It must define the format and the order of messages
as well as actions taken on the transmission and receipt of a
message.

• syntax: format, what is a valid message?
– “GET /~hugue/index.html HTTP/1.1\nHOST:

www.cs.umd.edu\n\n”
• Semantics: what does it mean?

– Get file /~hugue/index.html using the http 1.1 protocol.
• Action:

– read file /~hugue/index.html from the disk, send it
through the socket using the http 1.1 protocol and close
the socket

• Timing: relative order of messages.
– Reply follows the request

1.1 Internet Protocols

Network

Web Browser

Web Server

Four-Layer Model

Distributed data communications involves three
primary components:
– Applications
– Computers
– Networks

Four corresponding layers
– Application layer
– Transport layer
– Internet layer
– Network Interface

Basic Internet Network Architecture

Application Layer

Transport Layer

Internet Layer

Network Layer

Physical Network

Application Layer

Transport Layer

Internet Layer

Network Layer

HTTP Message

TCP Packet

Ethernet
Frame

Ethernet
Frame

IP Datagram IP Datagram

Internet Layer

Network Layer

Physical Network

Host BHost A

Router

 Application Layer

• How does a web browser retrieve data from a
web server?

• Application Protocol: Hypertext Transfer
Protocol (HTTP).

• Users invoke applications which “speak” using
application protocol.

• Applications interact with a transport protocol to
send or receive data.

• Other applications: FTP, SMTP, DNS, SMB, …

Application Layer Example

• HTTP outline:
– GET /~hugue/index.html HTTP/1.1
– Host: www.cs.umd.edu

GET /~hugue/index.html HTTP/1.1
Host: www.cs.umd.edu

HTTP Message

Transport Layer

• Provides end-to-end communication between
applications.

• Transport Protocol: Transport Control Protocol (TCP)
– a reliable, connection-oriented transport protocol.

• Divides stream of application messages into packets.
• Interacts with Internet Layer to send or receive data.
• In general, a transport protocol may be

– reliable or unreliable,
– connection-oriented or connectionless,
– and flow may or may not be regulated.

• Others: UDP, ICMP.

Transport Layer Example

• TCP outline:
– Source Port: 1081
– Destination Port: 80
– Checksum: 0xa858

GET /~hugue/index.html HTTP/1.1
Host: www.cs.umd.edu

Src: 1081 Dst: 80
Chksum: 0xa858

HTTP MessageTCP header

Internet Layer

• Responsible for routing communications
between one machine and another.

• Accepts requests to send packets to
destination address.

• Internet Protocol (IP) encapsulates packets in
IP datagram with IP header and uses routing
algorithm to decide whether to send directly or
indirectly.

• Also handles incoming IP datagrams.
– If addressed to local machine, remove the IP

datagram header and pass up to transport layer.

Internet Layer Example

• IP outline:
– Time to live: 128
– Header checksum: 0x57d1
– Source: my home pc (69.140.128.222)
– Destination: www.cs.umd.edu (128.8.10.143)

GET /~hugue/index.html HTTP/1.1
Host: www.cs.umd.edu

Src: 1081 Dst: 80
Chksum: 0xa858

Src: 69.140.128.222
Dst: 128.8.10.143 TTL: 128

HTTP MessageTCP headerIP datagram header

Network Interface Layer

• Accepts IP datagrams and transmits over
specific networks.

• Maybe a simple device driver (e.g. an Ethernet
driver) or a complex subsystem with further
data link protocols.

Src: 00:e0:81:10:19:fc Dst: 00:a0:cc:54:1d:4e Type: IP

Network Interface Layer Example

• Ethernet outline:
– Destination: 00:a0:cc:54:1d:4e
– Source: 00:e0:81:10:19:fc
– Type: IP

GET /~hugue/index.html HTTP/1.1
Host: www.cs.umd.edu

Src: 1081 Dst: 80
Chksum: 0xa858

Src: 69.140.128.222
Dst: 128.8.10.143 TTL: 128

Ethernet Frame

Ports and Addresses

• Ports are destination points within a host
computer.

• Processes are attached to the ports, enabling
them to communicate.

• Transport layer addresses are composed of
network address of the host computer and a
port number.

• In the Internet every host is assigned a unique
IP number which is used in routing.

• In an Ethernet each host is responsible for
recognizing that the messages meant for it.

1.2 Protocol Layering

Application Layer

Transport Layer

Internet Layer

Network Interface

Physical Network

Application Layer

Transport Layer

Internet Layer

Network Interface

Message

Packet

Datagram

Frame

Host A Host B

Protocol Layering

Application Layer

Transport Layer

Internet Layer

Network Layer

Physical Network

Application Layer

Transport Layer

Internet Layer

Network Layer

HTTP Message

TCP Packet

IP Datagram

Ethernet Frame

Web Browser Web Server

Protocol Hierarchies

• Protocols are stacked vertically as series of
‘layers’.

• Each layer offers services to layer above,
shielding implementation details.

• Layer n on one machine communicates with
layer n on another machine (they are peer
processes/entities) using Layer n Protocol.

Layers, Protocols & Interfaces

Physical communications medium

Layer 1 Layer 1
Layer 1 protocol

Layer 2 Layer 2
Layer 1/2
interface

Layer 1/2
interface

Layer 2 protocol

Layer n protocolLayer n Layer n

Layer 2/3
interface

Layer n-1/n
interface

Layer 2/3
interface

Layer n-1/n
interface

Layer n/n+1
interface

Layer n/n+1
interface

Layer/Interface Design

• Important objective is ‘clean’ interfaces, having
minimal set of well-defined services.

• Clean-cut interfaces enable:
– minimisation of inter-layer communications
– easy replacement of individual layers

• Set of layers and protocols is the Network
Architecture.

Virtual & Actual Communications

• Important to understand difference between:
– virtual and actual communications,
– protocols and interfaces.

• Peer processes ‘think’ of communications as
being ‘horizontal’ using protocol.

• Actual communications is via interfaces (and
the physical communications medium).

• Peer process idea is key to network design.

Design Issues

• Some issues affect many layers, e.g:
– need to address data (say who it’s for),
– possible need for setting up connections,
– data transfer rules (simplex, half-duplex, ...),
– error management,
– deal with message component re-ordering,
– flow control,
– routing
– security

1.3 Internetworking and Routing

• No single networking technology can satisfy all
requirements.

• Universal interconnection is desired.
• Protocols allow communication between nodes

without understanding underlying mechanisms.
• Internetworking is the process by which a

group of disparate, heterogeneous networks
can be linked to form a single logical network.

• The Internet is just such a collection.

Routing

Web Browser

Web Server

Router

Network
A

Network
B

Routing is the mechanism used to transfer data
between networks to reach the correct
destination.

Routing takes place at the IP
layer: routers are not aware of
transport and application
layers.

Protocol Layering and Routing

Application Layer

Transport Layer

Internet Layer

Network Layer

Physical Network

Application Layer

Transport Layer

Internet Layer

Network Layer

HTTP Message

TCP Packet

Ethernet
Frame

Ethernet
Frame

IP Datagram IP Datagram

Internet Layer

Network Layer

Physical Network

Host BHost A

Router

1.4 The OSI Reference Model

• OSI Reference Model – an internationally
standardised network architecture.

• An abstract representation of an ideal network
protocol stack; not used in real networks.

• OSI = Open Systems Interconnection.
• Specified in ISO 7498-1.
• Model has 7 layers.

Internet Protocols vs OSI

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

TCP

IP

Network Interface

Hardware1

2

3
4

5

1

2

3

4

6

5

7

The OSI Model

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Lower/Upper Layers

• Layers 1-4 often referred to as lower layers.
• Layers 5-7 are the upper layers.
• Lower layers relate more closely to the

communications technology.
• Layers 1 – 3 manage the communications

subnet.
– the entire set of communications nodes required to

manage massages between a pair of machines.

• Layers 4 – 7 are true ‘end-to-end’ protocols.
• Upper layers relate to application.

Layer 7: Application Layer

• Home to wide variety of protocols for specific
user needs, e.g.:
– virtual terminal service,
– file transfer,
– electronic mail,
– directory services.

Layer 6: Presentation Layer

• Concerned with representation of transmitted
data.

• Deals with different data representations.
– ASCII or EBCDIC,
– one’s complement or two’s complement,
– byte ordering conventions,
– floating point conventions (IEEE or proprietary).

• Also deals with data compression.

Layer 5: Session Layer

• Allows establishment of sessions between
machines, e.g. to
– allow remote logins
– provide file transfer service.

• Responsible for:
– dialogue control

• which entity sends when with half-duplex communications.

– token management
• E.g. control which entity can perform an operation on

shared data.

– synchronisation
• E.g. insertion of checkpoints in large data transfers.

Layer 4: Transport Layer

• Basic function is to take data from Session
Layer, split it up into smaller units, and ensure
that the units arrive correctly.

• Concerned with efficient provision of service.
• The Transport Layer also determines the ‘type

of service’ to provide to the Session Layer.

Layer 3: Network Layer

• Key responsibility is control of routing in the
subnet.

• Routing can be based on:
– static tables,
– determined at start of session,
– highly dynamic (varying for each packet depending

on network load).

• Also responsible for congestion control and
usage monitoring.

Layer 2: Data Link Layer

• Provides reliable, error-free service on top of
raw Layer 1 service.

• Breaks data into frames. Requires creation of
frame boundaries.

• Frames used to manage errors via
acknowledgements and selective frame
retransmission.

Layer 1: Physical Layer

• Concerned with bit transmission over physical
channel.

• Issues include:
– definition of 0/1,
– whether channel simplex/duplex,
– connector design.

• Mechanical, electrical, procedural matters.

Services in the OSI Model

• In OSI model, each layer provide services to
layer above, and ‘consumes’ services provided
by layer below.

• Active elements in a layer are called entities.
• Entities in same layer in different machines are

called peer entities.

Layering Principles

(n+1) Entity
Service User

(n) Entity
Service Provider

(n+1) Entity
Service User

(n) Entity
Service Provider

Layer n Service
Access Point (SAP)

Layer n protocol

n+1
PDU

Layer n+1 protocol

SDU

PDU - Protocol Data Unit
SDU - Service Data Unit

N-1
PDU

N-1
PDU

Services and Protocols

• Service = set of primitives provided by one
layer to layer above.

• Service defines what layer can do (but not how
it does it).

• Protocol = set of rules governing data
communication between peer entities, i.e.
format and meaning of frames/packets.

• Service/protocol decoupling very important.

Connections

• Layers can offer connection-oriented or
connectionless services.

• Connection-oriented like telephone system.
• Connectionless like postal system.
• Each service has an associated Quality-of-

service (e.g. reliable or unreliable).

Reliability Issues

• Reliable services never lose/corrupt data.
• Reliable service costs more.
• Typical application for reliable service is file

transfer.
• Typical application not needing reliable service

is voice traffic.
• Not all applications need connections.

Encapsulation as it is applied in layered protocols

IP datagram

• IP Addresses
– Logical, unique
– eg. cs.umd.edu is 128.8.10.143

• IP Packet Format:

VERS HL
Fragment Offset

Fragment LengthTOS
Datagram ID FLAG

TTL Protocol Header Checksum
Source Address

Destination Address
Options (if any)

Data

TCP Segment Format

Destination Port

Options (if any)

Data

Source Port
Sequence Number
Request Number

offset Reser. Control Window
Checksum Urgent Pointer

UDP Datagram Format

Source Port Destination Port

Length Checksum

Data

Protocol Stacks In Relation To OSI Model

Sockets Programming

• Network API

• Socket Structures

• Socket Functions

Network Application Programming
Interface (API)

• The services provided by the operating system
that provide the interface between application
and protocol software.

ApplicationApplication

NetworkNetwork APIAPI

Protocol AProtocol A Protocol BProtocol B Protocol CProtocol C

Network API

• Generic Programming Interface.
• Support for message oriented and connection

oriented communication.
• Uses the existing I/O services
• Operating System independence.
• Support multiple communication protocol suites

(families): IPv4, IPv6, XNS, UNIX.
• Provide special services for Client and Server?

TCP/IP

• There are a variety of APIs for use with TCP/IP:
– Sockets
– TLI
– Winsock
– MacTCP

Functions needed

• Specify local and remote communication
endpoints

• Initiate a connection
• Wait for incoming connection
• Send and receive data
• Terminate a connection gracefully
• Error handling

Berkeley Sockets

• Generic:
– support for multiple protocol families.
– address representation independence

• Uses existing I/O programming interface as
much as possible

Unix Descriptor Table

DescriptorDescriptor Table Table
Data structure for file 0Data structure for file 0

Data structure for file 1Data structure for file 1

Data structure for file 2Data structure for file 2

Socket

• A socket is a process-level abstract
representation of a communication endpoint.

• Sockets work with Unix I/O services just like
files, pipes & FIFOs.

• Sockets (obviously) have special needs:
– establishing a connection
– specifying communication endpoint addresses

