
Appendix A - Pipelining 1

The Big Picture
Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance

Focus

BOXBOX Si fin - Body!

DrainSource

Gate

f2() {

 f3(s2, &j, &i);

 *s2->p = 10;

 i = *s2->q + i;

}

i1: ld r1, b <p1>

i2: ld r2, c <p1>

i3: ld r5, z <p3>

i4: mul r6, r5, 3 <p3>

i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

Appendix A - Pipelining 2

Instruction Set Architecture

Application

Instruction Set Architecture

Implementation

…SPARC MIPS ARM x86 HP-PA IA-64…

Intel Pentium X
AMD K6, Athlon, Opteron
Transmeta Crusoe TM5x00

Appendix A - Pipelining 3

Instruction Set Architecture

• Strong influence on cost/performance

• New ISAs are rare, but versions are

not

– 16-bit, 32-bit and 64-bit X86 versions

• Longevity is a strong function of

marketing prowess

Appendix A - Pipelining 4

• Strongly constrained by the number of
bits available to instruction encoding

• Opcodes/operands

• Registers/memory

• Addressing modes

• Orthogonality

• 0, 1, 2, 3 address machines

• Instruction formats

• Decoding uniformity

Traditional Issues

Appendix A - Pipelining 5

Introduction

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

Appendix A - Pipelining 6

What Is Pipelining

• Laundry Example

• Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

Appendix A - Pipelining 7

What Is Pipelining

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T

a

s

k

O

r

d

e

r

Time

Appendix A - Pipelining 8

What Is Pipelining

Start work ASAP

• Pipelined laundry takes

3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

Appendix A - Pipelining 9

Pipelining

Lessons

• Pipelining doesn’t help

latency of single task, it helps

throughput of entire workload

• Pipeline rate limited by

slowest pipeline stage

• Multiple tasks operating

simultaneously

• Potential speedup = Number

pipe stages

• Unbalanced lengths of pipe

stages reduces speedup

• Time to “fill” pipeline and time

to “drain” it reduces speedup

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

What Is

Pipelining

Appendix A - Pipelining 10

MIPS Without

Pipelining

What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

IR
L

M

D

Appendix A - Pipelining 11

MIPS Functions
What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr.

Calc

IR L

M

D

Instruction Fetch (IF):
Send out the PC and fetch the instruction from memory into the instruction

register (IR); increment the PC by 4 to address the next sequential

instruction.

IR holds the instruction that will be used in the next stage.

NPC holds the value of the next PC.

Passed To Next Stage

IR <- Mem[PC]

NPC <- PC + 4

Appendix A - Pipelining 12

MIPS Functions
What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr.

Calc

IR L

M

D

Instruction Decode/Register Fetch Cycle (ID):
Decode the instruction and access the register file to read the registers.

The outputs of the general purpose registers are read into two temporary

registers (A & B) for use in later clock cycles.

We extend the sign of the lower 16 bits of the Instruction Register.

Passed To Next Stage

A <- Regs[IR6..IR10];

B <- Regs[IR10..IR15];

Imm <- ((IR16) ##IR16-31

Appendix A - Pipelining 13

MIPS Functions
What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr.

Calc

IR L

M

D

Passed To Next Stage

A <- A func. B

cond = 0;

Execute Address Calculation (EX):
We perform an operation (for an ALU) or an address calculation (if it’s a load

or a Branch).

If an ALU, actually do the operation. If an address calculation, figure out

how to obtain the address and stash away the location of that address for

the next cycle.

Appendix A - Pipelining 14

MIPS Functions
What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr.

Calc

IR L

M

D

Passed To Next Stage

A = Mem[prev. B]

or

Mem[prev. B] = A

MEMORY ACCESS (MEM):
If this is an ALU, do nothing.

If a load or store, then access memory.

Appendix A - Pipelining 15

MIPS Functions
What Is

Pipelining

Memory

Access

Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr.

Calc

IR L

M

D

Passed To Next Stage

Regs <- A, B;

WRITE BACK (WB):
Update the registers from either the ALU or from the data loaded.

Appendix A - Pipelining 16

The Basic Pipeline For MIPS

Latches between

each stage provide

pipelining.

Appendix A - Pipelining 17

The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Figure 3.3

Appendix A - Pipelining 18

Pipeline Hurdles
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-

Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to

Implement?

A.5 Extending the MIPS Pipeline to

Handle Multi-cycle Operations

Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this
combination of instructions (single person to fold
and put clothes away)

– Data hazards: Instruction depends on result of
prior instruction still in the pipeline (missing
sock)

– Control hazards: Pipelining of branches &
other instructions that change the PC

– Common solution is to stall the pipeline until the
hazard is resolved, inserting one or more
“bubbles” in the pipeline

Appendix A - Pipelining 19

Pipeline Hurdles
Definition

• conditions that lead to incorrect behavior if not fixed

• Structural hazard

– two different instructions use same h/w in same cycle

• Data hazard

– two different instructions use same storage

– must appear as if the instructions execute in correct order

• Control hazard

– one instruction affects which instruction is next

Resolution

• Pipeline interlock logic detects hazards and fixes them

• simple solution: stall -

• increases CPI, decreases performance

• better solution: partial stall -

• some instruction stall, others proceed better to stall early than late

Appendix A - Pipelining 20

Structural Hazards
When two or

more different

instructions want

to use same

h a r d w a r e

resource in same

cycle

e.g., MEM uses

the same memory

port as IF as

shown in this

slide.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Figure 3.6

Appendix A - Pipelining 21

Structural Hazards

This is another

way of looking

at the effect of

a stall.I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Figure 3.7

Appendix A - Pipelining 22

Structural Hazards

This is another way to represent the stall we saw on

the last few pages.

Appendix A - Pipelining 23

Structural Hazards

Dealing with Structural Hazards

Stall

• low cost, simple

• Increases CPI

• use for rare case since stalling has performance effect

Pipeline hardware resource

• useful for multi-cycle resources

• good performance

• sometimes complex e.g., RAM

Replicate resource

• good performance

• increases cost (+ maybe interconnect delay)

• useful for cheap or divisible resources

Appendix A - Pipelining 24

Structural Hazards
Structural hazards are reduced with these rules:

• Each instruction uses a resource at most once

• Always use the resource in the same pipeline stage

• Use the resource for one cycle only

Many RISC ISA’a designed with this in mind

Sometimes very complex to do this. For example, memory of

necessity is used in the IF and MEM stages.

Some common Structural Hazards:

• Memory - we’ve already mentioned this one.

• Floating point - Since many floating point instructions require

many cycles, it’s easy for them to interfere with each other.

• Starting up more of one type of instruction than there are

resources. For instance, the PA-8600 can support two ALU +

two load/store instructions per cycle - that’s how much hardware

it has available.

Appendix A - Pipelining 25

Structural Hazards

We want to compare the performance of two machines. Which machine is faster?

• Machine A: Dual ported memory - so there are no memory stalls

• Machine B: Single ported memory, but its pipelined implementation has a 1.05
times faster clock rate

Assume:

• Ideal CPI = 1 for both

• Loads are 40% of instructions executed

 SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

 = Pipeline Depth

 SpeedUpB = Pipeline Depth/(1 + 0.4 x 1)
 x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05

 = 0.75 x Pipeline Depth

 SpeedUpA / SpeedUpB = Pipeline Depth / (0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

This is the example on Page 144.

Appendix A - Pipelining 26

Data Hazards

These occur when at any time, there are
instructions active that need to access the
same data (memory or register) locations.

Where there’s real trouble is when we have:

instruction A

instruction B

and B manipulates (reads or writes) data
before A does. This violates the order of the
instructions, since the architecture implies
that A completes entirely before B is
executed.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-

Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to

Implement?

A.5 Extending the MIPS Pipeline to

Handle Multi-cycle Operations

Appendix A - Pipelining 27

Data Hazards
Read After Write (RAW)

InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler nomenclature).

This hazard results from an actual need for

communication.

Execution Order is:

InstrI

InstrJ

I: add r1,r2,r3

J: sub r4,r1,r3

Appendix A - Pipelining 28

Data Hazards
Write After Read (WAR)

InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

– Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Reads are always in stage 2, and

– Writes are always in stage 5

Execution Order is:

InstrI

InstrJ

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Appendix A - Pipelining 29

Data Hazards
Write After Write (WAW)

InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Called an “output dependence” by compiler writers

This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and

– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes

Execution Order is:

InstrI

InstrJ

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Appendix A - Pipelining 30

Data Hazards

Simple Solution to RAW

• Hardware detects RAW and stalls

• Assumes register written then read each cycle

+ low cost to implement, simple

-- reduces IPC

• Try to minimize stalls

Minimizing RAW stalls

• Bypass/forward/short-circuit (We will use the word “forward”)

• Use data before it is in the register

+ reduces/avoids stalls

-- complex

• Crucial for common RAW hazards

Appendix A - Pipelining 31

Data Hazards

The use of the result of the ADD instruction in the next three instructions causes a

hazard, since the register is not written until after those instructions read it.

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Time (clock cycles)

IF ID/RF EX MEM WB

Figure 3.9
Appendix A - Pipelining 32

Data Hazards
Forwarding To Avoid

Data Hazard

Forwarding is the concept of making data

available to the input of the ALU for

subsequent instructions, even though the

generating instruction hasn’t gotten to WB

in order to write the memory or registers.

Figure 3.10

Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Appendix A - Pipelining 33

Data Hazards

There are some instances where hazards occur, even with forwarding.

The data isn’t loaded until after

the MEM stage.

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Figure 3.12
Appendix A - Pipelining 34

Data Hazards

There are some instances where hazards occur, even with forwarding.

The stall is necessary as shown

here.

Figure 3.13

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

Appendix A - Pipelining 35

Data Hazards
This is another

representation

of the stall.

WBMEMEXIDIFOR R8, R1, R9

WBMEMEXIDIFAND R6, R1, R7

WBMEMEXIDIFSUB R4, R1, R5

WBMEMEXIDIFLW R1, 0(R2)

IF

ID

EX

WBMEMEXIDIFstallOR R8, R1, R9

WBMEMEXIDstallAND R6, R1, R7

WBMEMEXstallIFSUB R4, R1, R5

WBMEMIDIFLW R1, 0(R2)

Appendix A - Pipelining 36

Data Hazards
Instruction scheduled by compiler - move instruction in order to reduce stall.

lw Rb, b -- code sequence for a = b+c before scheduling

lw Rc, c

Add Ra, Rb, Rc -- stall

sw a, Ra

lw Re, e -- code sequence for d = e+f before scheduling

lw Rf, f

sub Rd, Re, Rf -- stall

sw d, Rd

Arrangement of code after scheduling.

lw Rb, b

lw Rc, c

lw Re, e

Add Ra, Rb, Rc

lw Rf, f

sw a, Ra

sub Rd, Re, Rf

sw d, Rd

Pipeline Scheduling

Appendix A - Pipelining 37

Data Hazards Pipeline Scheduling

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

Appendix A - Pipelining 38

Control Hazards

A control hazard is when we

need to find the destination

of a branch, and can’t fetch

any new instructions until

we know that destination.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-

Structural Hazards

 -- Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to

Implement?

A.5 Extending the MIPS Pipeline to

Handle Multi-cycle Operations

Appendix A - Pipelining 39

Control Hazard on

Branches

Three Stage Stall

Control Hazards

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Reg

A
L

U

DMemIfetch Reg

Appendix A - Pipelining 40

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

(Whoa! How did we get that 1.9???)

• Two part solution to this dramatic increase:

– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ^ 0

• MIPS Solution:

– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

• must be fast

• can't afford to subtract

• compares with 0 are simple

• Greater-than, Less-than test sign-bit, but not-equal must OR all bits

• more general compares need ALU

– 1 clock cycle penalty for branch versus 3

In the next chapter, we’ll look at ways to avoid the branch all together.

Control Hazards

Appendix A - Pipelining 41

Five Branch Hazard

Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken

– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

Control Hazards

Appendix A - Pipelining 42

#4: Execute Both Paths

#5: Delayed Branch

– Define branch to take place AFTER a following instruction

branch instruction

sequential successor
1

sequential successor
2

........

sequential successor
n

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– MIPS uses this

Branch delay of length n

Control Hazards Five Branch Hazard

Alternatives

Appendix A - Pipelining 43

Delayed Branch

• Where to get instructions to fill branch delay slot?

– Before branch instruction

– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful in
computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple instructions
issued per clock (superscalar)

Control Hazards

Appendix A - Pipelining 44

Evaluating Branch

Alternatives

Scheduling Branch CPI speedup v. Speedup v.

 scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Control Hazards

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty

Appendix A - Pipelining 45

Pipelining Introduction

Summary

• Just overlap tasks, and easy if tasks are independent

• Speed Up ! Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:

– Structural: need more HW resources

– Data (RAW,WAR,WAW): need forwarding, compiler scheduling

– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

Control Hazards

Appendix A - Pipelining 46

Compiler “Static”

Prediction of

Taken/Untaken Branches

F
r
e
q

u
e
n
c
y

o
f

M
is

p
r
e
d

ic
t
io

n

0%

10%

20%

30%

40%

50%

60%

70%

a
lv

in
n

c
o
m

p
r
e
s
s

d
o
d
u
c

e
s
p
r
e
s
s
o

g
c
c

h
y
d
r
o
2
d

m
d
lj
s
p
2

o
r
a

s
w

m
2

5
6

t
o
m

c
a
t
v

M
is

p
r
e
d

ic
t
io

n

R
a
t
e

0%

2%

4%

6%

8%

10%

12%

14%

a
lv

in
n

c
o
m

p
re

s
s

d
o
d
u
c

e
s
p
re

s
s
o

g
c
c

h
y
d
ro

2
d

m
d
lj
s
p
2

o
r
a

s
w

m
2

5
6

t
o
m

c
a
t
v

Always taken Taken backwards

Not Taken Forwards

Control Hazards
The compiler can program what it thinks

the branch direction will be. Here are

the results when it does so.

Appendix A - Pipelining 47

Compiler “Static”

Prediction of

Taken/Untaken Branches

• Improves strategy for placing instructions in delay slot

• Two strategies

– Backward branch predict taken, forward branch not taken

– Profile-based prediction: record branch behavior, predict branch

based on prior run

Control Hazards

Appendix A - Pipelining 48

Evaluating Static

Branch Prediction

Strategies

• Misprediction ignores

frequency of branch

• “Instructions between

mispredicted branches”

is a better metric

In
s
t
r
u
c
t
io

n
s

p
e
r

m
is

p
r
e
d

ic
t
e
d

b

r
a
n
c
h

1

10

100

1000

10000

100000

a
lv

in
n

c
o
m

p
re

s
s

d
o
d
u
c

e
s
p
re

s
s
o

g
c
c

h
y
d
ro

2
d

m
d
lj
s
p
2

o
ra

s
w

m
2

5
6

to
m

c
a
tv

Profile-based Direction-based

Control Hazards

Appendix A - Pipelining 49

What Makes Pipelining Hard?
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-

Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to

Implement?

A.5 Extending the MIPS Pipeline to

Handle Multi-cycle Operations

Appendix A - Pipelining 50

What Makes

Pipelining Hard?
Examples of interrupts:

• Power failing,

• Arithmetic overflow,

• I/O device request,

• OS call,

• Page fault

Interrupts (also known as: faults,

exceptions, traps) often require

• surprise jump (to vectored address)

• linking return address

• saving of PSW (including CCs)

• state change (e.g., to kernel mode)

Interrupts cause

great havoc!

There are 5 instructions executing
in 5 stage pipeline when an
interrupt occurs:

• How to stop the pipeline?

• How to restart the pipeline?

• Who caused the interrupt?

Appendix A - Pipelining 51

What Makes

Pipelining Hard?
Interrupts cause

great havoc!

What happens on interrupt while in delay slot ?

• Next instruction is not sequential

solution #1: save multiple PCs

• Save current and next PC

• Special return sequence, more complex hardware

solution #2: single PC plus

• Branch delay bit

• PC points to branch instruction

Stage Problem that causes the interrupt

IF Page fault on instruction fetch; misaligned memory
access; memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic interrupt

MEM Page fault on data fetch; misaligned memory
access; memory-protection violation

Appendix A - Pipelining 52

What Makes

Pipelining Hard?
• Simultaneous exceptions in more than one pipeline stage, e.g.,

– Load with data page fault in MEM stage

– Add with instruction page fault in IF stage

– Add fault will happen BEFORE load fault

• Solution #1

– Interrupt status vector per instruction

– Defer check until last stage, kill state update if exception

• Solution #2

– Interrupt ASAP

– Restart everything that is incomplete

Another advantage for state update late in pipeline!

Interrupts cause

great havoc!

Appendix A - Pipelining 53

What Makes

Pipelining Hard?

Here’s what happens on a data page fault.

 1 2 3 4 5 6 7 8 9

i F D X M W

i+1 F D X M W <- page fault

i+2 F D X M W <- squash

i+3 F D X M W <- squash

i+4 F D X M W <- squash

i+5 trap -> F D X M W

i+6 trap handler -> F D X M W

Interrupts cause

great havoc!

Appendix A - Pipelining 54

What Makes

Pipelining Hard?

Complex Addressing Modes and Instructions

• Address modes: Autoincrement causes register change
during instruction execution

– Interrupts? Need to restore register state

– Adds WAR and WAW hazards since writes are no longer the
last stage.

• Memory-Memory Move Instructions

– Must be able to handle multiple page faults

– Long-lived instructions: partial state save on interrupt

• Condition Codes

Complex

Instructions

Appendix A - Pipelining 55

Handling Multi-cycle Operations

Multi-cycle instructions also

lead to pipeline complexity.

A very lengthy instruction

causes everything else in

the pipeline to wait for it.

A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-

Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to

Implement?

A.5 Extending the MIPS Pipeline to

Handle Multi-cycle Operations

Appendix A - Pipelining 56

Multi-Cycle

Operations
Floating point gives long execution time.

This causes a stall of the pipeline.

It’s possible to pipeline the FP execution unit so it can initiate new instructions

without waiting full latency. Can also have multiple FP units.

FP Instruction Latency Initiation Rate

Add, Subtract 4 3

Multiply 8 4

Divide 36 35

Square root 112 111

Negate 2 1

Absolute value 2 1

FP compare 3 2

Floating Point

Appendix A - Pipelining 57

Divide, Square Root take -10X to -30X longer than Add

– Interrupts?

– Adds WAR and WAW hazards since pipelines are

no longer same length

Multi-Cycle

Operations
Floating Point

1 2 3 4 5 6 7 8 9 10 11

i IF ID EX MEM WB

I + 1 IF ID EX EX EX EX MEM WB

I + 2 IF ID EX MEM WB

I + 3 IF ID EX EX EX EX MEM WB

I + 4 IF ID EX MEM WB

I + 5 IF ID -- -- EX EX

I + 6 IF -- -- ID EX

Notes:

I + 2: no WAW, but this complicates an interrupt

I + 4: no WB conflict

I + 5: stall forced by structural hazard

I + 6: stall forced by in-order issue
Appendix A - Pipelining 58

Summary of Pipelining Basics

• Hazards limit performance

– Structural: need more HW resources

– Data: need forwarding, compiler scheduling

– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; pipelining
helps instruction bandwidth, not latency

• Interrupts, Instruction Set, FP makes pipelining harder

• Compilers reduce cost of data and control hazards

– Load delay slots

– Branch delay slots

– Branch prediction

Appendix A - Pipelining 59

Credits
I have not written these notes by myself. There’s a great deal of fancy

artwork here that takes considerable time to prepare.

I have borrowed from:

Wen-mei & Patel: http://courses.ece.uiuc.edu/ece511/lectures/lecture3.ppt

Patterson: http://www.cs.berkeley.edu/~pattrsn/252S98/index.html

Rabaey: (He used lots of Patterson material):

http://bwrc.eecs.berkeley.edu/Classes/CS252/index.htm

Katz: (Again, he borrowed heavily from Patterson):

http://http.cs.berkeley.edu/~randy/Courses/CS252.F95/CS252.Intro.html

Mark Hill: (Follows text fairly well): http://www.cs.wisc.edu/~markhill/cs752/

Appendix A - Pipelining 60

Summary
A.1 What is Pipelining?

A.2 The Major Hurdle of Pipelining-Structural Hazards

– Data Hazards

– Control Hazards

A.3 How is Pipelining Implemented

A.4 What Makes Pipelining Hard to Implement?

A.5 Extending the MIPS Pipeline to Handle Multi-cycle Operations

