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Problem 1: “ Baron Harkonnen’s Big Bad B-Tree Family” (30 pts)

(6) 1.1 Define a B+-tree of order m. That is, what conditions must all nodes in a B+-tree satisfy. Be sure
to address both keys and records.

(6) 1.2 Define overflow in the context of a BT-tree of order m, and explain briefly how the condition is
corrected. Drawing a picture may be helpful here in explaining your answer.

(6) 1.3 Define underflow in the context of a Bt-tree of order m, and explain briefly how the condition is
corrected. Drawing a picture may be helpful here in explaining your answer.

6) 1.4 In performing a “search-and-insert-if-record-not-found” operation on a B*-tree, the new key matched
g
a value in the root node, yet the record was inserted.

Is the above scenario valid? If so, explain how. If not, explain why not.

(6) 1.5 Database applications typically use B+-trees where m is between 80 and 100. Give two reasons
why. Explain your answer for full credit.

Problem 2:“Stilgar’s Self-Adjusting Structures (24 pts)

Suppose you have a set of n distinct keys or elements stored in a list. Let f(n) be the average number of
elements accessed in satisfying a search query for a single element. Assume that each element is equally
likely to be the target of a search.

2.1 (6) Ts the following expression for f(n) reasonable?

If your answer is yes, explain why. If it is no, explain why not and give a more reasonable value, if one
exists.

2.2 (6) Suppose now that we use a self-adjusting list to store these keys, where the list is modified after
each data access. One way to implement a self-adjusting list is to move the key satisfying the search
query to the head of the list, giving the method its name “move to front”. New elements are inserted
at the head of the list, following a deletion, the predecessor of a deleted element becomes the new list
head. Let g(n) represent the average number of elements accessed by a search query applied to the
new list.

Would you expect g(n) be less than f(n) ? If your answer is yes, explain why. Otherwise, explain why
not.

Note: you don’t need to calculate g(n) or f(n) directly here; you merely need to reason about the effect
of the reordering of list elements upon the search process

2.3 (6) When n exceeds a few hundred, the “move-to-front” operation described for problem 2.2 is replaced
by a “transpose” strategy, which swaps the key targeted by the search with its predecessor in the list.
Why might this be preferred for larger data sets?

2.4 (6) Give conditions under which the self-adjusting list described for this problem might be preferred
over a splay tree. Or, if you don’t believe such conditions exist, explain why not.



Problem 3: “A Melange of Spicy Bits” (48 pts)

Last, but not least, shorter focused topic questions. They are tailored to a variety of skills; so, don’t panic
until after you’ve read them all.
DO any 8 of the TEN problems here—that’s right, you can skip TWO (2)!

(6) 3.1 Derive a minimum cost spanning tree for the following undirected graph, where the weights are
listed after the edge. For example, the weight of the edge (A,B) is given by 2. For full credit, explain
how you know that you have achieved a minimum?

Vertex Edges

A <AB>(2) <AC> (1) <AD>(3) <AE>(2) <AF> (4
B <B,A> (2) <B,C>(4) <BD> (4 <BG>(2)

C <C,A> (1) <CB> (4) <C,F> (1)

D <D,A> (3) <D,B>(4) <D,E> (3)

E <E,A>(2) <ED>(3) <EG>(2)

F <F,A> (4) <F,.C> (1) <F,G>(h)

G <G,B> (2) <GE>(2) <GF>(5)

(6) 3.2 What is meant by the term amortized analysis? Why might this method be preferred over asymp-
totic analysis for some applications?

(6) 3.3 What is the buddy algorithm? Give a definition of the buddy algorithm, and identify a benefit and
a drawback of using it.

(6) 3.4 Each of the functions below has been proposed as a hashing function to map an integer key k
to a hash table of of size n. Evaluate them for their acceptability for insert and search operations,
and explain the flaw or benefit associated with each. That is, why is it acceptable, or why it is not
acceptable.

A. h(k) = (k 4+ random(n)) mod n, where random(n) is a randomly generated integer from the
interval [0,n — 1] inclusive, and n is a prime number.

B. h(k) = k mod n, where n is a power of 2.

(6) 3.5 Sparse matrix schemes are only beneficial if the sparse representation takes less space than the entire
matrix, including the explicit zeros, as this problem illustrates. Assume that a sparse n x n matrix
contains k non-zero integers. Describe and draw a storage scheme that takes advantage of sparseness,
and determine the cut-off value of k for your scheme. That is, determine the first value of k for which
the sparse storage requirements exceed the space needed for the entire n x n matrix.

(6) 3.6 Explain in words how to perform a breadth first traversal algorithm of the graph G(V,E) using start
vertex, s.

(6) 3.7 Explain why merge-sort is in O(nlogn), and indicate what data structure should be used to make
this algorithm space efficient. You are welcomed to use an ezample to show how the algorithm works—no
fancy definition or proof required.

6) 3.8 In the context of the project, briefly explain an algorithm for finding the closest base to a given
g g g
raw material site. For full credit, explain why the algorithm is better than a brute force search of all
possible bases.

(6) 3.9 In the context of the project, suppose that you were required to support continuous access to the
data in the PM1 quadtree. That 1s, you should be able to satisfy any of the project functions that use
the quad tree, while inserting or deleting sites and paths. However, you must use current data if at all
possible, meaning, for example, that as soon as a pending insert has finished, any function initiated
thereafter must be able to access that site. How would you modify your project code or operation to
support this new constraint?



(6) 3.10 Suppose a depth first search (dfs) algorithm is performed on the graph G(V, ), where the number
of vertices is v = |V, and the number of edges is e = |E|. Let p(G, v) be the number of vertices visited
by dfs. Initialize p(G,v) = 0, and add 1 to p(G,v) every time the dfs algorithm examines a vertex,
thus counting the examination of a vertex that has been seen before as a visit, which happens in the
case of cycles.

Since the algorithm must examine each vertex at least once, we have p(G,v) € Q(v). Is p(G,v) € O(v)?
If not, explain why not. If so, explain why, and give a estimate of the worst case value of the growth
constant C' > 0 for which p(G,v) < C * n when n is large enough .



