

 1

ProofRite: A Paper-Augmented Word Processor

Kevin Conroy Dave Levin François Guimbretière

Department of Computer Science
Human-Computer Interaction Lab

University of Maryland,
College Park, MD, 20742

{kmconroy, dml, francois}@cs.umd.edu

ABSTRACT
While proofreading digital documents is a common pattern
of use among word processor users [29], at present there
are no word processing programs that support this function.
This forces users to reenter the corrections into the digital
version of a document manually, a time-consuming and
error-prone task. To address this problem, we introduce
ProofRite, a word processor that supports digital and
physical document annotation. When users print a
ProofRite document and annotate it with a digital pen, they
may merge their changes with the digital source. As they
continue the writing process, ProofRite reflows these
markings.

ProofRite leverages the features of the first fully
implemented PADD infrastructure [11]. This allows
ProofRite to serve several common patterns of use: the
exchange of paper documents between users from different
organizations; the simultaneous annotation of different
printed copies; and, the annotation of the same document
by different users.

In this paper, we report our experience in designing the first
implementation of the PADD infrastructure and how it was
used to extend AbiWord into the ProofRite system.

INTRODUCTION
For many users, proofreading a document typically
involves printing the document and making annotations, or
proofreading marks, with a pen. Although this process
provides users with a robust interface for document
annotation, it also creates a physical separation between
annotations made on paper and the digital source.
Consequently, users are forced to type changes and
corrections manually, a time-consuming and error-prone
process.

This paper introduces ProofRite, a word processor designed
to bridge the gap between editing a document on the

computer and annotating it on paper. By using a Paper
Augmented Digital Document (PADD) infrastructure [11]
to record the correspondence between digital and printed
versions of a document, ProofRite allows user to merge
strokes made on paper using a digital pen with their digital
source. Annotations collected by the system are treated as
an integral part of the digital document. In particular,
strokes reflow with the text with which they have been
associated (Figure 1). This flexibility allows users to
address annotations and corrections in the order that is most
convenient for them without worrying about losing the
context of their markings.

Figure 1: Top: ProofRite document. Middle: Same
document printed and annotated on Anoto paper.
Bottom: Strokes reflowed in ProofRite.

 2

With ProofRite, users are free to edit a document in the
format that best fits their needs – on their desktop
computer, on paper, or on a Tablet PC – knowing that the
information they are gathering will always be readily
available within their word processor.

ProofRite is also the first system to leverage the potential
of the Paper Augmented Digital Document infrastructure to
serve common users needs: such as, the exchange of paper
documents between users from different organizations; the
simultaneous annotation of different printed copies; and the
annotation of the same document by different users. In this
paper we discuss how our design of the first fully
implemented PADD infrastructure differs from that of [11].
We also propose novel additions to this infrastructure.

MOTIVATION
The gap between the paper and digital worlds has often
been a source of frustration for word processor users. Users
who prefer to annotate documents on paper are forced to
transfer changes to the digital document manually.
ProofRite is an extension of AbiWord [1] that addresses
this problem by creating a bridge between digital
documents and their printouts.

An example of how ProofRite can be used is shown in how
Alice and Bob, two knowledge workers from two different
universities, use ProofRite to edit a paper on which they are
collaborating for an upcoming conference: Once the first
draft is ready, Alice and Bob decide to meet. Before the
meeting, Alice uses ProofRite to print two copies of the
current draft that she is planning to give Bob for review.
During the meeting, Alice presents her changes to Bob and
uses her digital pen to annotate the documents with notes.
Bob also take notes and agrees to review the document in
more detail later that day. Alice comes back to her desk and
synchronizes her digital pen. Immediately, the document
she used in the meeting automatically appears on the
screen. Alice may then have the system download all the
annotations and, subsequently, see Bob and her own notes
overlaid simultaneously on the screen in different colors.
The proofreading cycle is completed as annotations reflow,
while Alice continues the writing process by making
changes to the document’s content, layout, or structure.

In the remainder of this paper, we describe the main
components of the system, which allow users to transfer
annotations from paper to digital sources. We explain how
we have expanded the PADD infrastructure to support
complex use cases, such as the one described above. We,
then, present a method to support these annotations
digitally by allowing users to reflow markings in the
ProofRite word processor. Finally, we evaluate our system
and conclude with a discussion of future work.

PROOFRITE
The ProofRite system is divided into two major
components. The first component is the Paper Augmented
Digital Document infrastructure which provides support for
establishing and maintaining the link between digital
documents and their printouts. The second part is an
extension of AbiWord [1] that interacts with the PADD
infrastructure, to fetch the strokes made on paper and then,
merge them into the digital documents, as shown in Figure
2. Upon merging, the strokes become part of the
document’s structure. In particular, they reflow as the
document changes. As a convenience, our extension also
provides a direct inking interface for TabletPC users. The
following section presents each part of our system, in turn.

The PADD infrastructure
Paper-Augmented Digital Documents (PADD) were first
introduced in [11] as a means to bridge the gap between the
digital and paper worlds. While Guimbretière presented a
standalone implementation of the infrastructure as an
Acrobat plug-in, ours is the first fully distributed
implementation of a PADD system. The architecture of our
system is presented Figure 3 and consists of the following
key elements:
• A PADD Service Provider (PSP), the administrative

entities in the PADD infrastructure. PSPs are
responsible for hosting ranges of paper page IDs. In
Figure 3, PSPs are shown as round-edged boxes.

Figure 3: The communication between PADD client
and infrastructure. The client (1) contacts the local
directory server to determine the appropriate PADD
Database, (2) contacts the PADD Database server,
and (3) uploads or downloads files from the File
Store.

Figure 2: System architecture of ProofRite.

 3

• A directory service which establishes and maintains
the relationship between the paper page ID and the
PADD service provider managing them,

• A PADD Database (PADD Database), a database
service that stores the information necessary to
determine, the strokes files and printing information of
a document. Infrastructure clients use this information
when merging strokes into digital documents.

• A file store, which stores a snapshot of printed
document as well as their corresponding strokes files.
These snapshots assure the users that, when
annotations are incorporated into a document, the
strokes line up with the document as intended. Note
that in [11], the PADD Database and the file store are
treated as a single entity called the PADD Database.

• A digital pen and paper system, which can sense and
capture strokes made on a printout.

• A Stroke Collector, which gathers strokes captured by
the digital pen and paper system and stores them at the
correct PSP.

• A Stroke Processor, which, upon notification by the
user (or the PADD service Provider), merges a digital
document with the strokes captured on its printout. In
[11], the Strokes Collector and the Strokes Processor
are considered a single entity called the Stroke
Collector.

The following section presents the design rationale for each
of these entities.

PADD Service Provider
The PADD infrastructure consists of potentially many
administrative entities. We refer to these as PADD Service
Providers (PSPs). Each PSP is responsible for providing a
directory service server, PADD DB, and file store for a
range of page IDs.

Directory Service
The directory service establishes the correspondence
between a printout on a given page and the PSP managing
that page. This service is similar in nature to other lookup
protocols, DNS being the most well known example [23].
Our system, however, is posed with the added difficulty of
having to provide a lookup for non-hierarchical page
addresses (as opposed to hierarchical domain names in
DNS). Thus, our system is more closely analogous to
reverse DNS lookups.

Ensuring efficiency of lookups will require proper page
address distribution to PSPs, with a focus on address
aggregation, as suggested with IPv6 [27]. Given that our
installed base is still very small (two sites) our current
implementation relies on a simple database that is
maintained and distributed manually.

As presented in the Discussion section below, the directory
service is the clients’ main access point for the PADD
infrastructure and is somewhat equivalent to the SMTP
server for the email system [16]. Once users know the
name of their local PADD directory service, they are ready

to use the entire system without any additional information.
As in the case of SMTP, we anticipate that a canonical
server name such as PADD.<domain-name> might be used,
making the setup process even simpler.

PADD Database
The PADD Database (DB) is an addition to the architecture
proposed by [11]. The PADD Database stores all the
necessary associations when merging a document and the
strokes files collected on its printouts. This includes, for
each document, the document store retaining the digital
version of the document and, for each printout, the
calibration information for this printout (portrait,
landscape, scaling, etc.), and, finally, the list of file stores
storing the strokes. In a very natural way, PADD DBs are
the gatekeepers for document access. In the Discussion
section, we describe how one might leverage this fact to
yield more functionality from the PADD infrastructure.

While the original PADD description in [11]] considered
the document database as a single entity, we decided to
split it into a PADD Database and a file store for, as we did
not see the coupling as necessary. We discuss the
motivations and implications of this further in the File
Store section below.

Another difference between our implementation and that of
[11] is that ours provides support for multiple users and
multiple annotations to documents. This was not possible in
the previous design because the document database resided
within the document itself, making concurrent, distributed
access impossible. In our implementation, we have
developed a client-server architecture in which the PADD
Database server acts as a front end to a database that runs
independently of any other processes. Thus, we have
unified all database updates without requiring documents to
grow in size. We decided to use MySQL as the underlying
database.

The underlying database itself is only lightly coupled to the
PADD infrastructure. This way, other software can be
created to browse and alter the data easily. To demonstrate
this, we have implemented a Web-based tool that allows
users to browse document information online, including the
number of times a document has been printed or annotated
and which users have annotated the document.

File Store
The main function of the file store is to hold the snapshot
of the documents before they are printed and to hold
strokes files in a place that remote users can access. As
explained in [11], this is necessary to guarantee an accurate
merging of the information captured on paper with the
corresponding digital instance.

While one might consider storing the documents on one’s
own computer, this poses the problem of outside access.
This is similar to the situation of hosting Web sites; users
could run their own HTTP server, but they have greater

 4

difficulty guaranteeing uptime than a more established web
service provider would.

As mentioned in the PADD Database section above, we
decided to separate the original concept of a document
database into a PADD Database and file stores. In our
design, file stores are coupled with PADD Databases in
terms of policy but decoupled in terms of mechanism. In
other words, PADD DBs are aware of file stores and know
what each of them stores, but are unaware of the specifics
of the protocols. This way, PSPs can choose their own
methods of storing files – FTP servers, censorship resistant
file stores, etc. – without requiring any infrastructure
changes. Allowing for such flexibility is beneficial in
multiple ways. For one, deployment is made easier, as PSPs
may make use of existing file stores, assuming their clients
are aware of the protocol. Secondly, with regards to
security, PSPs may offer varying degrees of security (SFTP
versus FTP, for example) without any infrastructure
changes. Security is discussed further in the Discussion
section.

In general, we anticipate that the storage need of the
system’s users could be different. Some users might not
want to store their documents outside their own company;
others users might require that their document be
encrypted; still others might wish to store their document
using a private protocol. By splitting the document
database into two entities, we are providing the users with
the freedom to address their storage requirement as they see
fit.

Digital Pen and Paper System
Like [11], our system uses the Anoto digital paper
technology [2]. The Anoto system is based on printing a
fine grid of dots on top of normal paper. To the naked eye,
this pattern looks like a light grey background, but when
observed by a digital pen such as the Logitech io Digital
Pen, it provides enough information to capture not only the
position of the pen on the page, but also a unique page ID.
The pattern space managed by Anoto is very large (more
than 248 pages) which makes it easy to (for the foreseeable
future) establish a one to one correspondence between a
given page in a digital document and a given printed page.
It is worth noting that our system does not require the use
of the Anoto system, but it is the only currently available
system.

Stroke Collector
The stroke collector is the piece of software that detects
when a client has synchronized their digital pen and
uploads the strokes to the proper PSP. This differs from the
stroke collector in [11] which performed the function of the
stroke processor, below.

Stroke Processor
The stroke processor is an analogue to the stroke collector
in [11]. Given a digital document and a set of strokes files,

it is responsible for properly merging them into a single
digital document.

We decided to split the original stroke collector into
processor and collector because, in multi-user
environments, it is often the case that a computer receiving
strokes is not the same computer that is incorporating them
into a document. In our example, Bob may not have any
desire to incorporate his annotations into a document, so
his stroke collector need only upload them so that Alice’s
stroke processor may have access to them.

Client Interfaces API
To simplify the development of new PADD client, we
developed a client API, which simplify the integration of
the PADD infrastructure. Our API was developed in C++
and has been used not only for ProofRite (see below), but
also in developing a new Acrobat plug-in that leverages the
benefit of the distributed PADD infrastructure. Although
our API is easy to use, it requires that each client follow the
following guidelines:

• The editor must obtain document ID’s from our
infrastructure and store them in the digital
document themselves.

• The editor must also be capable of incorporating
strokes from a strokes file into the digital
document.

• Lastly, the editor must be capable of reporting the
addresses of the pages on which it prints. This
introduces issues of synchronization among
editors. Alternatives to this requirement are
discussed in Future Work.

With the exception of the final requirement, the document
editor is the clear place to provide the above functionality.

Processing strokes
In this section we discuss how ProofRite interacts with the
PADD infrastructure described above to allow users to
print, annotate, recover, and reflow strokes as they continue
the writing process.

Printing and Calibration
When a user goes from editing a document on the computer
to annotating the document on paper, they must first print
the document. When this occurs, the system obtains and
stores a unique document ID, saves a copy of the
document, and reports printer-specific calibration
information, such as page size and scaling level back to the
PADD infrastructure. This information is later used to
recreate and incorporate physical strokes into the digital
document.

Recovering the strokes
When Alice wishes to review the comments made by Bob
and Carol, she must recover the strokes uploaded to the
PADD infrastructure. The process of recovering strokes
from paper can be viewed as synchronizing the layer of ink
in the digital document with the ink on the paper document,
as seen in Figure 5.

 5

To do this, the ProofRite system queries the PADD
infrastructure for all strokes made on a particular
document. The association between the unique document
ID and the unique page address allows the PADD
infrastructure to determine which strokes go with which
digital documents.

Once the PADD system returns the collection of strokes
made on the printed copy, the ProofRite system converts
stroke data from the digital pen format to a digital ink
format, which is capable of drawing strokes using colored,
anti-aliased Bezier curves with pressure information. This
allows the ProofRite system to more accurately reproduce
the look-and-feel of a real pen stroke on the computer. In
our case, we convert strokes from the Logitech io digital
stroke format to the Microsoft TabletPC API stroke format.
Once converted, ProofRite uses the printing calibration
information to compute the affine transform from paper
space to document space.

Recovering stroke data from the TabletPC stylus is less
complex, as the stroke data is reported in screen
coordinates. A simple transformation into the editor-
specific coordinate system allows the stroke data to be
integrated with the document.

Identifying target text
When an annotation is made on the paper or digital
document and later repositioned in the digital copy, the
semantic meaning of the mark must be preserved. This is
particularly important for proofreading annotations as their
meaning is dependent upon the location at which they are
displayed.

For this prototype we focus on the ANSI standard
proofreading marks [3] which are small and whose
semantic meaning typically only corresponds to a single
letter or word. However, these marks can be drawn over

several characters, words, or lines. For example, consider
the upside down “v” insertion mark as seen in Figure 6.
This mark typically spans one to two lines of text, but
corresponds to only a single point in the document.

Existing methods for ink-text association use the bounding
box of the stroke. Using such a method for proofreading
marks may cause markings which span several lines,
particularly the insertion mark, to be associated with text to
which the marking has no semantic correspondence.

It is important to note that many proofreading marks are
anchored to the text at either end of the marking or at an
abrupt change in direction in the mark, as seen in Figure 7.
Using this heuristic, our system identifies the point to best
insert the stroke. We have found this method of association
is sufficient to preserve the semantic meaning of most
proofreading marks as the document reflows.

Reflowing annotations
The fundamental challenge of digital reflow is to determine
the correct position at which a stroke should be rendered
such that the semantic meaning of the mark is preserved.

Reflow algorithms in previous systems have required that
the document’s content remain static [10]. This constraint
simplifies the issues of reflow as the system only needs to
locate the new position at which the corresponding text is
rendered and apply the appropriate affine transformation to
the stroke to move it to this position.

ProofRite is unique from previous systems in that it
supports reflow in documents with non-static text. For
instance, in ProofRite a user may circle a word, change the

Figure 6: Left: The bounding box method associates
the mark with the lines that it overlaps. Right: The
change in direction associates the mark at the
position of semantic meaning (blue dot).

Figure 7: Common proofreading marks and their
corresponding insertion point (blue dots).

Figure 5: (1) Marks made on paper can be (2) viewed as a separate layer. To synchronize these layers, (3) we identify
the semantic insertion point of the mark and (4) insert an anchor at that point, creating a multivalent layer of ink.

 6

text on both sides of the mark, change to a different font,
and even change the structure of the document by indenting
the paragraph without losing the semantic meaning of the
mark (Figure 8). This is achieved through the use of intra-
document anchors which do not rely on the surrounding
text to preserve ink-text association, similar to [26]. This
allows the document to be modified in an arbitrarily
complex manner.

We leverage the capabilities of the AbiWord rendering
engine to compute the position at which an intra-document
stroke anchor should be displayed. Rather than drawing the
anchor, the rendering algorithm performs an affine
transformation which reflows the stroke and then renders it
on the screen. Rendering engines in other word processors
can be extended similarly.

Additionally, the rendering algorithm supports scrolling
and zooming by applying translation and scaling
transformations to the ink layer as the user interacts with
the document.

An important issue to consider in reflow is ensuring that
that word processor is responsive. AbiWord, like many

word processors, uses caching and clipping only to re-
render portions of the document that have changed
significantly. If a paragraph of text is moved down a line
but no changes have been made, then the cached version of
the paragraph may be translated down rather than re-
rendering the underlying document elements. When this
occurs, it is necessary to either translate a cached version of
the ink or to redraw the corresponding portion of ink.
ProofRite takes the latter approach as there is no noticeable
degradation of performance.

In this way, the layer of ink that is above the text of the
document is synchronized with any changes made to the
underlying document, preserving the association between
the annotation and the text.

PREVIOUS WORK
Various systems have considered the issues surrounding
document annotation. Some systems have focused on
recreating the user experience of annotating a paper
document on a computer. Other systems have taken the
approach of digitally augmenting paper interfaces in an
effort to close the gap between paper and computers.

Figure 8: Above: A document with digital annotations. Below: The same document after the user has added text (in
underlined-bold-italics for emphasis), deleted some text, created a new paragraph, and changed the font from Times
New Roman, size 12 to Arial, size 10.

 7

Annotation and Proofreading
Several systems have explored the issues of digital
document annotation. The FreeStyle system [18] and
XLibris system [10] introduced an active reading system
[28] that allows users to digitally annotate a document
while reading. Brush et. al. [7] studied user expectations for
digital reflow of annotations and, based on these results,
Bageron and Moscovich [5] introduced the Callisto
framework. Although XLibris and Callisto allow users to
annotate documents digitally and reposition these
annotations as the layout changes, neither system permits
the user to change the document’s contents. ProofRite uses
a repositioning algorithm that permits the document text to
change, allowing users to make arbitrarily dramatic
changes to the document’s content and structure while
preserving the semantic meaning of annotations.

Phelps and Wilensky’s [26] notion of multivalent
documents provides a suitable metaphor for the relationship
between annotations and the document’s text: annotations
are logically separate from the document text yet
annotations have a semantic meaning with the text that
must be preserved as the document changes. The notion of
a multivalent layer of ink is complicated by the fact it is
also necessary to synchronize the layer with annotations
made on paper documents. We present a flexible method to
synchronize the multivalent layer of ink with the document
text using Phelps and Wilensky’s [25] intra-document
anchors. The PADD infrastructure discussed in this paper
introduces methods to synchronize the paper annotations
with the digital source.

More recently, Microsoft Word 2003 [22] introduced a
limited interface for making digital ink annotations on the
Tablet PC. Ink annotations are only repositioned vertically,
causing many markings to change or lose meaning as the
document’s content or layout is repositioned horizontally.
Our system attempts to preserve the semantic meaning of
annotations within a word processor by repositioning ink
both vertically and horizontally.

Bridging the paper-digital gap
Several systems have explored methods to bridge the gap
between the computer and the paper world. Some like the
XLibris system [10] focus on creating the equivalent on
paper in the digital world. Other like DigitalDesk [32],
VideoMosaic [19], Ariel [20], PaperLink [4], Inteligent
paper [9], the EnhancedDesk [17] and the A-book [21]
have studied how to augment the use of paper with the aid
of a nearby computer.

Like the PADD system [11], ProofRite focuses on
cohabitation, considering both paper and digital instances
of the document. In particular users can interact with paper
printouts without the help of a nearby computer (with the
exception of the digital pen, of course).

Several systems have been proposed to process information
captured on paper including XaX [15], the Paper PDA [13],

Anoto [2]. All of these systems focus on processing forms
and do not offer the flexibility of our system. As explained
above, our system uses the Anoto system as a stroke
capture mechanism since it is the only one currently
commercially available. Non-commercially available
systems include DataGlyphs [12] and MEMO-PEN [24].
Our infrastructure differs from Anoto’s in that it does not
require the registration of forms before processing, and
offers a distributed architecture that has been designed to
support typical, everyday uses of paper such as
proofreading.

DISCUSSION AND FUTURE WORK
Through the development process of ProofRite we have
observed several ways to expand the PADD infrastructure
to support complex use cases as well as ways to improve
user interaction with digital annotations. In this section we
discuss these ideas.

Additions to the PADD infrastructure
The design of the PADD infrastructure, as discussed above,
is capable of supporting distributed storage and retrieval of
documents and annotations. In this section, we propose
additions to the PADD infrastructure that extend its
functionality and improve its suitability for global
deployment. We have not implemented these features, but
discuss what would be necessary to do so.

Printer Server
In our current implementation, a user must ensure that the
document editor knows the page address of the next page in
the printer. Without a means of synchronizing this
information between multiple editors or multiple users, the
information they report to the infrastructure may be
incorrect. We can remove this synchronization problem by
centralizing this information at a printer server. The printer
can determine which page address it is printing to (this can
be done trivially by having the printer print the Anoto
pattern immediately before printing the document [11]),
and can therefore act as a reliable source of information to
the PADD Databases.

Security
With any multi-user environment, security must be
considered. When using the PADD infrastructure, users
may want to control access to their documents and/or their
annotations. There are several possible methods and levels
of granularity through which this may occur.

One method would be to create user accounts on the PSP.
Users can log into the PSP and can control access to their
documents and annotations by informing the PSP which
users may access their documents and annotations. This
solution allows users to set permissions for groups of
annotations and for documents.

Permission granularity is an important part of security
considerations. We introduce the notion of annotation-level
permissions. Users may wish, for example, that annotations

 8

made with one digital pen have different access levels from
those made with another digital pen. In our example, Bob
may have a red pen that he only wants other faculty at his
company to be able to see, but a blue pen that any user can
access.

Note that, in general, security is an issue that pervades the
entire infrastructure, as well as external methods such as
file encryption. We have designed our version of the PADD
infrastructure in a highly modular way so as to be easily
extended to incorporate any future security considerations.

Strokes Processor
Once a user has uploaded strokes to the PADD
infrastructure, the user typically wishes to integrate these
strokes into the digital document. In [11], the software that
performs this integration is referred to as the strokes
processor. In our implementation, the strokes processor
resides within a user’s document editor. We propose a more
general strokes processor that no longer requires explicit
user interaction; rather, processors exist as services which
can accept requests from the PADD infrastructure itself.

Strokes processors can be written to perform handwriting
recognition in batch or to incorporate strokes into
documents. This can make the time-consuming process of
integrating a large number of strokes into a large document,
such as a book, transparent to the user.

In addition to the security concerns discussed above, users
may want varying grades of privacy based on the
annotations that they have made. A strokes processor on the
user’s local machine can filter annotations and apply user-
defined security policies. For example, a strokes processor
can filter annotations uploaded from Bob’s digital pen and
determine which annotations should be shared with Alice.

Notifications
While deploying the PADD infrastructure, we have noticed
that there are several situations when users or software may
wish to be notified: (1) Authors often want to know when
someone annotates their documents; (2) Users may also
wish to know when their co-authors print the latest version
of a document; (3) Strokes processors (as discussed above)
may want to know when certain documents have been
annotated.

In our implementation, the first situation is solved by
emailing the document’s author. While email is suitable for
user interaction, it may not extend to other situations,
particularly for stroke processors that operate in batch
mode. Rather than implement a different form of
notification for each entity, we abstract the idea of
notification to that of publish-subscribe systems. Many
such systems have been proposed, such as [31], and the
design of the PADD infrastructure lends itself well to them.

Incorporating a publish-subscribe system into the PADD
infrastructure can be done as follows: The PADD Database

can publish events, as it is the central authority for each
page within its page range. Other entities can act as
subscribers to these events. For example, authors wishing
to know when users have annotated their documents would
subscribe to these events.

One of the open issues of notification is the concern of
event granularity; how detailed can subscription requests
be? For instance, strokes processors may only wish to be
notified about documents of a certain file type. A more
complex situation may be that user Alice wishes to be
notified when Bob annotates page 3 of her document.
Therefore, the system must permit the use of rules or filters
for every subscription, but to what level of detail? Should
these filters exist at the publisher, or should Alice’s
subscriber program filter them itself? We hope to address
these questions in our future work.

Version Management
Consider the case where Alice receives Bob’s annotations
after she made structural changes to the document. To
properly incorporate Bob’s strokes, Alice’s strokes
processor must merge with the version of the document that
was stored when it was printed. This appears similar to the
original problem of the paper-digital gap we have
presented, but the important difference is that both versions
of the document exist in the digital world. Thus, potential
solutions to such a versioning problem exist. For instance,
versioning software such as CVS can aid in the
management of these versions. Incorporating these
seamlessly into the proofreading cycle is a large area of
potential future work.

Paper as an indexing mechanism
It has been shown that users can glean an efficient semantic
structure from the physical distribution of their documents,
be it from a file cabinet or an untidy workspace. With the
PADD infrastructure, users need only a single page of a
physical document to have access to the entire digital
document. Therefore, users can benefit from the semantic
structure of their physical data in the digital world [14]. In
essence, a user’s file cabinet can become their file system.

Duplicate page addresses
The Anoto paper system assigns a unique page address to
each physical sheet. There are four fields: bookcase, shelf,
book, and page – yielding more than 248 sheets of uniquely
addressable paper, a number that, although large, is
reachable in a matter of years if globally deployed ([1],
[24]). Anoto sells licenses to each sheet of paper in page
ranges. The number of unique IDs and the overhead of cost
limit the amount of pages an organization, such as a
university, can purchase. Therefore, there is a high
probability that page address collide.

The PADD infrastructure was built with the initial
assumption that all page addresses were unique. Otherwise,
when uploading strokes, there is currently no way of
determining the corresponding document without requiring

 9

work from the user, such as choosing from a list of
documents that have been printed to that same page
address.

Unless the paper technology is extended to handle more
page addresses, there are two ways we envision of solving
the problem: requiring input from the user and/or providing
a set of private page addresses, similar to NAT (Network
Address Translation) [30]. In order to make the transition
between the digital and physical world as seamless as is
possible, solutions must minimize the amount of necessary
user input.

One method is to include a ‘key’ portion in a piece of
paper, which consists of several paper patterns. When a
user is done annotating a piece of paper, they can make a
line across this portion of the paper. If the key contains k
paper patterns, then the page namespace can be effectively
extended to (248)k unique IDs.

The other type of solution is to provide a set of private page
addresses, similar to private IP addresses. In the case of IP,
private addressing is made possible by NAT, which
provides the translation between private and public. There
are two main differences between the assumptions made by
NAT and the assumptions a paper-based solution could
make:

• NAT makes use of port numbers as a multiplexing
key; there is currently no similar entity in paper.
One could make the claim that a user’s pen could
be such a key, but this precludes users’ ability to
share pens.

• Efforts are made in NAT to keep private addresses
from being exposed to hosts outside of the
corresponding private realm [6]. A method of
providing this occlusion of information is not
clear, as users will be printing to and distributing
pages with private addresses.

There is currently no clear solution to the problem of
duplicate page number. Since the most probable solution
will come from increasing the amount of user input, user
studies are required to determine the precise extent to
which users are willing to do this.

Digital annotations and reflow
The ProofRite word processor allows users to reflow
annotations as they continue the writing process. The
current implementation can be expanded in several ways to
support more complex annotations and user interactions.

Grouping margins notes and drawings
Our method of text-annotation association is sufficiently
robust for proofreading markup, but is limited in its ability
to address freeform writing and annotations. Tests with our
system show that our association algorithm is able to
preserve freeform markings and marginal notes vertically
but is unable to preserve meaning horizontally. We are
currently working on a stroke grouping algorithm similar to

the one described in [10] which we believe will solve this
problem.

Splitting large annotations
As a document’s content or layout changes, text that
appears on a single line may be repositioned to span
multiple lines. This issue is of particular importance in a
document with dynamic content. XLibris [10, 28]
addressed this problem by splitting annotations into smaller
segments that can be positioned over several lines. We
implemented a similar algorithm in an earlier version of
ProofRite by splitting large annotations into smaller single-
word annotations. This allows the user to change the
document’s content, structure, or layout in any arbitrary
manner while still ensuring that the stroke will retain its
semantic meaning. As the ProofRite system has matured,
our initial algorithm has proved to be insufficient to
preserve semantic meaning. We are currently exploring
new splitting algorithms to address this problem.

Automatic stroke interpretations
Although we have not conducted any formal user studies of
our system, several early test users have expressed interest
in the ability to apply annotated corrections automatically.
An “auto-correct” or “apply annotations” feature is limited
by the accuracy of handwriting and annotation recognition.
In order to implement a robust recognition engine, it is
necessary not only to examine the annotation, but also the
surrounding text and annotations. It may be possible to
provide better annotation recognition by examining the
position of the stroke relative to the text (i.e. the cross-out
mark goes through text while the underline mark goes
underneath text).

Digital Annotation Interfaces
Although reflow is an important aspect of digital
annotation, the ability to preserve annotations made on
paper in the digital source presents another layer of data
with which the user can interact during the writing process.
This presents several questions regarding the user
experience of interacting with digital annotations. When
should markings be applied to the text? In what ways do
users wish to interact with their markings (i.e. move, erase,
change color, etc)? What is the best way to present
annotations from several different sources? Does the
presence of annotations from the last proofreading affect
the user experience of word processing? Until now,
annotations made on paper have always been fixed and
static, so users have no experience or prior expectations of
how to interact with annotations that reflow. The question
of how users wish to interact with digital annotations is
fundamental to the writing process. Further studies must be
conducted to determine how word processors that support
digital annotation and reflow can best serve the user.

CONCLUSION
In this paper, we have addressed the gap that exists between
the usage of paper and computers with respect to a
common paper-computer activity: proofreading. We

 10

introduced the ProofRite word processor. ProofRite allows
users to annotate a document with a Tablet PC stylus and,
through the first fully-implemented PADD infrastructure, to
incorporate paper-based annotations into their digital
documents. Both types of annotation are given the benefits
of digital reflow, allowing users to continue the writing
process without having to lose or manually place
annotations between revisions. Furthermore, we described
how annotations made by multiple users to multiple copies
of a PADD-compliant document can be integrated into a
single digital copy. We also proposed several novel
additions to the PADD infrastructure that increase its
functionality and further make the paper-digital gap
transparent to users.

ACKNOWLEDGEMENTS
The authors wish to thank Dom Lachowicz, Marc Maurer,
and the rest of the AbiWord development team for technical
assistance; Jim Hollan and Ron Stanonik for their
assistance in deploying PADD at UCSD; Samantha Ahalt
for comments on drafts of this paper.

REFERENCES
1. AbiWord, http://www.abiword.com. 2004.
2. Anoto, Development Guide for Service Enabled by

Anoto Functionality. 2002, Anoto.
3. ANSI, American national standard proof corrections.

1981: American National Standards Institute.
4. Arai, T., D. Aust, and S.E. Hudson. PaperLink: a

technique for hyperlinking from real paper to
electronic content. Proceedings of CHI'97, pp. 327 -
334.

5. Bargeron, D. and T. Moscovich. Reflowing digital ink
annotations. Proceedings of CHI'03, pp. 385 - 393.

6. Bellovin, S. A Technique for Counting NATted Hosts.
Proceedings of Second Internet Measurement
Workshop, pp. 267 - 272.

7. Brush, A.J.B., D. Bargeron, A. Gupta, and J.J. Cadiz.
Robust annotation positioning in digital documents.
Proceedings of CHI, pp. 285 - 292.

8. Chang, B.-W., J.D. Mackinlay, P.T. Zellweger, and T.
Igarashi. A negotiation architecture for fluid
documents. Proceedings of UIST'98, pp. 123 - 132.

9. Dymet, M. and M. Copperman. Intelligent Paper.
Proceedings of EP'98, pp. 392 - 406.

10. Golovchinsky, G. and L. Denoue. Moving markup:
repositioning freeform annotations. Proceedings of
UIST'02, pp. 21 - 30.

11. Guimbretiere, F. Paper Augmented Digital Documents.
Proceedings of UIST'03, pp. 51 - 60.

12. Hecht, D.L. Embedded Data Glyph Technology for
Hardcopy Digital Documents. Proceedings of SPIE
Color Hard Copy and Graphic Arts III, pp. 341 - 352.

13. Heiner, J.M., S.E. Hudson, and K. Tanaka. Linking and
messaging from real paper in the Paper PDA.
Proceedings of UIST'99, pp. 179 - 186.

14. Ishii, H. and B. Ullmer. Tangible bits: towards
seamless interfaces between people, bits and atoms.
Proceedings of CHI'97, pp. 234-241.

15. Johnson, W., H. Jellinek, J. Leigh Klotz, R. Rao, and
S.K. Card. Bridging the paper and electronic worlds:
the paper user interface. Proceedings of CHI'93, pp.
507 - 512.

16. Klensin, J., Simple Mail Transfer Protoco, RFC 2821,
April 2001.

17. Koike, H., Y. Sato, Y. Kobayashi, H. Tobita, and M.
Kobayashi. Interactive textbook and interactive Venn
diagram: natural and intuitive interfaces on augmented
desk system. Proceedings of CHI'00, pp. 121 - 128.

18. Levine, S.R. and S.F. Ehrlich, The Freestyle System: A
Design Perspective, in Human-Machine Interactive
Systems, A. Klinger, Editor. 1991. p. 3-21.

19. Mackay, W. and D. Pagani. Video mosaic: laying out
time in a physical space. Proceedings of MM'94, pp.
165 - 172.

20. Mackay, W.E., D.S. Pagani, L. Faber, B. Inwood, P.
Launiainen, L. Brenta, and V. Pouzol. Ariel:
augmenting paper engineering drawings. Proceedings
of CHI'95, pp. 421 - 422.

21. Mackay, W.E., G. Pothier, C. Letondal, K. Bøegh, and
H.E. Sørensen. The missing link: augmenting biology
laboratory notebooks. Proceedings of UIST'02, pp. 41 -
50.

22. Microsoft, http://www.microsoft.com/word. 2003.
23. Mockapetris, P., Domain Names - Concepts and

Facilities, RFC 1034, ISI, November 1987.
24. Nabeshima, S., S. Yamamoto, K. Agusa, and T.

Taguchi. MEMO-PEN: a new input device.
Proceedings of CHI'95, pp. 256 - 257.

25. Phelps, T. and R. Wilensky, Robust intra-document
locations. Computer Networks, 2000. 33(1-6): p. 105 -
118.

26. Phelps, T.A. and R. Wilensky. Multivalent
Annotations. Proceedings of ECDL'97, pp. 287 - 303.

27. Rekhter, Y. and T. Li, An Architecture for IPv6 Unicast
Address Allocation, RFC 1887, Cisco Systems,
December 1995.

28. Schilit, B.N., G. Golovchinsky, and M.N. Price.
Beyond paper: supporting active reading with free
form digital ink annotations. Proceedings of CHI'98,
pp. 249 - 256.

29. Sellen, A.J. and R.H.R. Harper, The Myth of the
Paperless Office. 1st ed. 2001: MIT press.

30. Srisuresh, P. and K. Egevang, Traditional IP network
address translator (traditional NAT), RFC 3022,
Internet Engineering Task Force, January 2001.

31. Stoica, I., D. Adkins, S. Zhaung, S. Shenker, and S.
Surana. Internet indirection infrastructure. Proceedings
of SIGCOMM'02, pp. 73-86.

32. Wellner, P., Interacting with paper on the DigitalDesk.
Communications of the ACM, 1993. 36(7): p. 87 - 96.

