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ABSTRACT 
While proofreading digital documents is a common pattern 
of use among word processor users [29], at present there 
are no word processing programs that support this function. 
This forces users to reenter the corrections into the digital 
version of a document manually, a time-consuming and 
error-prone task. To address this problem, we introduce 
ProofRite, a word processor that supports digital and 
physical document annotation. When users print a 
ProofRite document and annotate it with a digital pen, they 
may merge their changes with the digital source. As they 
continue the writing process, ProofRite reflows these 
markings. 

ProofRite leverages the features of the first fully 
implemented PADD infrastructure [11]. This allows 
ProofRite to serve several common patterns of use: the 
exchange of paper documents between users from different 
organizations; the simultaneous annotation of different 
printed copies; and, the annotation of the same document 
by different users. 

In this paper, we report our experience in designing the first 
implementation of the PADD infrastructure and how it was 
used to extend AbiWord into the ProofRite system. 

INTRODUCTION 
For many users, proofreading a document typically 
involves printing the document and making annotations, or 
proofreading marks, with a pen. Although this process 
provides users with a robust interface for document 
annotation, it also creates a physical separation between 
annotations made on paper and the digital source. 
Consequently, users are forced to type changes and 
corrections manually, a time-consuming and error-prone 
process. 

This paper introduces ProofRite, a word processor designed 
to bridge the gap between editing a document on the 

computer and annotating it on paper. By using a Paper 
Augmented Digital Document (PADD) infrastructure [11] 
to record the correspondence between digital and printed 
versions of a document, ProofRite allows user to merge 
strokes made on paper using a digital pen with their digital 
source. Annotations collected by the system are treated as 
an integral part of the digital document. In particular, 
strokes reflow with the text with which they have been 
associated (Figure 1). This flexibility allows users to 
address annotations and corrections in the order that is most 
convenient for them without worrying about losing the 
context of their markings. 

  

Figure 1: Top: ProofRite document. Middle: Same 
document printed and annotated on Anoto paper. 
Bottom: Strokes reflowed in ProofRite. 
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With ProofRite, users are free to edit a document in the 
format that best fits their needs – on their desktop 
computer, on paper, or on a Tablet PC – knowing that the 
information they are gathering will always be readily 
available within their word processor. 

ProofRite is also the first system to leverage the potential 
of the Paper Augmented Digital Document infrastructure to 
serve common users needs: such as, the exchange of paper 
documents between users from different organizations; the 
simultaneous annotation of different printed copies; and the 
annotation of the same document by different users. In this 
paper we discuss how our design of the first fully 
implemented PADD infrastructure differs from that of [11]. 
We also propose novel additions to this infrastructure. 

MOTIVATION 
The gap between the paper and digital worlds has often 
been a source of frustration for word processor users. Users 
who prefer to annotate documents on paper are forced to 
transfer changes to the digital document manually. 
ProofRite is an extension of AbiWord [1] that addresses 
this problem by creating a bridge between digital 
documents and their printouts.  

An example of how ProofRite can be used is shown in how 
Alice and Bob, two knowledge workers from two different 
universities, use ProofRite to edit a paper on which they are 
collaborating for an upcoming conference: Once the first 
draft is ready, Alice and Bob decide to meet. Before the 
meeting, Alice uses ProofRite to print two copies of the 
current draft that she is planning to give Bob for review. 
During the meeting, Alice presents her changes to Bob and 
uses her digital pen to annotate the documents with notes. 
Bob also take notes and agrees to review the document in 
more detail later that day. Alice comes back to her desk and 
synchronizes her digital pen. Immediately, the document 
she used in the meeting automatically appears on the 
screen. Alice may then have the system download all the 
annotations and, subsequently, see Bob and her own notes 
overlaid simultaneously on the screen in different colors. 
The proofreading cycle is completed as annotations reflow, 
while Alice continues the writing process by making 
changes to the document’s content, layout, or structure. 

In the remainder of this paper, we describe the main 
components of the system, which allow users to transfer 
annotations from paper to digital sources. We explain how 
we have expanded the PADD infrastructure to support 
complex use cases, such as the one described above. We, 
then, present a method to support these annotations 
digitally by allowing users to reflow markings in the 
ProofRite word processor. Finally, we evaluate our system 
and conclude with a discussion of future work. 

PROOFRITE  
The ProofRite system is divided into two major 
components. The first component is the Paper Augmented 
Digital Document infrastructure which provides support for 
establishing and maintaining the link between digital 
documents and their printouts. The second part is an 
extension of AbiWord [1] that interacts with the PADD 
infrastructure, to fetch the strokes made on paper and then, 
merge them into the digital documents, as shown in Figure 
2. Upon merging, the strokes become part of the 
document’s structure. In particular, they reflow as the 
document changes. As a convenience, our extension also 
provides a direct inking interface for TabletPC users. The 
following section presents each part of our system, in turn.  

The PADD infrastructure 
Paper-Augmented Digital Documents (PADD) were first 
introduced in [11] as a means to bridge the gap between the 
digital and paper worlds. While Guimbretière presented a 
standalone implementation of the infrastructure as an 
Acrobat plug-in, ours is the first fully distributed 
implementation of a PADD system. The architecture of our 
system is presented Figure 3 and consists of the following 
key elements:  
• A PADD Service Provider (PSP), the administrative 

entities in the PADD infrastructure. PSPs are 
responsible for hosting ranges of paper page IDs. In 
Figure 3, PSPs are shown as round-edged boxes. 

Figure 3: The communication between PADD client 
and infrastructure. The client (1) contacts the local 
directory server to determine the appropriate PADD 
Database, (2) contacts the PADD Database server, 
and (3) uploads or downloads files from the File 
Store. 

 
Figure 2: System architecture of ProofRite. 
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• A directory service which establishes and maintains 
the relationship between the paper page ID and the 
PADD service provider managing them, 

• A PADD Database (PADD Database), a database 
service that stores the information necessary to 
determine, the strokes files and printing information of 
a document. Infrastructure clients use this information 
when merging strokes into digital documents.  

• A file store, which stores a snapshot of printed 
document as well as their corresponding strokes files. 
These snapshots assure the users that, when 
annotations are incorporated into a document, the 
strokes line up with the document as intended. Note 
that in [11], the PADD Database and the file store are 
treated as a single entity called the PADD Database. 

• A digital pen and paper system, which can sense and 
capture strokes made on a printout. 

• A Stroke Collector, which gathers strokes captured by 
the digital pen and paper system and stores them at the 
correct PSP. 

• A Stroke Processor, which, upon notification by the 
user (or the PADD service Provider), merges a digital 
document with the strokes captured on its printout. In 
[11], the Strokes Collector and the Strokes Processor 
are considered a single entity called the Stroke 
Collector. 

The following section presents the design rationale for each 
of these entities. 

PADD Service Provider 
The PADD infrastructure consists of potentially many 
administrative entities. We refer to these as PADD Service 
Providers (PSPs). Each PSP is responsible for providing a 
directory service server, PADD DB, and file store for a 
range of page IDs. 

Directory Service 
The directory service establishes the correspondence 
between a printout on a given page and the PSP managing 
that page. This service is similar in nature to other lookup 
protocols, DNS being the most well known example [23]. 
Our system, however, is posed with the added difficulty of 
having to provide a lookup for non-hierarchical page 
addresses (as opposed to hierarchical domain names in 
DNS). Thus, our system is more closely analogous to 
reverse DNS lookups.  

Ensuring efficiency of lookups will require proper page 
address distribution to PSPs, with a focus on address 
aggregation, as suggested with IPv6 [27]. Given that our 
installed base is still very small (two sites) our current 
implementation relies on a simple database that is 
maintained and distributed manually. 

As presented in the Discussion section below, the directory 
service is the clients’ main access point for the PADD 
infrastructure and is somewhat equivalent to the SMTP 
server for the email system [16]. Once users know the 
name of their local PADD directory service, they are ready 

to use the entire system without any additional information. 
As in the case of SMTP, we anticipate that a canonical 
server name such as PADD.<domain-name> might be used, 
making the setup process even simpler. 

PADD Database 
The PADD Database (DB) is an addition to the architecture 
proposed by [11]. The PADD Database stores all the 
necessary associations when merging a document and the 
strokes files collected on its printouts. This includes, for 
each document, the document store retaining the digital 
version of the document and, for each printout, the 
calibration information for this printout (portrait, 
landscape, scaling, etc.), and, finally, the list of file stores 
storing the strokes. In a very natural way, PADD DBs are 
the gatekeepers for document access. In the Discussion 
section, we describe how one might leverage this fact to 
yield more functionality from the PADD infrastructure.  

While the original PADD description in [11]] considered 
the document database as a single entity, we decided to 
split it into a PADD Database and a file store for, as we did 
not see the coupling as necessary. We discuss the 
motivations and implications of this further in the File 
Store section below. 

Another difference between our implementation and that of 
[11] is that ours provides support for multiple users and 
multiple annotations to documents. This was not possible in 
the previous design because the document database resided 
within the document itself, making concurrent, distributed 
access impossible. In our implementation, we have 
developed a client-server architecture in which the PADD 
Database server acts as a front end to a database that runs 
independently of any other processes. Thus, we have 
unified all database updates without requiring documents to 
grow in size. We decided to use MySQL as the underlying 
database. 

The underlying database itself is only lightly coupled to the 
PADD infrastructure. This way, other software can be 
created to browse and alter the data easily. To demonstrate 
this, we have implemented a Web-based tool that allows 
users to browse document information online, including the 
number of times a document has been printed or annotated 
and which users have annotated the document. 

File Store 
The main function of the file store is to hold the snapshot 
of the documents before they are printed and to hold 
strokes files in a place that remote users can access. As 
explained in [11], this is necessary to guarantee an accurate 
merging of the information captured on paper with the 
corresponding digital instance. 

While one might consider storing the documents on one’s 
own computer, this poses the problem of outside access. 
This is similar to the situation of hosting Web sites; users 
could run their own HTTP server, but they have greater 
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difficulty guaranteeing uptime than a more established web 
service provider would.  

As mentioned in the PADD Database section above, we 
decided to separate the original concept of a document 
database into a PADD Database and file stores. In our 
design, file stores are coupled with PADD Databases in 
terms of policy but decoupled in terms of mechanism. In 
other words, PADD DBs are aware of file stores and know 
what each of them stores, but are unaware of the specifics 
of the protocols. This way, PSPs can choose their own 
methods of storing files – FTP servers, censorship resistant 
file stores, etc. – without requiring any infrastructure 
changes. Allowing for such flexibility is beneficial in 
multiple ways. For one, deployment is made easier, as PSPs 
may make use of existing file stores, assuming their clients 
are aware of the protocol. Secondly, with regards to 
security, PSPs may offer varying degrees of security (SFTP 
versus FTP, for example) without any infrastructure 
changes. Security is discussed further in the Discussion 
section. 

In general, we anticipate that the storage need of the 
system’s users could be different. Some users might not 
want to store their documents outside their own company; 
others users might require that their document be 
encrypted; still others might wish to store their document 
using a private protocol. By splitting the document 
database into two entities, we are providing the users with 
the freedom to address their storage requirement as they see 
fit. 

Digital Pen and Paper System 
Like [11], our system uses the Anoto digital paper 
technology [2]. The Anoto system is based on printing a 
fine grid of dots on top of normal paper. To the naked eye, 
this pattern looks like a light grey background, but when 
observed by a digital pen such as the Logitech io Digital 
Pen, it provides enough information to capture not only the 
position of the pen on the page, but also a unique page ID. 
The pattern space managed by Anoto is very large (more 
than 248 pages) which makes it easy to (for the foreseeable 
future) establish a one to one correspondence between a 
given page in a digital document and a given printed page. 
It is worth noting that our system does not require the use 
of the Anoto system, but it is the only currently available 
system. 

Stroke Collector 
The stroke collector is the piece of software that detects 
when a client has synchronized their digital pen and 
uploads the strokes to the proper PSP. This differs from the 
stroke collector in [11] which performed the function of the 
stroke processor, below. 

Stroke Processor 
The stroke processor is an analogue to the stroke collector 
in [11]. Given a digital document and a set of strokes files, 

it is responsible for properly merging them into a single 
digital document.  

We decided to split the original stroke collector into 
processor and collector because, in multi-user 
environments, it is often the case that a computer receiving 
strokes is not the same computer that is incorporating them 
into a document. In our example, Bob may not have any 
desire to incorporate his annotations into a document, so 
his stroke collector need only upload them so that Alice’s 
stroke processor may have access to them. 

Client Interfaces API 
To simplify the development of new PADD client, we 
developed a client API, which simplify the integration of 
the PADD infrastructure. Our API was developed in C++ 
and has been used not only for ProofRite (see below), but 
also in developing a new Acrobat plug-in that leverages the 
benefit of the distributed PADD infrastructure. Although 
our API is easy to use, it requires that each client follow the 
following guidelines: 

• The editor must obtain document ID’s from our 
infrastructure and store them in the digital 
document themselves.  

• The editor must also be capable of incorporating 
strokes from a strokes file into the digital 
document. 

• Lastly, the editor must be capable of reporting the 
addresses of the pages on which it prints. This 
introduces issues of synchronization among 
editors. Alternatives to this requirement are 
discussed in Future Work. 

With the exception of the final requirement, the document 
editor is the clear place to provide the above functionality. 

Processing strokes 
In this section we discuss how ProofRite interacts with the 
PADD infrastructure described above to allow users to 
print, annotate, recover, and reflow strokes as they continue 
the writing process. 

Printing and Calibration 
When a user goes from editing a document on the computer 
to annotating the document on paper, they must first print 
the document. When this occurs, the system obtains and 
stores a unique document ID, saves a copy of the 
document, and reports printer-specific calibration 
information, such as page size and scaling level back to the 
PADD infrastructure. This information is later used to 
recreate and incorporate physical strokes into the digital 
document. 

Recovering the strokes 
When Alice wishes to review the comments made by Bob 
and Carol, she must recover the strokes uploaded to the 
PADD infrastructure. The process of recovering strokes 
from paper can be viewed as synchronizing the layer of ink 
in the digital document with the ink on the paper document, 
as seen in Figure 5. 
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To do this, the ProofRite system queries the PADD 
infrastructure for all strokes made on a particular 
document. The association between the unique document 
ID and the unique page address allows the PADD 
infrastructure to determine which strokes go with which 
digital documents. 

Once the PADD system returns the collection of strokes 
made on the printed copy, the ProofRite system converts 
stroke data from the digital pen format to a digital ink 
format, which is capable of drawing strokes using colored, 
anti-aliased Bezier curves with pressure information. This 
allows the ProofRite system to more accurately reproduce 
the look-and-feel of a real pen stroke on the computer. In 
our case, we convert strokes from the Logitech io digital 
stroke format to the Microsoft TabletPC API stroke format. 
Once converted, ProofRite uses the printing calibration 
information to compute the affine transform from paper 
space to document space.  

Recovering stroke data from the TabletPC stylus is less 
complex, as the stroke data is reported in screen 
coordinates. A simple transformation into the editor-
specific coordinate system allows the stroke data to be 
integrated with the document. 

Identifying target text 
When an annotation is made on the paper or digital 
document and later repositioned in the digital copy, the 
semantic meaning of the mark must be preserved. This is 
particularly important for proofreading annotations as their 
meaning is dependent upon the location at which they are 
displayed. 

For this prototype we focus on the ANSI standard 
proofreading marks [3] which are small and whose 
semantic meaning typically only corresponds to a single 
letter or word. However, these marks can be drawn over 

several characters, words, or lines. For example, consider 
the upside down “v” insertion mark as seen in Figure 6. 
This mark typically spans one to two lines of text, but 
corresponds to only a single point in the document.  

Existing methods for ink-text association use the bounding 
box of the stroke. Using such a method for proofreading 
marks may cause markings which span several lines, 
particularly the insertion mark, to be associated with text to 
which the marking has no semantic correspondence.  

It is important to note that many proofreading marks are 
anchored to the text at either end of the marking or at an 
abrupt change in direction in the mark, as seen in Figure 7. 
Using this heuristic, our system identifies the point to best 
insert the stroke. We have found this method of association 
is sufficient to preserve the semantic meaning of most 
proofreading marks as the document reflows. 

Reflowing annotations 
The fundamental challenge of digital reflow is to determine 
the correct position at which a stroke should be rendered 
such that the semantic meaning of the mark is preserved. 

Reflow algorithms in previous systems have required that 
the document’s content remain static [10]. This constraint 
simplifies the issues of reflow as the system only needs to 
locate the new position at which the corresponding text is 
rendered and apply the appropriate affine transformation to 
the stroke to move it to this position.  

ProofRite is unique from previous systems in that it 
supports reflow in documents with non-static text. For 
instance, in ProofRite a user may circle a word, change the 

 
Figure 6: Left: The bounding box method associates 
the mark with the lines that it overlaps. Right: The 
change in direction associates the mark at the 
position of semantic meaning (blue dot). 

 
Figure 7: Common proofreading marks and their 
corresponding insertion point (blue dots). 

 

Figure 5: (1) Marks made on paper can be (2) viewed as a separate layer. To synchronize these layers, (3) we identify 
the semantic insertion point of the mark and (4) insert an anchor at that point, creating a multivalent layer of ink. 
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text on both sides of the mark, change to a different font, 
and even change the structure of the document by indenting 
the paragraph without losing the semantic meaning of the 
mark (Figure 8). This is achieved through the use of intra-
document anchors which do not rely on the surrounding 
text to preserve ink-text association, similar to [26]. This 
allows the document to be modified in an arbitrarily 
complex manner. 

We leverage the capabilities of the AbiWord rendering 
engine to compute the position at which an intra-document 
stroke anchor should be displayed. Rather than drawing the 
anchor, the rendering algorithm performs an affine 
transformation which reflows the stroke and then renders it 
on the screen. Rendering engines in other word processors 
can be extended similarly.  

Additionally, the rendering algorithm supports scrolling 
and zooming by applying translation and scaling 
transformations to the ink layer as the user interacts with 
the document.  

An important issue to consider in reflow is ensuring that 
that word processor is responsive. AbiWord, like many 

word processors, uses caching and clipping only to re-
render portions of the document that have changed 
significantly. If a paragraph of text is moved down a line 
but no changes have been made, then the cached version of 
the paragraph may be translated down rather than re-
rendering the underlying document elements. When this 
occurs, it is necessary to either translate a cached version of 
the ink or to redraw the corresponding portion of ink. 
ProofRite takes the latter approach as there is no noticeable 
degradation of performance. 

In this way, the layer of ink that is above the text of the 
document is synchronized with any changes made to the 
underlying document, preserving the association between 
the annotation and the text. 

PREVIOUS WORK 
Various systems have considered the issues surrounding 
document annotation. Some systems have focused on 
recreating the user experience of annotating a paper 
document on a computer. Other systems have taken the 
approach of digitally augmenting paper interfaces in an 
effort to close the gap between paper and computers. 

 
Figure 8: Above: A document with digital annotations. Below: The same document after the user has added text (in 
underlined-bold-italics for emphasis), deleted some text, created a new paragraph, and changed the font from Times 
New Roman, size 12 to Arial, size 10. 
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Annotation and Proofreading 
Several systems have explored the issues of digital 
document annotation. The FreeStyle system [18] and 
XLibris system [10] introduced an active reading system 
[28] that allows users to digitally annotate a document 
while reading. Brush et. al. [7] studied user expectations for 
digital reflow of annotations and, based on these results, 
Bageron and Moscovich [5] introduced the Callisto 
framework. Although XLibris and Callisto allow users to 
annotate documents digitally and reposition these 
annotations as the layout changes, neither system permits 
the user to change the document’s contents. ProofRite uses 
a repositioning algorithm that permits the document text to 
change, allowing users to make arbitrarily dramatic 
changes to the document’s content and structure while 
preserving the semantic meaning of annotations. 

Phelps and Wilensky’s [26] notion of multivalent 
documents provides a suitable metaphor for the relationship 
between annotations and the document’s text: annotations 
are logically separate from the document text yet 
annotations have a semantic meaning with the text that 
must be preserved as the document changes. The notion of 
a multivalent layer of ink is complicated by the fact it is 
also necessary to synchronize the layer with annotations 
made on paper documents. We present a flexible method to 
synchronize the multivalent layer of ink with the document 
text using Phelps and Wilensky’s [25] intra-document 
anchors. The PADD infrastructure discussed in this paper 
introduces methods to synchronize the paper annotations 
with the digital source. 

More recently, Microsoft Word 2003 [22] introduced a 
limited interface for making digital ink annotations on the 
Tablet PC. Ink annotations are only repositioned vertically, 
causing many markings to change or lose meaning as the 
document’s content or layout is repositioned horizontally. 
Our system attempts to preserve the semantic meaning of 
annotations within a word processor by repositioning ink 
both vertically and horizontally.  

Bridging the paper-digital gap 
Several systems have explored methods to bridge the gap 
between the computer and the paper world. Some like the 
XLibris system [10] focus on creating the equivalent on 
paper in the digital world. Other like DigitalDesk [32], 
VideoMosaic [19], Ariel [20],  PaperLink [4], Inteligent 
paper [9], the EnhancedDesk [17] and the A-book [21] 
have studied how to augment the use of paper with the aid 
of a nearby computer. 

Like the PADD system [11], ProofRite focuses on 
cohabitation, considering both paper and digital instances 
of the document. In particular users can interact with paper 
printouts without the help of a nearby computer (with the 
exception of the digital pen, of course). 

Several systems have been proposed to process information 
captured on paper including XaX [15], the Paper PDA [13], 

Anoto [2]. All of these systems focus on processing forms 
and do not offer the flexibility of our system. As explained 
above, our system uses the Anoto system as a stroke 
capture mechanism since it is the only one currently 
commercially available. Non-commercially available 
systems include DataGlyphs [12] and MEMO-PEN [24]. 
Our infrastructure differs from Anoto’s in that it does not 
require the registration of forms before processing, and 
offers a distributed architecture that has been designed to 
support typical, everyday uses of paper such as 
proofreading.  

DISCUSSION AND FUTURE WORK 
Through the development process of ProofRite we have 
observed several ways to expand the PADD infrastructure 
to support complex use cases as well as ways to improve 
user interaction with digital annotations. In this section we 
discuss these ideas. 

Additions to the PADD infrastructure 
The design of the PADD infrastructure, as discussed above, 
is capable of supporting distributed storage and retrieval of 
documents and annotations. In this section, we propose 
additions to the PADD infrastructure that extend its 
functionality and improve its suitability for global 
deployment. We have not implemented these features, but 
discuss what would be necessary to do so. 

Printer Server 
In our current implementation, a user must ensure that the 
document editor knows the page address of the next page in 
the printer. Without a means of synchronizing this 
information between multiple editors or multiple users, the 
information they report to the infrastructure may be 
incorrect. We can remove this synchronization problem by 
centralizing this information at a printer server. The printer 
can determine which page address it is printing to (this can 
be done trivially by having the printer print the Anoto 
pattern immediately before printing the document [11]), 
and can therefore act as a reliable source of information to 
the PADD Databases. 

Security 
With any multi-user environment, security must be 
considered. When using the PADD infrastructure, users 
may want to control access to their documents and/or their 
annotations. There are several possible methods and levels 
of granularity through which this may occur. 

One method would be to create user accounts on the PSP. 
Users can log into the PSP and can control access to their 
documents and annotations by informing the PSP which 
users may access their documents and annotations. This 
solution allows users to set permissions for groups of 
annotations and for documents. 

Permission granularity is an important part of security 
considerations. We introduce the notion of annotation-level 
permissions. Users may wish, for example, that annotations 
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made with one digital pen have different access levels from 
those made with another digital pen. In our example, Bob 
may have a red pen that he only wants other faculty at his 
company to be able to see, but a blue pen that any user can 
access. 

Note that, in general, security is an issue that pervades the 
entire infrastructure, as well as external methods such as 
file encryption. We have designed our version of the PADD 
infrastructure in a highly modular way so as to be easily 
extended to incorporate any future security considerations. 

Strokes Processor 
Once a user has uploaded strokes to the PADD 
infrastructure, the user typically wishes to integrate these 
strokes into the digital document. In [11], the software that 
performs this integration is referred to as the strokes 
processor. In our implementation, the strokes processor 
resides within a user’s document editor. We propose a more 
general strokes processor that no longer requires explicit 
user interaction; rather, processors exist as services which 
can accept requests from the PADD infrastructure itself. 

Strokes processors can be written to perform handwriting 
recognition in batch or to incorporate strokes into 
documents. This can make the time-consuming process of 
integrating a large number of strokes into a large document, 
such as a book, transparent to the user.  

In addition to the security concerns discussed above, users 
may want varying grades of privacy based on the 
annotations that they have made. A strokes processor on the 
user’s local machine can filter annotations and apply user-
defined security policies. For example, a strokes processor 
can filter annotations uploaded from Bob’s digital pen and 
determine which annotations should be shared with Alice. 

Notifications 
While deploying the PADD infrastructure, we have noticed 
that there are several situations when users or software may 
wish to be notified: (1) Authors often want to know when 
someone annotates their documents; (2) Users may also 
wish to know when their co-authors print the latest version 
of a document; (3) Strokes processors (as discussed above) 
may want to know when certain documents have been 
annotated. 

In our implementation, the first situation is solved by 
emailing the document’s author. While email is suitable for 
user interaction, it may not extend to other situations, 
particularly for stroke processors that operate in batch 
mode. Rather than implement a different form of 
notification for each entity, we abstract the idea of 
notification to that of publish-subscribe systems. Many 
such systems have been proposed, such as [31], and the 
design of the PADD infrastructure lends itself well to them. 

Incorporating a publish-subscribe system into the PADD 
infrastructure can be done as follows: The PADD Database 

can publish events, as it is the central authority for each 
page within its page range. Other entities can act as 
subscribers to these events. For example, authors wishing 
to know when users have annotated their documents would 
subscribe to these events. 

One of the open issues of notification is the concern of 
event granularity; how detailed can subscription requests 
be? For instance, strokes processors may only wish to be 
notified about documents of a certain file type. A more 
complex situation may be that user Alice wishes to be 
notified when Bob annotates page 3 of her document. 
Therefore, the system must permit the use of rules or filters 
for every subscription, but to what level of detail? Should 
these filters exist at the publisher, or should Alice’s 
subscriber program filter them itself? We hope to address 
these questions in our future work. 

Version Management 
Consider the case where Alice receives Bob’s annotations 
after she made structural changes to the document. To 
properly incorporate Bob’s strokes, Alice’s strokes 
processor must merge with the version of the document that 
was stored when it was printed. This appears similar to the 
original problem of the paper-digital gap we have 
presented, but the important difference is that both versions 
of the document exist in the digital world. Thus, potential 
solutions to such a versioning problem exist. For instance, 
versioning software such as CVS can aid in the 
management of these versions. Incorporating these 
seamlessly into the proofreading cycle is a large area of 
potential future work. 

Paper as an indexing mechanism 
It has been shown that users can glean an efficient semantic 
structure from the physical distribution of their documents, 
be it from a file cabinet or an untidy workspace. With the 
PADD infrastructure, users need only a single page of a 
physical document to have access to the entire digital 
document. Therefore, users can benefit from the semantic 
structure of their physical data in the digital world [14]. In 
essence, a user’s file cabinet can become their file system. 

Duplicate page addresses 
The Anoto paper system assigns a unique page address to 
each physical sheet. There are four fields: bookcase, shelf, 
book, and page – yielding more than 248 sheets of uniquely 
addressable paper, a number that, although large, is 
reachable in a matter of years if globally deployed ([1], 
[24]). Anoto sells licenses to each sheet of paper in page 
ranges. The number of unique IDs and the overhead of cost 
limit the amount of pages an organization, such as a 
university, can purchase. Therefore, there is a high 
probability that page address collide. 

The PADD infrastructure was built with the initial 
assumption that all page addresses were unique. Otherwise, 
when uploading strokes, there is currently no way of 
determining the corresponding document without requiring 
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work from the user, such as choosing from a list of 
documents that have been printed to that same page 
address. 

Unless the paper technology is extended to handle more 
page addresses, there are two ways we envision of solving 
the problem: requiring input from the user and/or providing 
a set of private page addresses, similar to NAT (Network 
Address Translation) [30]. In order to make the transition 
between the digital and physical world as seamless as is 
possible, solutions must minimize the amount of necessary 
user input.  

One method is to include a ‘key’ portion in a piece of 
paper, which consists of several paper patterns. When a 
user is done annotating a piece of paper, they can make a 
line across this portion of the paper. If the key contains k 
paper patterns, then the page namespace can be effectively 
extended to (248)k unique IDs. 

The other type of solution is to provide a set of private page 
addresses, similar to private IP addresses. In the case of IP, 
private addressing is made possible by NAT, which 
provides the translation between private and public. There 
are two main differences between the assumptions made by 
NAT and the assumptions a paper-based solution could 
make: 

• NAT makes use of port numbers as a multiplexing 
key; there is currently no similar entity in paper. 
One could make the claim that a user’s pen could 
be such a key, but this precludes users’ ability to 
share pens. 

• Efforts are made in NAT to keep private addresses 
from being exposed to hosts outside of the 
corresponding private realm [6]. A method of 
providing this occlusion of information is not 
clear, as users will be printing to and distributing 
pages with private addresses.  

There is currently no clear solution to the problem of 
duplicate page number. Since the most probable solution 
will come from increasing the amount of user input, user 
studies are required to determine the precise extent to 
which users are willing to do this. 

Digital annotations and reflow 
The ProofRite word processor allows users to reflow 
annotations as they continue the writing process. The 
current implementation can be expanded in several ways to 
support more complex annotations and user interactions. 

Grouping margins notes and drawings 
Our method of text-annotation association is sufficiently 
robust for proofreading markup, but is limited in its ability 
to address freeform writing and annotations. Tests with our 
system show that our association algorithm is able to 
preserve freeform markings and marginal notes vertically 
but is unable to preserve meaning horizontally. We are 
currently working on a stroke grouping algorithm similar to 

the one described in [10] which we believe will solve this 
problem. 

Splitting large annotations 
As a document’s content or layout changes, text that 
appears on a single line may be repositioned to span 
multiple lines. This issue is of particular importance in a 
document with dynamic content. XLibris [10, 28] 
addressed this problem by splitting annotations into smaller 
segments that can be positioned over several lines. We 
implemented a similar algorithm in an earlier version of 
ProofRite by splitting large annotations into smaller single-
word annotations. This allows the user to change the 
document’s content, structure, or layout in any arbitrary 
manner while still ensuring that the stroke will retain its 
semantic meaning. As the ProofRite system has matured, 
our initial algorithm has proved to be insufficient to 
preserve semantic meaning. We are currently exploring 
new splitting algorithms to address this problem. 

Automatic stroke interpretations 
Although we have not conducted any formal user studies of 
our system, several early test users have expressed interest 
in the ability to apply annotated corrections automatically. 
An “auto-correct” or “apply annotations” feature is limited 
by the accuracy of handwriting and annotation recognition. 
In order to implement a robust recognition engine, it is 
necessary not only to examine the annotation, but also the 
surrounding text and annotations. It may be possible to 
provide better annotation recognition by examining the 
position of the stroke relative to the text (i.e. the cross-out 
mark goes through text while the underline mark goes 
underneath text). 

Digital Annotation Interfaces 
Although reflow is an important aspect of digital 
annotation, the ability to preserve annotations made on 
paper in the digital source presents another layer of data 
with which the user can interact during the writing process. 
This presents several questions regarding the user 
experience of interacting with digital annotations. When 
should markings be applied to the text? In what ways do 
users wish to interact with their markings (i.e. move, erase, 
change color, etc)? What is the best way to present 
annotations from several different sources? Does the 
presence of annotations from the last proofreading affect 
the user experience of word processing? Until now, 
annotations made on paper have always been fixed and 
static, so users have no experience or prior expectations of 
how to interact with annotations that reflow. The question 
of how users wish to interact with digital annotations is 
fundamental to the writing process. Further studies must be 
conducted to determine how word processors that support 
digital annotation and reflow can best serve the user.  

CONCLUSION 
In this paper, we have addressed the gap that exists between 
the usage of paper and computers with respect to a 
common paper-computer activity: proofreading. We 
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introduced the ProofRite word processor. ProofRite allows 
users to annotate a document with a Tablet PC stylus and, 
through the first fully-implemented PADD infrastructure, to 
incorporate paper-based annotations into their digital 
documents. Both types of annotation are given the benefits 
of digital reflow, allowing users to continue the writing 
process without having to lose or manually place 
annotations between revisions. Furthermore, we described 
how annotations made by multiple users to multiple copies 
of a PADD-compliant document can be integrated into a 
single digital copy. We also proposed several novel 
additions to the PADD infrastructure that increase its 
functionality and further make the paper-digital gap 
transparent to users. 
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