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Abstract
Many researchers have explored retrofitting static type sys-

tems to dynamic languages. This raises the question of how

to add type annotations to code that was previously untyped.

One obvious solution is type inference. However, in com-

plex type systems, in particular those with structural types,

type inference typically produces most general types that

are large, hard to understand, and unnatural for program-

mers. To solve this problem, we introduce InferDL, a novel
Ruby type inference system that infers sound and useful type

annotations by incorporating heuristics that guess types.

For example, we might heuristically guess that a parame-

ter whose name ends in count is an integer. InferDL works

by first running standard type inference and then applying

heuristics to any positions for which standard type infer-

ence produces overly-general types. Heuristic guesses are

added as constraints to the type inference problem to ensure

they are consistent with the rest of the program and other

heuristic guesses; inconsistent guesses are discarded. We for-

malized InferDL in a core type and constraint language. We

implemented InferDL on top of RDL, an existing Ruby type

checker. To evaluate InferDL, we applied it to four Ruby on

Rails apps that had been previously type checked with RDL,
and hence had type annotations. We found that, when using

heuristics, InferDL inferred 22% more types that were as or

more precise than the previous annotations, compared to

standard type inference without heuristics. We also found

one new type error. We further evaluated InferDL by ap-

plying it to six additional apps, finding five additional type

errors. Thus, we believe InferDL represents a promising ap-

proach for inferring type annotations in dynamic languages.

CCS Concepts: • Software and its engineering → Data

types and structures.
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1 Introduction
Many researchers have explored ways to add static types to

dynamic languages [3, 4, 15, 19, 29, 31, 36, 37], to help pro-

grammers find and prevent type errors. One key challenge

in using such retrofitted type systems is finding type anno-

tations for code that was previously untyped. Type inference,

which aims to type check programs with few or no type

annotations, is an obvious solution, and indeed there are sev-

eral type inference systems for dynamic languages [2–4, 15].

Beyond type checking, type inference can also be extended

to generate type annotations for program values. These an-

notations provide a useful form of documentation, and can

be used in other forms of program analysis such as code

completion for IDEs.

However, type inference systems typically aim to find the

most general type for every position, i.e., the least restrictive

possible type. If the type language is rich—particularly if

it includes structural types—the most general possible an-

notations might be large, hard to read, and unnatural for

programmers. For example, An et al. [2] describe a type in-

ference system for Ruby that infers that a certain position

accepts any object with >, <<, >>, &, and ˆ methods. In

contrast, a programmer would mostly likely, and much more

concisely, say that position takes an Integer. Moreover, even

if we are not interested in producing annotations, large, com-

plex types can lead to difficult-to-understand error messages.

In this paper, we present InferDL, a novel Ruby type in-

ference system that aims to infer sound and useful type anno-

tations. More specifically, InferDL allows the programmer

to specify heuristics for guessing type annotations. For ex-

ample, one simple but effective heuristic is to guess the type

Integer for any variables whose names end with id, num, or

count. InferDL runs such heuristics for positions for which

standard type inference is overly-general (meaning, among

others, positions with inferred structural types). Heuristic

guesses are added as additional type constraints and checked

for consistency with the rest of the program. Only consistent

https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/3426422.3426985
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solutions are kept. In this way, InferDL maintains sound-

ness while producing a less general, but potentially more

useful, solution than standard type inference. (§ 2 gives an

overview of InferDL.)
We describe InferDL more formally on a core type and

constraint language. We present standard constraint reso-

lution rules, which rewrite a set of constraints into solved

form from which most general solutions can be extracted.

We describe that solution extraction procedure in detail and

then show how to incorporate heuristics. (See § 3 for our

formal description.)

We implemented InferDL as an extension to RDL, an ex-

isting Ruby type checker [13, 19, 31]. We modified RDL to

generate and resolve type constraints, run heuristics, and

extract solutions to produce annotations. InferDL currently

includes eight heuristics: one that replaces structural types

with nominal types that match the structure; six that look at

variable names, such as the one mentioned above for names

ending in id, num, or count; and one that produces precise

hash types. We also extended RDL with choice types, an idea

inspired by variational typing [7] that helps type inference

work in the presence of overloaded methods. (§ 4 describes

the implementation of InferDL.)
We evaluated InferDL by applying it to four Ruby on Rails

apps for which RDL type annotations already existed [19, 31].
We note that our results are preliminary, and further work

is needed to affirm they generalize beyond our benchmarks.

For these apps, InferDL inferred 496 type annotations. Of

these, 399 exactly matched or were more precise than the

programmer-supplied annotations, compared to only 290

such annotations when not using heuristics. InferDL also

found one previously unknown type error. We also applied

InferDL to six additional Ruby programs for which we did

not have annotations, and InferDL found five previously

unknown type errors. (§ 5 discusses our evaluation.)

We believe that InferDL is an effective type inference

system and represents a promising approach to generating

useful, sound type annotations.

2 Overview
We begin by discussing standard type inference, which gen-

erates and solves type constraints to yield type annotations.

We then discuss why this approach alone can be inadequate

and give a high-level overview of how InferDL uses heuris-

tics to infer more precise, useful types.

2.1 Standard Type Inference
Figure 1a shows a code snippet taken from Discourse, a Ruby

on Rails web app used in our evaluation (§ 5). The code de-

fines two methods, normalize_username and find_by_name,
in the class User. Because User is a subclass of ActiveRe-
cord::Base, it is a Rails model, meaning instances of the class

represent rows of a database table.

1 class User < ActiveRecord::Base
2 # α → β
3 def self.normalize_username (name)
4 name.unicode_normalize.downcase if name.present?
5 end
6 # γ → δ
7 def self.find_by_name (name)
8 find_by(name_lower: normalize_username(name))
9 end
10 end

(a) Source code from Discourse app.

Constraints Generated
(1) α ≤ [unicode_normalize : ⊥ → ϵ]
(2) α ≤ [present? : ⊥ → ζ ]
(3) ϵ ≤ [downcase : ⊥ → η]
(4) η ≤ β
(5) γ ≤ α
(6) User ≤ δ
Resolved Constraints
(7) γ ≤ [unicode_normalize : ⊥ → ϵ]
(8) γ ≤ [present? : ⊥ → ζ ]

(b) Constraints generated on type variables.

Figure 1. Inferring method types in Discourse.

Suppose we wish to infer types for these two methods

using the standard, constraint-based approach. We first gen-

erate a type variable for the method argument and return

types, as shown in the comments on lines 2 and 6, e.g., nor-
malize_username takes a value of type α and returns type

β . Then we analyze the method body, generating constraints

of the form x ≤ y, indicating that x must be a subtype of y.

In this case we also say x is a lower bound on y and y is an

upper bound on x.

The top portion of Figure 1b shows the constraints gener-

ated from this example. Constraint (1) arises from the call

name.unicode_normalize1. In this constraint, the structural

type [unicode_normalize : ⊥ → ϵ] represents an object with
a unicode_normalize method that takes no argument (here

written ⊥) and returns ϵ , a fresh type variable generated

at the call. Hence, by standard subtyping rules, α must be

a type that contains at least this method with appropriate

argument and return types. Constraint (2) is similar.

Constraint (3) arises from calling downcase on the re-

sult of unicode_normalize. Constraint (4) arises because the
result of the call to downcase is returned. Note that normal-
ize_username may also return nil (if the conditional guard is
false), but nil is a subtype of all other types in InferDL, so we
omit this constraint here. Finally, constraint (5) arises from

the call to normalize_username on line 8, and constraint

1
In Ruby, the parentheses in a method call are optional.
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(6) arises because User’s find_by method returns a User (as
indicated by find_by’s type annotation, omitted here).

After generating constraints, InferDL performs constraint

resolution, which applies a series of rewriting rules to the

constraints. For example, one resolution rule is transitive

closure: If a ≤ b and b ≤ c then we add constraint a ≤ c
(see § 3 for a complete list of constraint resolution rules). In

our example, constraint resolution generates the two new

constraints (7) and (8).

During constraint resolution, if InferDL generates any

invalid constraints, the program is untypable, and Infer-
DL signals a type error. Otherwise, if constraint resolution
terminates without finding any inconsistencies, then the

program is typable.

Solution Extraction. Many traditional type inference ap-

proaches have the singular goal of uncovering type errors,

and hence they stop after propagating constraints. Since our

goal is to also infer type annotations, we must go a step fur-

ther by extracting a solution for all type variables from the

constraints. The standard approach is to compute amost gen-

eral solution. For a method type, this means computing the

least solution for its return and the greatest solution for its ar-

guments, which are the solutions that are least constraining

on the method’s callers.

Fortunately, after constraint resolution, the constraints are

in solved form [27], which means that to extract a variable’s

solution we need only look at its lower and upper bounds.

More specifically, for a return, we compute the union of

its lower bounds, ignoring variables (since any transitive

constraints from them have been propagated by resolution),

and for an argument, we compute the intersection of its

upper bounds. Thus, in our example, the solution for α and γ
is [unicode_normalize : ⊥ → ϵ, present? : ⊥ → ζ ], i.e., an
object that has those methods, and the solution for δ is User.
However, notice there are some problems with produc-

ing type annotations using this approach. First, the solution

for α and γ is in fact not fully expanded. Using the same

approach, we could recursively compute a solution to ϵ to
get the following solution for α and γ : [unicode_normalize :
⊥ → [downcase : ⊥ → η], present? : ⊥ → ζ ]. However,
such nested structural types are difficult to read and compre-

hend, and worse, in the presence of recursion, the type may

not be expressible in finite form without additional syntax.

Second, notice that η is the most general solution for β ,
and there is no most general solution for η and ζ that we

can write down as ground terms (i.e., terms with no type

variables). That is, in fact we cannot always ignore type

variables in solutions, because they are needed to express

relationships among different parts of the solution (here,

η is the return type of downcase and ζ is the return type

of present?). This makes understanding the most general

solution even more complex and difficult.

2.2 Type Inference with Heuristics
InferDL aims to infer more useful, readable, and understand-

able type annotations by extending standard inference with

heuristics that guess nominal types, or small unions of nom-

inal types, as solutions. For example, so far δ has a nominal

type as a solution, and we would like the same thing for

other type variables. To ensure type annotations are consis-

tent, InferDL adds any solutions found by heuristics to the

constraints and runs constraint resolution afterward; if the

result is a type error, the heuristic choice is rejected.

Using Heuristics. We illustrate the use of heuristics on

our example with one particular rule, struct-to-nominal,

defined (in English) as follows:

When an argument type variable’s upper bounds

include structural types, search all classes to see

which have the methods in those types. If there

are ten or fewer such classes, guess the union of

these classes as the type variable’s solution.

Note that this rule matches by method name only and not by

method type. We chose ten as a cutoff because in our experi-

ence, larger unions are less useful than the original structural

type. In our running example, struct-to-nominal can be

applied to α and γ . It turns out that String is the only class

that defines both unicode_normalize and present?, so the

nominal type String would be our heuristic guess.

To ensure this guess is sound, we add String as a solution

for variables α and γ to our constraints. More specifically,

we add the solution constraint α = String (and similarly

for γ ) to the constraints, where a = b is shorthand for the

pair of constraints a ≤ b and b ≤ a. We then resolve these

new constraints, which in this case does not lead to any

inconsistency, so we accept String as the solution.
Moreover, the additional constraints on α and γ in turn

yield better solutions elsewhere because:

⇒ String ≤ α is added as a constraint. Transitively prop-

agating to α ’s upper bounds yields...
⇒ String ≤ [unicode_normalize : ⊥ → ϵ]. To check

this constraint, we look up String’s unicode_normalize
method type and generate the constraint...

⇒ ⊥ → String ≤ ⊥ → ϵ . Propagating to the methods’

return types yields...

⇒ String ≤ ϵ . Transitively propagating through ϵ yields...
⇒ String ≤ [downcase : ⊥ → η]. Looking up String’s

type for downcase, we get the constraint...
⇒ ⊥ → String ≤ ⊥ → η, and propagating to return

types yields...

⇒ String ≤ η. Finally, propagating to η’s upper bound
yields...

⇒ String ≤ β

Thus, now β has nominal type String as a solution. Putting
this together with the (most general) solution for δ and the
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(heuristic) solutions for α and γ , InferDL has now inferred

fully nominal type annotations for our example:

normalize_username: String → String
find_by_name: String → User

ImplementingHeuristics. in InferDL, heuristics are not
baked-in. Rather, they can be created by the programmer,

allowing heuristics to be adapted if needed to the target pro-

gram. As an example, consider the following method, taken

from the Rails app Journey and slightly simplified:

def self.find_answer ( response, question)
where(response: response.id, question: question.id ) .first

end

Wewish to infer the type of find_answer. However, notice
that only id is called on each argument. In Rails, the method

id is typically defined for all model classes, e.g., in Journey, 48

different classes include an id method. This means struct-

to-nominal will fail to infer a precise annotation for the

arguments in this case.

Instead, we develop another heuristic that takes advantage

of a common practice: Ruby programmers often name a vari-

able after the class of the value it will hold, especially for Rails

models. Indeed, the arguments response and question are

intended to take instances of the model classes Response and
Question, respectively. We define a new heuristic is_model

that guesses types based on this convention:

RDL::Heuristic.add :is_model { | var |
if ( var.base_name.camelize.is_rails_model? )
then var.base_name.to_type end }

To define this heuristic, we call RDL::Heuristic.add, pass-
ing the name of the heuristic, in this case :is_model, and a

code block. Code blocks are Ruby’s version of anonymous

functions or lambdas. The RDL::Heuristic.add method ex-

pects a code block that takes a single argument, which is

the type variable whose solution the heuristic should guess.

Note that in InferDL, which is built on RDL, types are actual
values we can compute with; we discuss this in greater detail

in § 4. The code block returns either nil, if there is no guess,

or the guessed type.

The is_model heuristic consists of a single if statement.

The guard calls, in order, var.base_name, to return the name

of the variable as a String; the Rails method camelize to

camel-case this string; and finally is_rails_model?, a method

we defined (code omitted) to determine if there exists a Rails

model with the same name as the receiver. If this last condi-

tion is true, the code block calls to_type (code omitted) to

return the nominal type for the model class. Otherwise, by

standard Ruby semantics the conditional will return nil.
During type inference, InferDL runs all heuristics for each

type variable, accepting the solution from the first heuris-

tic that produces a consistent type. For find_answer, the
is_model heuristic produces appropriate nominal types for

the arguments, which then become the final type annotations

for those positions.

Types τ ::= α | A | [m : τm] |

τ ∪ τ | τ ∩ τ | ⊥ | ⊤

Method Types τm ::= τ → τ
Constraints C ::= τ ≤ τ | C ∪ C

A ∈ class IDs,m ∈ meth IDs

Figure 2. Core types and constraints.

3 Constraints, Solutions, and Heuristics
In this section, we describe InferDL more formally. For

brevity, we do not define a core language, nor do we de-

scribe constraint generation in detail. Rather, we focus on

the language of types and constraints, constraint resolution,

solution extraction, and heuristics.

3.1 Types and Constraints
Figure 2 formally defines a core subset of the types and con-

straints in InferDL. Types τ include type variables α and

nominal types A, which is the set of class IDs. Structural

types [m : τm] name a method m and its corresponding

method type τm . For brevity, structural types can only com-

prise a single method, and method types may only take a

single argument. Types also include union types τ ∪ τ , in-
tersection types τ ∩ τ , the bottom type ⊥, and the top type

⊤. Constraints C consist of subtyping constraints τ1 ≤ τ2
and unions of constraints C1 ∪ C2, which allow us to build

up sets of constraints.

Generating Constraints. Constraint generation is a stra-
ightforwardmodification of standard type checking inwhich,

instead of type rules checking constraints, we view them as

generating constraints. For example, the rule for typing a

method call is

Γ ⊢ e1 : τrec Γ ⊢ e2 : τarg
τrec ≤ [m : τarg → τret ] τret is fresh

Γ ⊢ e1.m(e2) : τret

This rule types a method call e1.m(e2) (where each e is an ex-

pression) in type environment Γ (a map from local variables

to types), yielding type τret . To apply this rule, we recur-

sively type the receiver and the argument, yielding types

τrec and τarg , respectively. We then generate a constraint

τrec ≤ [m : τarg → τret ], where τret is a fresh type variable.

Then, the return type of the method call has type τret . By
convention, we assume any constraint in the premise of a

rule is automatically added to a global set of constraints C .
Full details of type checking rules for a core Ruby language

can be found in Ren and Foster [31] or Kazerounian et al.

[19], both of which formalize Ruby in a core language and

provide type checking rules. As with the above example,

those rules can be turned into inference rules by viewing

them as generating constraints and adjusting them as needed

to make all constraints explicit, e.g., in the rule above, we
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(1) C ∪ τ1 ≤ α ∪ α ≤ τ2 ⇒ C ∪ τ1 ≤ α ∪ α ≤ τ2 ∪ τ1 ≤ τ2
(2) C ∪ A ≤ A′ ⇒ C if A = A′

or A is a subclass of A′

(3) C ∪ A ≤ A′ ⇒ error if A , A′
and A is not a subclass of A′

(4) C ∪ A ≤ [m : τ1 → τ2] ⇒ C ∪ τ1 ≤ τ ′1 ∪ τ ′2 ≤ τ2
if A has methodm with type τ ′1 → τ ′2

(5) C ∪ A ≤ [m : τ1 → τ2] ⇒ error if A has no methodm
(6) C ∪ (τ1 ∪ τ2 ≤ τ3) ⇒ C ∪ τ1 ≤ τ3 ∪ τ2 ≤ τ3
(7) C ∪ (τ1 ≤ τ2 ∩ τ3) ⇒ C ∪ τ1 ≤ τ3 ∪ τ2 ≤ τ3
(8) C ∪ ⊥ ≤ τ ⇒ C
(9) C ∪ τ ≤ ⊤ ⇒ C

Figure 3. Standard constraint resolution rules.

specify the type of e1 as τrec and write an explicit constraint

on τrec , rather than implicitly constraining e1’s type to have

a particular shape in the rule.

ResolvingConstraints. Figure 3 gives standard constraint
resolution rules. Each rule has the form C ⇒ C ′

, meaning

a set of constraints matching C can be rewritten to C ′
. The

rules are applied exhaustively until they either yield error
or no additional constraints can be generated.

Rule (1) adds transitive constraints, as discussed earlier.

Rule (2) eliminates a constraint among two nominal types

as long as the subtyping is valid. On the other hand, Rule (3)

produces error if there is an inconsistent constraint among

nominal types. Rule (4) handles constraints of the form

A ≤ [m : τ1 → τ2]. In this case, if A has a methodm of some

type τ ′1 → τ ′2, we erase the constraint and add two new con-

straints on the argument and return types. IfA does not have

a methodm, Rule (5) yields error . Finally, Rules (6) and (7)

simplify unions on the left and intersections on the right

of a constraint, respectively, and Rules (8) and (9) eliminate

constraints with⊥ on the left and⊤ of the right, respectively.

3.2 Solution Extraction
Recall from § 2.1 that after generating and resolving con-

straints, the next step in standard type inference is to extract

solutions for type variables. More precisely, standard type

inference produces solutions using the following procedure:

procedure standard_solution(C , α )
if (α represents arg) then

sol = ⊤

for each constraint α ≤ τ ∈ C do
sol = sol ∩ τ

else ▷ α represents return

sol = ⊥

for each constraint τ ≤ α ∈ C do
sol = sol ∪ τ

return sol

As discussed earlier, to derive the most general solution,

for each return position we compute the union of its lower

bounds, and for each argument position we compute the

intersection of its upper bounds.

InferDL uses the same procedure as a subroutine to its

heuristic inference algorithm, described next.

Heuristics. Formally, we can model InferDL’s heuristics
as a set of additional constraint resolution rules beyond those

in Figure 3. For example, we can express struct-to-nominal

as the following constraint rewriting rule:

struct-to-nominal(C,α) =
C ′ ∪ α ≤ [m1 : ...] ∪ . . . ∪ α ≤ [mn : ...] ⇒

C ′ ∪ (α = (A1 ∪ . . . ∪Ak ))

if k ≤ 10 and A1, ...,Ak are all classes withm1...mn .

This rule applies to a type variable α that has one or more

structural type upper bounds. If there are at most 10 classes

A1 . . .Ak matching those structural types, then we replace

the structural constraints with a solutionA1 ∪ . . .∪Ak for α .
Recall from § 2 that a solution constraint of the form τ1 = τ2
is shorthand for the two constraints τ1 ≤ τ2 and τ2 ≤ τ1.

Given a set H of heuristic rules, InferDL uses the follow-

ing procedure to try each rule until some rule succeeds or

all rules fail:

procedure heuristic_solution(H , C , α )
for h ∈ H do

C ′, sol = h(C,α)
C ′

= resolve(C ′
)

if C ′ , error and sol , nil then
return C ′, sol

return C, nil

Here we abuse notation slightly and assume that heuristic

rules return a pair C ′, sol , where C ′
is the new set of con-

straints after running the rule, and sol is the solution found

for α . If h does not match C , then h returns the pair nil, nil.
When h does return a set of constraints C ′

and a solution,

we perform constraint resolution on C ′
to propagate the

new solution and detect any inconsistencies in the set of

constraints. This is done by calling the resolve procedure,

which simply invokes the constraint resolution rules of Fig-

ure 3. If the resulting resolved constraint setC ′
is valid, then

we return C ′
and sol . If all heuristics run without finding a

valid solution, we return the original constraints C and nil .
Notice that an important consequence of this formulation

is that the order in which heuristics are run matters, since

only the first guessed solution will be returned. Future work

could examine how to overcome this reliance on ordering

and handle the case that heuristics return differing solutions.

Extracting Solutions. The next step is to combine stan-

dard and heuristic solution extraction, doing the latter when

a standard solution is overly-general. Thus, we need to define

what overly-general means. Based on our prior experience,

we believe that, in most cases, nominal types are far easier

for programmers to understand and use than structural types

because they are smaller and simpler. The developers of Sor-

bet [35], another Ruby type checker, feel the same way—they
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have found that structural types can be less intuitive and

more difficult to read when used in error messages [26].

Generalizing this insight, we define an overly-general so-

lution as any non-nominal type, that is, any type of the form

α , τ ∪ τ , τ ∩ τ , [m : τm], ⊥, and ⊤. Our motivation for

treating union and intersection types as overly-general is

the same as for structural types: they make types bigger and

more complex. We treat the top and bottom types as overly-

general since they are only ever used as solutions when a

type variable has no constraints, and we consider type vari-

ables overly-general since they represent unknown types.

We do note that, in general, there is no single correct defi-

nition of overly-general, and we leave exploring alternative

definitions to future work.

Next, we can provide the pseudocode for solution extrac-

tion of a type variable:

procedure extract_solution(H , C , α )
sol = standard_solution(C,α)
if overly_дeneral(sol) then

C ′, solh = heuristic_solution(H ,C,α)
if solh , nil then

sol = solh
else

C ′
= resolve(C ∪ (α = sol ))

return C ′
, sol

This procedure first extracts a standard solution for the

given α and C . If the resulting solution is overly-general, it

calls heuristic_solution to possibly yield a better solution

for α . We only use the new solution if it is non-nil (note
that, with the definition of heuristic_solution, the set of

constraints will be unchanged in the event that the heuristic

solution is nil). Otherwise, if the standard solution was not

too general, we add the new solution to the set of constraints

and perform constraint resolution. We perform constraint

resolution again because, just like heuristic solutions can

lead to other solutions, so too can standard solutions.

Finally, as shown in § 2.2, one extracted solution may lead

to the discovery of other solutions. Thus, we continue to

extract solutions for type variables until no new constraints

are generated. More precisely, the following procedure takes

H , C , and a set of all type variables V as input, and extracts

solutions until no new constraints are generated.

procedure extract_all_solutions(H , C ,V)

solutions_map = { }

repeat
for each α ∈ V do

C , sol = extract_solution(H , C , α )
solutions_map[α] = sol

until no new constraints are added to C
return solutions_map

4 Implementation
InferDL is built on top of RDL [13], an existing Ruby type

checker. In this section, we briefly describe some of the im-

plementation challenges in InferDL.

Type Checking with RDL.. RDL uses an expressive type

language, including nominal, singleton, generic, union, vari-

able, and structural types; tuple types for fixed-size arrays

and finite hash types for fixed-size hashes
2
[32]; and type-

level computations [19].

One key feature of RDL is that it performs type checking at

runtime. That is, method bodies are statically type checked,

but this checking takes place dynamically at a time specified

by the user. For example, say a programmer wanted to type

check the body of normalize_username from Figure 1a. To

do so, they could write the following RDL type annotation

above the method:

RDL.type "() → String " , typecheck: :later

This annotation is actually a call to the method RDL.type,
which stores the given type annotation in a global table. The

argument typecheck: :later associates this type annotation
with the symbol :later. After this method call, the program-

mer can choose when to call:

RDL.do_typecheck :later

to actually perform type checking of all methods associated

with the symbol :later, including normalize_username.
This approach to type checking allows RDL to handle

metaprogramming, which is ubiquitous in Ruby [31]. More-

over, this design streamlines the implementation of heuristics

in InferDL, because RDL types are runtime values that can

be computed with, as in the is_model heuristic in § 2.2.

Adding Standard Inference. InferDL extends RDL so

that inferred methods are specified with a call to RDL.infer:
RDL.infer User, ' self.normalize_username ' , time: :later

Then, when RDL.do_infer :later is called, InferDL runs type

inference to produce type annotations for any method asso-

ciated with :later.
RDL already included type variables to support paramet-

ric polymorphism. InferDL extends type variables to store

constraints as a list of upper and lower bounds on each type

variable. Then, to perform constraint generation, InferDL
modifies RDL’s type checker so that, whenever two types

are checked for subtyping, and at least one of the types is a

type variable, we store the subtyping constraint. After con-

straint generation, InferDL performs constraint resolution

and solution extraction, as explained in § 3.

Heuristics. Though heuristics are not baked-in to Infer-
DL and are thus configurable, we havewritten eight heuristics
that we found useful in practice, listed below. Recall from

§ 3.2 that heuristics are applied in a specified order. We list

heuristics in the order in which they are applied.

2
Hashes are Ruby’s implementation of heterogeneous dictionaries.
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• is_model: See § 2.2 for a description. This rule is only

used for Rails apps.

• is_pluralized_model: If a variable name is the plural-

ized version of the name of model X, then guess solu-

tionArray<X> ∪ ActiveRecord_Relation<X>. Note that
ActiveRecord_Relation is a data structure provided by

Rails that extends common array operations with some

database queries. This rule is only used for Rails apps.

• struct-to-nominal: See § 2.2 and § 3.2.

• int_names: If a variable name ends with id, count, or
num, guess solution Integer.

• int_array_name: If a variable name ends with ids,
counts, or nums, guess solution Array<Integer>.

• predicate_method: If a method name ends with ?,
guess solution%bool (RDL’s boolean type) for themethod

return type.

• string_name: If a variable name ends with name,
guess solution String.

• hash_access: Like all other values, hashes are objects

in Ruby, not built-in constructs. As such, they are ac-

cessed using the method [], and written to using the

method []=. This rule states that, if all of an argument

type variable’s upper bounds are structural types con-

sisting of the methods [] and []=, and all of the keys

given to these methods are symbols, then guess the

solution that is the finite hash type consisting of the

keys and the unions of corresponding assigned values

for these methods. For example, if an argument type

variable α had constraints α ≤ [:[]= : :id → Integer],
α ≤ [:[]= : :id → String], and α ≤ [:[]= : :name →

String], then the solution for α would be the finite

hash type { id: String ∪ Integer, name: String }. This
type says that α is a hash mapping the symbol :id to a

String or Integer, and :name to a String.

As discussed in § 3.2, InferDL treats type variables, union,
intersection, structural, and bottom and top types as overly-

general. In our implementation, we also treat Object and nil
(which were omitted from the formalism for brevity but are

almost the same as the top and bottom types, respectively)

as overly-general. In addition to nominal types, RDL also

includes several additional kinds of types that we treat as

sufficiently precise: generic types (which are parameterized

nominal types), finite hash and tuple types (which are more

precise versions of Hash and Array types), and singleton

types (such a type has only one value as an inhabitant).

Choice Types. Rubymethods often have intersection types,

which pose a challenge for type inference. Consider the Ar-
ray indexing method [], which has the following type in

RDL:

(Integer) → t ∩ (Range<Integer>)→ Array<t>

Here, t is the type parameter for the Array class. When given

an Integer index, [] returns a single element, and when given

a Range<Integer> corresponding to multiple indexes, [] re-
turns the subarray of elements at those indexes. Now con-

sider the following contrived code snippet:

def foo(x) arr = [1,2,3] ; return arr[x] + 1; end

Suppose that InferDL assigns x the type variable α . Then,
when analyzing the call arr[x], we encounter a problem:

During constraint generation, we do not know α ’s solution.
One choice would be to assume both arms of the intersection

are possible. However, then the result of the method call

would have type Integer ∪ Array<Integer>, which leads to

a type error when analyzing the larger expression arr[x] + 1,
since we cannot add an Array to an Integer.
To address this issue, we introduce choice types, a type

system feature loosely inspired by variational type check-

ing [7]. A choice type, written Choicei (τ1, . . . ,τn), repre-
sents a choice among the types τj . Each choice type also has

a label i . During inference, if one τj of a choice type would
result in a type error, then arm j is eliminated from all choice

types with the same index i .
In the example above, the call to arr[x] would result in the

constraint

(1) α ≤ Choice1(Integer,Range<Integer>)
because InferDL reasons that it has a choice between the

two input types of Array’s [] method. Additionally, the re-

turn type of arr[x] would be

(2) Choice1(Integer,Array<Integer>)
representing both possible returns. Both choice types have

the label 1, indicating that they are decided together. Then,

when type checking the call arr[x] + 1, InferDL would rec-

ognize that the Array<Integer> arm of type (2) results in a

type error, and it would eliminate that arm from both (2) and

(1). Effectively, this would retroactively make the return type

of arr[x] be the sole type Integer, and it would allow us to

infer α ’s solution as the sole type Integer. If InferDL ever
eliminates all arms of a choice type, it raises a type error.

LibraryTypes. RDL comeswith type annotations for Ruby’s

core and standard libraries, as well as for common Rails

methods and methods from Sequel, a popular framework for

database queries. However, it is common for Ruby programs

to make extensive use of other third-party libraries as well.

Typically, a type checker would require type annotations for

any such methods used in the subject program. But writing

these type annotations is burdensome and often requires

knowledge of the library’s implementation. This task is all

the more tedious in the context of type inference, where the

programmer aims to infer type annotations, not write them.

InferDL’s approach to library types avoids this issue. Dur-
ing constraint generation, if InferDL encounters a call to a

method that both lacks a type annotation and is not itself the

target of inference, InferDL finds the method definition to

determine the method’s arity. InferDL then creates a type

signature for the method with fresh type variables for the
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return and each argument. If no method definition is found,

InferDL raises a type error.

This approach is similar to type inference for a method,

except we do not generate constraints from the method body.

Thus, type inference might be unsound, producing a solution

that would be impossible if we knew the library method’s im-

plementation. However, in practice, we found this approach

was essential for allowing us to apply inference to each new

benchmark, and it also helped us discover a previously un-

known bug in one of our benchmarks (§ 5.1).

Variable Types. In addition to method types, InferDL
can infer type annotations for the three non-local kinds of

Ruby variables: global, class, and instance variables. Recall

that standard_solution (§ 3.2), used as a subroutine in

InferDL, aims to infer most general types for methods. How-

ever, observe that variables are both read from and written

to, i.e., for a field@x, there is conceptually a getter of type

⊥ → α and a setter of type α → ⊥. Notice that the α appears

both co- and contravariantly. Hence, unlike method argu-

ments and returns, it is not the case that a least or greatest

solution will always be most general.

Instead, to extend standard_solution to variables, we

take an ad-hoc approach: we take the intersection of the

upper bounds on a variable’s type when it has upper bounds

and, if not, we take the union of its lower bounds. We found

this approach works reasonably well in practice, and we

apply the same heuristic rules, with the same definition of

overly-general, as for method types.

5 Evaluation
We evaluated InferDL on four Ruby on Rails web apps:

• Journey [5] is a web app that provides a graphical

interface to create surveys and collect responses from

participants.

• Discourse [18] is an open-source discussion platform

built on Rails.

• Code.org [8] is a Rails app that powers code.org, a
programming education website.

• Talks [14] is a Rails app written by one of the authors

for sharing talk announcements.

We chose these apps because they have all been used as

type checking benchmarks in prior work [19, 31]. Thus, we

could use the previously written type annotations for these

apps as "gold standards" to compare against.We inferred type

annotations for all methods and global, class, and instance

variables for which type annotations existed in prior work.

This includes both methods (and the variables they used)

that were type checked in prior work and those that were not

checked, but were annotated to assist in the type checking

of other methods.

The only additional type annotations used were for the

special Rails params hash, which contains values that come

from a user’s browser. The params hash always maps sym-

bols to various types of objects. Without annotations, Infer-
DL typically infers that params has type Hash<K, V>, where
V was the union of all observed value types for the hash.

This effectively treats all values from the hash as belonging

to the same type, which causes false positive type errors

during inference. Rather than add type casts for these cases,

we instead used the type annotations for params from the

prior type checking work [19, 31]. In the future, we plan

to incorporate special handling of the Rails params hash to

avoid this issue.

Below, we discuss the results of our evaluation. We note

that our results are preliminary, and further work is needed

to affirm they generalize beyond our benchmarks, in partic-

ular for detecting type errors in real-world programs.

5.1 Results
Table 1 summarizes our type inference results. The first col-

umn gives the number of methods we inferred types for,

totalling 250 methods across the four apps. The subsequent

group of three columns counts the number of types we in-

ferred. The first of these columns, Meth Typs, counts the
number of method argument and return types inferred. We

count each argument and return type separately so that we

canmore precisely evaluate InferDL’s performance. The sec-

ond of these columns, Var Typs, shows the number of global,

class, and instance variable types inferred. Finally, the Total
Typs column counts the total number of types inferred, i.e.,

Meth Typs + Var Typs.
The next column shows the number of type casts we had

to write to run InferDL on each app, without which InferDL
would raise false positive type errors. Almost all of these type

casts were needed when handling heterogeneous data struc-

tures like arrays and hashes, because there are cases where

InferDL cannot determine the type of a value accessed from

one of these data structures.

The subsequent column reports InferDL’s running time

on a 2014 MacBook Pro with a 3GHz i7 processor and 16GB

RAM. We give the time as the median and semi-interquartile

range (SIQR) of 11 runs. For comparison, we provide Infer-
DL’s runtime when using the heuristics presented in § 4

(shown under “heur”), and when not using any heuristics

(shown under “std”). In total, InferDL took 31.91s to run

on all benchmarks when using heuristics, with an SIQR of

just 0.95s, indicating little variance across runs. By compari-

son, when not using any heuristics, InferDL took 8.68s to

run on all benchmarks. Upon closer examination, we found

that approximately 75% of InferDL’s runtime when using

heuristics was spent on just one rule, struct-to-nominal.

The rule involves searching through the space of all existing

classes, and for each one, searching through the names of all

its methods. This can be quite expensive for larger programs.

We found we could achieve speedups by caching search re-

sults, and by building a mapping from method names to the

code.org
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Table 1. Type inference results.

Program

Num

Meths

Meth

Typs

Var

Typs

Total

Typs

Type

Casts

Time (s)

Median ± SIQR

Correct

Meths

Correct

Vars

Correct

Total

Heuristic Uses

heur / std heur/std heur/std heur/std STN/Name/Hash

Journey 23 33 26 59 1 1.68 ± 0.05 /1.01 ± 0.09 33 / 30 19 / 13 52 / 43 0 / 13 / 0

Discourse 43 77 0 77 0 7.70 ± 0.64 /0.59 ± 0.04 61 / 47 0 / 0 61 / 47 3 / 42 / 1

code.org 74 152 12 164 4 20.1 ± 0.22 /5.01 ± 0.10 111 / 60 10 / 10 121 / 70 0 / 80 / 5

Talks 110 149 47 196 8 2.43 ± 0.04 /2.08 ± 0.15 127 /102 38 / 28 165 /130 7 / 58 / 3

Total 250 411 85 496 13 31.91 ± 0.95/8.68 ± 0.39 332 /239 67 / 51 399 /290 10 / 193 / 9

classes that implement them in advanced of running the rule.

Nevertheless, this remains an expensive operation.

The next three columns report how many types Infer-
DL inferred correctly—the same as or more precise than the

original type annotation—both with and without the use of

heuristics. To determine whether inference results were cor-

rect, we automatically counted those cases where an inferred

type matched the original annotation exactly, and we used

manual inspection when they differed. For example, if the

annotation for a type was %any (RDL’s top type), and Infer-
DL inferred Integer, we would count this as a more specific

type. In our experience, we didn’t find any case where Infer-
DL predicted a more specific type that was not an accurate

reflection of programmer intent.

The first of these columns gives the number of method ar-

gument and return types correctly inferred for heuristic and

standard inference. For example, InferDL correctly inferred

332 out of 411 total argument and return types for all apps

when using heuristics, compared to just 239 correct types

when performing standard inference. The next column gives

the number of variable types correctly inferred, and finally,

the Correct Total column gives the number of total types

inferred correctly. As shown, the use of heuristics enables

InferDL to infer about 22% more correct type annotations,

a significant improvement. We found this percentage was

fairly consistent across the benchmarks, indicating that the

heuristics we used were not specific to one app, but rather

captured some more common, general properties. We also

found this improvement was approximately the same for

types of global, class, and instance variables, and types of

method inputs/outputs, indicating our approach to variables

(discussed in § 4) is effective.

Note that inferred types which do not fall under the “Cor-

rect Types” column are not necessarily “incorrect”—typically,

these types are simply more general than the original, pro-

grammer-written annotation. For example, across the apps

there were a number of cases where InferDL inferred the

type Array<α> for some type variable α , when the program-

mer’s annotationwas a variable-free type (e.g.,Array<String>).
In our subjective experience, many types InferDL failed to

infer (with or without heuristics) were for arrays and hashes.

This is largely because RDL treats Array and Hash types

as invariant in their type parameters. This means, e.g., the

constraint Hash<String, Integer> ≤ Hash<String, Object>
is invalid, since the type parameters are not equivalent. This

leads to many potentially correct types being rejected due

to the conservatism of type invariance. We are interested in

exploring better approaches to type inference for heteroge-

neous data structures as future work.

Finally, the last column shows the number of times a

heuristic successfully found a type for each app, that is,

the heuristic’s guess was actually used as a solution. For

brevity, we present the counts for all of the six name-based

heuristics (is_model, is_pluralized_model, int_names,

int_array_name, predicate_method, and string_name)

under a single column Name, while the STN column gives

the count for struct-to-nominal, and the Hash column for

hash_access. It is clear that the name-based rules were by

far the most useful heuristics for inferring types, compris-

ing a total of 193 of the successful heuristic applications. Of

those 193 applications, 103 were of the predicate_method

rule. Overall, this suggests that variable and method names

are a strong indicator of intended types.

Error Caught. In the process of inferring types, we dis-

covered a previously unknown bug in the Journey app. This

was particularly surprising because the method it was found

in was already type checked in prior work [19]. The bug ex-

isted in the following code, which creates and saves a new

person:

begin
invitee = IllyanClient::Person.new ( :person⇒{ :email⇒email })
invitee.save
...

rescue
logger.error "Error during invite. "
...

end

The bug arises because there is no save method for the

IllyanClient::Person class, so the call invitee.save always

raises an error. Moreover, because this error exists within a

begin...rescue clause, the bug will never be directly seen at

runtime since control will always pass to the rescue clause.
The bug could potentially have been detected via manual

programmer inspection of the error log, though it never

was. We confirmed this bug with the Journey developer. This
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bug was not caught by type checking in prior work because

the programmer who wrote type annotations in that work

wrongly assumed that the IllyanClient::Person#save method

did exist. Thanks to InferDL’s handling of library types (§ 4),
the same mistake was not made here.

5.2 Case Studies
To further evaluate InferDL, we applied it to five additional

Ruby libraries and one additional Ruby app:

• Active Merchant [34], a payment abstraction library.

• Diff-LCS [40] a library for generating difference sets

between Ruby sequences.

• MiniMagick [24], an image processing library.

• Optcarrot [11], a Nintendo Entertainment System (NES)

emulator implemented in Ruby and intended as a bench-

mark for runtime performance evaluation.

• Sidekiq [25], a background job handler library.

• TZInfo [33], a time management library.

Because we do not have gold standard type annotations for

these programs, we refer to these experiments as case studies.

With the exception of Optcarrot, we picked these programs

because they are all highly popular, well-maintained, and

well-tested. We chose Optcarrot because of its intended use

as a Ruby benchmark and because, as an emulator, it relies

heavily on binary arithmetic, which distinguishes it from

other Ruby programs we looked at.

We ran inference for all methods defined in these pro-

grams, excluding methods that use features not supported

by RDL; the most common unsupported feature was mixin

methods. We also excluded methods defined in the Active

Merchant payment gateways, a set of 215 distinct payment

gateways comprising over 60,000 lines of code. Running

InferDL for this many lines of code would have required

a significant manual effort to add type casts to circumvent

false positive errors, so we decided to leave them out of our

case study. We discuss the issue of type casts further below.

Using InferDL.. It would be tedious and time-consuming

to call InferDL’s infer method (§ 4) on every method in our

subject programs. Instead, we used InferDL’s infer_file and
infer_path methods, which take a file or path, respectively,

as an argument and then call infer on every method statically

defined in that file or path. We called these methods for all

code in a program’s lib/ directory, which by convention

holds the program’s implementation (and excludes testing

code, code for handling dependencies, etc.).

The first time InferDL runs on a new subject program,

it often reports type errors. We manually inspected and ad-

dressed each type error, iterating until none remained. Over-

all, the errors found by InferDL fell into three categories:

• True errors resulting from bugs in the program. We

discuss these below.

• False positives due to InferDL’s conservatism. We in-

serted appropriate type casts to suppress these type

errors. We discuss type casts below.

• Errors resulting from features unsupported by Infer-
DL. As mentioned earlier, we exclude such methods

from future rounds of inference.

As an aside, we note that currently, it can sometimes be

difficult to find the underlying cause of a type error reported

by InferDL. If an invalid constraint is generated during res-

olution, InferDL reports the invalid constraint and the line

number origins of the left- and right-hand sides of the con-

straint. But often these constraints were generated through

a series of propagations resulting from many different places

in the code, so their origins do not always reveal the under-

lying cause. In the future, we hope to incorporate ideas from

prior work on diagnosing type inference errors [20, 21, 39].

Results. Table 2 contains the results of running Infer-
DL on the case study apps. This table includes the same

columns as Table 1, excluding the “Correct” columns. In

total, we inferred types for 1,332 methods constituting 2,525

individual arguments and returns, and 635 global, class, or

instance variables, for a total of 3,160 individual types.

We wrote 104 total type casts to run inference for these

programs, or approximately one type cast for every 30 types

we inferred. In addition to the need for type casts when ac-

cessing values from heterogeneous data structures (discussed

in § 5.1), we encountered many cases where type casts were

necessary for path-sensitive typing. For example, consider

the code snippet below, simplified from the TZInfo library:

1 index = @transitions.length
2 index.downto(0) do | i |
3 start_transition = i > 0 ? @transitions[i − 1] : nil
4 end_transition = @transitions[i]
5 offset = start_transition ? start_transition.offset

: end_transition.previous_offset
6 ...
7 end

This snippet refers to the instance variable @transitions,
which has type Array<TimezoneTransition>. On line 2, we

enter a loop for values of i=index down to i=0. On line 3,

we use Ruby’s ternary operator to conditionally assign the

variable start_transition to either a TimezoneTransition or

to nil. Then, on line 5, we use the ternary operator again, this

time with the variable start_transition as our condition. In

Ruby, the value nil is falsey. Thus, on line 5, we only evaluate

the expression start_transition.offset if start_transition is

non-nil. This call is safe, because TimezoneTransition has a

method offset defined.
However, InferDL does not know that start_transition

is non-nil because it has limited support for path-sensitive

typing. It will conservatively reason that start_transition
may be nil on line 5 and thus raise a type error. To avoid this

issue, we insert the following type cast for the call to offset:
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Table 2. Case Study Inference Results.

Program

Num

Meths

Meth

Typs

Var

Typs

Total

Typs

Type

Casts

Time (s)

Median ± SIQR

Heuristic Uses

heur / std STN/Name/Hash

Active Merchant 148 275 62 337 5 1.71 ± 0.06 /0.80 ± 0.07 29 / 103 / 0

Diff-LCS 80 187 40 227 23 2.65 ± 0.02 /2.38 ± 0.06 20 / 14 / 0

MiniMagick 79 166 13 179 7 0.57 ± 0.15 /0.26 ± 0.01 4 / 10 / 0

Optcarrot 430 763 367 1130 48 38.9 ± 2.64 /78.6 ± 17.4 204 / 22 / 1

Sidekiq 344 623 96 719 12 3.28 ± 0.56 /2.12 ± 0.13 37 / 63 / 3

TZInfo 251 511 57 568 9 3.15 ± 0.25 /5.06 ± 0.07 118 / 42 / 0

Total 1332 2525 635 3160 104 50.22 ± 3.67/89.2 ± 17.8 412 / 254 / 4

RDL.type_cast(start_transition, TimezoneTransition).offset

This notifies InferDL that start_transition is a Timezone-
Transition when offset is called. Such path-sensitive logic

enables libraries to be maximally flexible for clients. We leave

handling these cases without type casts to future work.

The next column of Table 2 reports the median time and

SIQR taken across 11 runs of InferDL, when using vs. not

using heuristics. Interestingly, on these apps InferDL actu-
ally took less total time when using heuristics compared to

not using them. This was attributable to two apps in partic-

ular, Optcarrot and TZInfo, that took 2× and 1.6× as long,

respectively, when not using heuristics. This can occur due

to the way that InferDL performs type inference. As shown

in § 3.2, InferDL will repeatedly perform constraint reso-

lution and solution extraction until no new constraints are

generated. In some cases, heuristics may lead to solutions for

type variables earlier on in this process, thereby helping to

reach a constraint set fixpoint sooner. For instance, Optcarrot

performed just 6 rounds of solution extraction when using

heuristics, compared with 15 rounds of solution extraction

when not using heuristics; for TZInfo, the numbers were 3

and 9, respectively.

Finally, we report the number of successful applications

of heuristics for inferring types. Notably, the struct-to-

nominal heuristic is far more useful for our case study pro-

grams than for the Rails apps in Table 1. It was used 412 times

when running inference for 3,160 total types in our case stud-

ies, versus just 10 times for 496 total types for the Rails apps.

This disparity is at least partly attributable to the order in

which heuristics are run (§ 4). struct-to-nominal is ap-

plied after the rules is_model and is_pluralized_model.

But the latter two rules are only used for Rails apps, meaning

struct-to-nominal is applied third for Rails apps, and first

for non-Rails apps. We tried re-running InferDL on the Rails
apps with struct-to-nominal ordered first, and found it

was applied 28 times for the Rails apps, which at least partly

closes the gap with non-Rails apps.

We also more closely examined the uses of struct-to-

nominal across all 10 programs in § 5.1 and § 5.2, and we

found that approximately 14% of the time the heuristic pro-

duced a union type, while the remainder of the time it pro-

duced just a single, nominal type. The usefulness of the pro-

duced union types varied. Sometimes, the unions were quite

sensible. For example, in the TZInfo program, struct-to-

nominal produced the type TZInfo::Timestamp ∪ Time as
the solution for a number of variables. Both the TZInfo::Time-
stamp and Time classes represent time values, and many of

TZInfo’s methods are implemented to handle objects from

both of these classes, so this is a sensible solution. In other

cases, we found that struct-to-nominal produced unions

of unrelated classes that happened to have some same-named

methods, thereby producing a solution that is less useful.

Name-based heuristics were also useful for our case stud-

ies, having been applied 254 times to infer types. However,

this clearly comprises a far smaller proportion of uses than

for the Rails apps. This may be because Rails emphasizes

the principle convention over configuration, making names

more important than in regular Ruby programs. Moreover, li-

braries are very domain-specific, and the names used in these

programs reflect their domain. For example, TZInfo features

many variables with names like time, datetime, timezone,
etc. It is challenging to write general-purpose heuristics that

can capture such domain-specific naming.

Finally, note that the hash_access rule was used only

four times across the programs in Table 2, and only nine

total times across the programs in Table 1. This is partly at-

tributable to the invariance of hashes (as discussed in § 5.1).

Though the rule was applied few times in practice, we still

believe it was useful in the cases it was used for converting

structural type solutions to a more readable finite hash type.

For example, for one type variable in the code.org app, Infer-
DL used the hash_access rule to infer the finite hash type

solution { id: Integer, email: String, gender: α } (some key/-

value pairs omitted for brevity), rather than a much larger

and more difficult to read intersection of structural types.

Errors Found. InferDL found five previously unknown

bugs in the case study programs, all of which were confirmed

with the developers:

• In Active Merchant, InferDL caught a reference to an

undefined constant Billing::Integrations.
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Table 3. Testing Implementation Choices.

Program

Choice Type

Uses

Unknown

Types

Journey 0 30

Discourse 1 33

code.org 3 20

Talks 2 56

Active Merchant 1 69

Diff-LCS 124 14

MiniMagick 1 33

Optcarrot 154 73

Sidekiq 7 82

TZInfo 14 41

Total 307 451

• In Sidekiq, InferDL caught a reference to an undefined
identifier e inside a rescue clause that was as follows:

rescue Exception ⇒ ex
...
raise e

end

The notation rescue Exception => ex catches excep-

tions of type Exception and binds the specific Ruby

exception object to ex. This rescue clause was meant to

perform some error handling (elided with the ... above)

and then raise the original error, but it erroneously

referred to an undefined e rather than ex.
• In Sidekiq, InferDL caught a reference to an undefined
constant UNKNOWN.

• In Diff-LCS, InferDL caught two different calls to an

undefined method Diff::LCS.YieldingCallbacks.
• In Diff-LCS, InferDL caught a reference to an unde-

fined constant Text::Format.

We do note that given the nature of the above bugs (unde-

fined methods, variables, and constants), it is possible that

they could be found through alternative analyses. Neverthe-

less, InferDL’s ability to catch these errors in popular and

well-tested libraries indicates it is useful not only for gener-

ating type annotations, but also for catching type errors.

5.3 Testing Implementation Choices
Finally, in § 4 we discussed two novel design features of

InferDL: the use of choice types for resolving calls to over-

loaded methods and InferDL’s handling of calls to library

methods for which we do not have types. To evaluate these

choices, we provide some relevant data in Table 3 collected

from all 10 of the programs discussed in § 5.1 and § 5.2.

For each program, the first column gives the number of

choice types used while running InferDL on the program.

As discussed in § 4, a choice type is used when type checking

a call to an overloaded method, when InferDL is not able to

determine which type of the method to use. They can help

avoid false positive type errors (and thus reduce the need for

type casts), and to infer more precise types. In total, we used

307 choice types across all benchmarks. The vast majority of

these uses were in just two programs, Diff-LCS and Optcarrot.

This is likely because these programs rely heavily on array

manipulation, and therefore make frequent use of the Array

accessing method [], which requires choice types to resolve

its overloaded method type (see § 4 for an example). Thus,

we found that the need for choice types commonly arises in

programs, but they are especially useful for programs that

make frequent use of overloaded methods.

The next column gives the number of uses of “Unknown

Types”—this is the name we give to the method types com-

posed entirely of type variables that we generate for library

methods and other methods for which we do not have a

type. In total, we used 451 unknown types across all pro-

grams. Without our approach of generating unknown types,

we would have had to write a type annotation in every one

of these cases so that InferDL could type check the pro-

grams. Thus, we believe InferDL’s approach to handling

calls to methods without a type is effective for reducing the

programmer’s annotation burden.

6 Related Work
Researchers have been studying type inference for many

decades. Traditionally, the problem is posed as follows: given

a program without type annotations, can we determine the

most general type for each expression in the program, and

rule out any type errors? The problem was first formulated

and solved by Curry and Feys [9] for the simply typed lambda

calculus. Perhaps most famously, Hindley [17], Milner [23],

and Damas and Milner [10] developed an approach known

today as Hindley-Milner-Damas type inference. Its central

algorithm, Algorithm W, works by generating constraints

on type variables, then resolving those constraints through

a process known as unification.

Later efforts by Cartwright and Fagan [6], Aiken et al. [1],

and Flanagan and Felleisen [12], among others, sought to

extend static type inference to programs written in dynamic

languages. The goal is to develop a system with the flex-

ibility of dynamic languages, but some of the correctness

guarantees of static languages. Pottier [27] more specifically

focused on type inferencce in the face of subtyping, making

use of type constraint graphs and constraint resolution rules

to put the constraints in solved form. Many of the aforemen-

tioned ideas have been incorporated into type inference sys-

tems for popular dynamic languages like JavaScript [3] and

Python [4]. To the best of our knowledge, unlike InferDL,
these systems focus exclusively on uncovering type errors

and do not generate type annotations.

Furr et al. [15] present DRuby, a static type inference sys-

tem for Ruby, which features an expressive type language

including intersection, union, optional, and structural types.

While DRuby also focuses exclusively on finding type errors
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in programs, many of the type system features it includes are

part of RDL [13], on which InferDL is built. Beyond infer-

ence alone, numerous static type systems have been explored

for Ruby and other dynamic languages. Ren and Foster [31]

explore type checking Ruby programs that use metapro-

gramming. Their central idea, to defer static type checking

until runtime, has been incorporated into RDL. Kazerounian
et al. [19] make use of type-level computations to more pre-

cisely type check Ruby programs, another idea that is now

included in RDL. More broadly, static type systems have been

explored for many dynamic languages including Racket [36],

JavaScript [29], and Python [37].

Beyond formal static analyses, a number of probabilistic

approaches to type inference have been proposed in recent

years. JSNice [30] uses probabilistic graphmodelingmethods,

such as conditional random fields, to predict JavaScript pro-

gram properties including type annotations. It is restricted

to predicting a limited set of types seen in training data.

In a similar vein, Xu et al. [38] infer types for Python pro-

grams by building probabilistic graph models that incorpo-

rate multiple sources of information such as variable names,

attribute accesses, and dataflow information. Unlike JSNice,

they train on individual programs, allowing them to predict

program-specific types. DeepTyper [16] uses bidirectional

RNNs trained on JavaScript source code to infer types from

over 11,000 types in its training dataset, while NL2Type [22]

trains an RNN exclusively on JavaScript programs’ natu-

ral language information, such as comments and identifier

names, to predict from a set of 1,000 types. TypeWriter [28]

uses a neural model to predict Python types based on natural

language and code context information, and uses a gradual

type checker to rule out incorrect types. They are limited to

predicting from a finite, configurable type vocabulary.

Similar to the above approaches, InferDL also incorpo-

rates identifier names when performing type inference. Of

course, unlike the probabilistic approaches, InferDL relies
on formal rules and thus may miss out on the complexity and

expressiveness found in natural language. However, Infer-
DL’s rule-based approach also has its advantages. For one,

this approach avoids the need for a large dataset of type

annotations, which is not readily available in Ruby. More-

over, Ruby on Rails programs emphasize convention over

configuration, which includes rigid variable/method naming

conventions—it is extremely straightforward to write heuris-

tics in InferDL that take direct advantage of such naming

conventions (e.g., the is_model heuristic). Beyond being easy

to express, InferDL’s heuristic rules are highly configurable

and not baked-in to the inference system, allowing program-

mers to remove rules that do not apply, or add new rules that

capture their own conventions. Additionally, unlike most

of the existing probabilistic approaches, InferDL is able to
predict rare and user-defined types since it is not limited to

the data in a training set. Finally, InferDL can also fall back

on inferring types based on constraint solving, which the

above approaches are unable to do.

7 Conclusion
We presented InferDL, a novel type inference system for

Ruby. In addition to uncovering type errors, InferDL aims to

produce useful type annotations for methods and variables.

Because the constraint-based approach to type inference

often results in types that are overly-general, InferDL in-

corporates heuristics that guess a solution for type variables

that better matches what a programmer would write. Infer-
DL enforces the correctness of heuristic guesses by checking

them against existing constraints. Moreover, heuristics are

not baked-in to InferDL but rather provided as code blocks,

making InferDL highly configurable.

We formalized the type and constraint language of Infer-
DL and provided the rules and procedures for resolving type

constraints, producing standard type solutions, and using

heuristics to produce more useful, sound type annotations.

We implemented InferDL on top of RDL, an existing Ruby

type checker which we extended with support for constraint

generation, heuristics, and choice types to handle overloaded

methods. We also discussed the eight heuristics we found

useful in applying InferDL to programs.

Finally, we evaluated InferDL by applying it to four Rails

apps for which we already had type annotations. We found

that, without using heuristics, we were able to correctly infer

about 58% of all type annotations for these apps, and when

using heuristics we were able to infer 80% of annotations.

We also applied InferDL to six additional case study Ruby

programs. Across the Rails apps and the case study apps,

InferDL discovered six previously unknown bugs. Thus, we

believe that InferDL is an effective type inference system

and represents a promising approach to generating useful,

correct type annotations.
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