
Maintaining Nets and Net Trees under

Incremental Motion⋆

Minkyoung Cho, David M. Mount, and Eunhui Park

Department of Computer Science
University of Maryland
College Park, Maryland

{minkcho, mount, ehpark}@cs.umd.edu

Abstract. The problem of maintaining geometric structures for points
in motion has been well studied over the years. The vast majority of the-
oretical work in this area has been based on the assumption that point
motion is continuous and the future motions of the points are known in
advance. In practice, however, motion is typically presented incremen-
tally in discrete time steps and the long-term motion of points is not
known and may not even be predictable. We consider the problem of
maintaining a data structure for storing a set of points under such incre-
mental motion. We present a simple online model in which two agents
cooperate to maintain the structure. One defines the data structure and
provides a collection of certificates, which guarantee the structure’s cor-
rectness. The other checks that the motion over time satisfies these cer-
tificates and notifies the first agent of any violations.
We present efficient online algorithms for maintaining both nets and net
trees for a point set undergoing incremental motion. We analyze our
algorithms’ efficiency by bounding their competitive ratios relative to an
optimal algorithm. Our competitive ratio is a function of the doubling
dimension of the space and (in the case of the net tree) the height of the
net tree.

1 Introduction

Motion is a pervasive concept in geometric computing. The problem of main-
taining discrete geometric structures for points in motion has been well studied
over the years. The vast majority of theoretical work in this area falls under the
category of kinetic data structures (KDS) [6]. KDS is based on the assumption
that points move continuously over time, where the motion is specified by al-
gebraic functions of time. This makes it possible to predict the time of future
events, and so to predict the precise time in the future at which the structure
will undergo its next discrete change.

In practice, however, motion is typically presented incrementally over a series
of discrete time steps by a black-box, that is, a function that specifies the locations

⋆ This work has been supported by the National Science Foundation under grant
CCR-0635099 and the Office of Naval Research under grant N00014-08-1-1015.

2 Minkyoung Cho, David M. Mount, and Eunhui Park

of the points at each time step. For example, this black-box function may be
the output of a physics integrator, which determines the current positions of
the points based on the numerical solution of a system of differential equations
[1,11]. Another example arises in the use of Markov-chain Monte-Carlo (MCMC)
algorithms such as the Metropolis-Hastings algorithm [2] and related techniques
such as simulated annealing [9].

In this paper we will consider the maintenance of nets and net trees for a set
of points. Let P denote a finite set of points in some metric spaceM, which may
be either continuous (as in Euclidean space) or discrete. Given r > 0, an r-net
for P is a subset X ⊆ P such that every point of P lies within distance r of some
point X , and no two points of X are closer than r. (We will actually work with a
generalization of this definition, which will present in Section 2.) Each point of P
can be associated with a covering point of X that lies within distance r, which is
called its representative. We can easily derive a tree structure, by building a series
of nets with exponentially increasing radius values, and associating each point
at level i−1 with its representative as parent at level i. A net tree can be viewed
as a metric generalization of hierarchical partition trees like quadtrees [13].

The net tree has a number of advantages over coordinate-based decomposi-
tions such as quadtrees. The first is that the net tree is intrinsic to the point
set, and thus the structure is invariant under rigid motions of the set. This is an
important consideration with kinetic point sets. Another advantage is that the
net tree can be defined in general metric spaces, because it is defined purely in
terms of distances. A number of papers have been written about improvements
to and applications of the above net-tree structure in metric spaces of constant
doubling dimension. (See, for example [3, 5, 7, 10].) Note that the net tree is a
flexible structure in that there may be many possible choices for the points that
form the nets at each level of the tree and the assignment of points to parents.

Although there has been much research on maintaining geometric structures
in continuous contexts, such as KDS, there has been comparatively little theo-
retical work involving efficiency of algorithms for incremental black-box motion.
Gao et al. [4] observe that their data structure (which is very similar to our
net-tree structure) can be updated efficiently in the black-box context, but they
do not consider the issue of global efficiency. A major issue here is the com-
putational model within which efficiency is to be evaluated. In the absence of
any a priori assumptions about the point motions, the time required to update
the point locations and verify the correctness of the data structure is already
Ω(|P |). With each time step the points could move to entirely new locations,
thus necessitating that the data structure be rebuilt from scratch. This need not
always be the case, however. It has been widely observed (see, e.g., [4,8,12]) that
when the underlying motion is continuous, and/or the time steps are small, the
relative point positions are unlikely to change significantly. Hence, the number
of discrete structural changes per time step is likely to be small. We desire a
computational model that allows us to exploit any underlying continuity in the
motion to enhance efficiency, without the heavy restrictions of KDS.

Maintaining Nets and Net Trees under Incremental Motion 3

We introduce such a computational model for the online maintenance of ge-
ometric structures under incremental black-box motion. Our approach is similar
to the observer-tracker model proposed recently by Yi and Zhang [14] in the
context of online tracking, and is similar in spirit to the IM-MP model of Mount
et al. [12]. Our model involves the interaction of two agents, an observer and
a builder. The observer monitors the motions of the points over time, and the
builder is responsible for maintaining the data structure. These two agents com-
municate through a set of boolean conditions, called certificates. The certificates
effectively “prove” the correctness of the current structure (exactly as they do
in KDS). Based on the initial point positions, the builder constructs the initial
structure and the initial certificates, and communicates these certificates to the
observer. The observer monitors the point motion and, whenever it detects that
a certificate has been violated, it informs the builder which certificates have
been violated. The builder then queries the new locations the points, updates
the data structure, and informs the observer of any updates to the certificate
set. An algorithm for maintaining a data structure in this model is essentially a
communication protocol between the observer and the builder. The total compu-
tational cost is defined to be the communication complexity between these two
agents. One advantage of this model is that it divorces low-level motion issues
from the principal algorithmic issues involving the design of the net structure
itself.

Our main results are efficient online algorithms for maintaining both nets
and net trees for a point set undergoing incremental motion. In each case, our
algorithm is allowed some additional slackness in the properties of the net to be
maintained. For example, while the optimal algorithm is required to maintain
all points within distance r of each net point, we allow our algorithm for nets to
maintain a covering distance of 2r for nets and 4r for net trees. (See Section 2
for the exact slackness conditions.) Because our principal motivation is in main-
taining net trees under motion, we impose the assumption that the input points
to our r-net algorithm arise from an (r/2)-net.

We establish the efficiency of our online algorithms by providing an upper
bound on the competitive ratio on the communication cost of our algorithm,
that is, the worst-case ratio between the communication costs of our algorithm
(subject to the slackness conditions) and any other algorithm (without the slack-
ness). The exact results are presented in Sections 3 and 4. Assuming that the
points are in a space of constant doubling dimension (e.g., Euclidean of con-
stant dimension), we achieve a competitive ratio of O(1) for the maintenance of
a net and O(log2 Φ) for the net tree, where Φ is the aspect ratio of the point
set (the ratio between the maximum and minimum interpoint distances). Our
online algorithm makes no a priori assumptions about the motion of the points.
The competitive ratio applies even if the optimal algorithm has full knowledge of
point motion, and it may even have access to unlimited computational resources.
The constant factors hidden by the asymptotic notation grow exponentially in
the doubling dimension of the space.

4 Minkyoung Cho, David M. Mount, and Eunhui Park

The rest of the paper is organized as follows. In the next section we present
definitions and background information. In Section 3 we present our algorithm
for maintaining a net, and in Section 4 we present our algorithm for maintaining
a net tree.

2 Preliminaries

We begin with some basic definitions, which will be used throughout the paper.
LetM denote a metric space, with associated distance function dist : M×M→
R. (This means that dist is symmetric, positive definite, and satisfies the triangle
inequality.) Throughout, we let P be a finite subset of points in some metric space
M. For a point p ∈ M and a real r ∈ R

+, let b(p, r) = {q ∈ M : dist(p, q) < r}
denote the open ball of radius r centered at p. The doubling constant of the
metric space is defined to be the minimum value λ such that every ball b in
M can be covered by at most λ balls of at most half the radius. The doubling
dimension of the metric space is defined as d = log2 λ. Throughout, we assume
thatM is a space of constant doubling dimension.

Recall that P is a finite set of points in some metric spaceM. Given r ∈ R
+,

an r-net for P [7] is a subset X ⊆ P such that, for some constant γ ≥ 1,

max
p∈M

dist(p, X) < r and min
x,y∈X

x 6=y

dist(x, y) ≥
r

γ
.

The first constraint is called the covering constraint, and the second is called
the packing constraint. Intuitively, a net defines a simple type of clustering of
the point set into balls of radius r, and each point p ∈ P can be associated
with a representative x ∈ X (denoted by rep(p)) lying within distance r. No two
representatives are closer than r. Note that the representative is not necessarily
unique. To simplify notation, henceforth, we assume that γ = 1, but our results
apply to any constant γ.

In order to establish our competitive ratio, we will need to relax the r-net
definition slightly. Given constants α, β ≥ 1, an (α, β)-slack r-net is a subset
X ⊆ P of points such that,

max
p∈M

dist(p, X) < α r and ∀x ∈ X, |{X ∩ b(x, r)}| ≤ β.

Thus, we allow each point to be farther from the closest net point by a factor
of α, and we allow net points to be arbitrarily close to each other, but there
cannot be more than β points within distance r of any net point. Clearly, an
(α, β)-slack r-net is an (α′, β′)-slack r-net for α′ ≥ α and β′ ≥ β. When we wish
to make the distinction clearer, we will use the term strict r-net to denote the
standard definition, which arises as a special case when α = β = 1.

Before introducing net trees, we first introduce the concept of the aspect ratio
(or spread) of a static point set to be the ratio of the diameter of P and the
distance between the closest pair of points in P . Since we will be dealing with
points in motion, we assume that we are two values δ and ∆, which provide a

Maintaining Nets and Net Trees under Incremental Motion 5

lower and upper bound, respectively, on the distances between any two points of
P throughout the course of the motion. We define Φ(P) to be ∆/δ. By scaling
distances, we may assume that δ = 1.

A net tree of P is defined as follows. The leaves of the tree consists of the
points of P . Note that by our assumption that δ = 1, these form a 1-net of
P itself, which we denote by P (0) = P . The tree is based on a series of nets,
P (1), P (2), . . . , P (m), where m = ⌈log2 Φ⌉, and P (i) is a (2i)-net for P (i−1). Ob-
serve that |P (m)| = 1. (More generally, we may replace 2 with any constant that
is greater than 1.) Recall that, for each p ∈ P (i−1), there is a point x ∈ P (i),
called its representative, such that dist(p, x) ≤ 2i. We declare this point to be
a parent of p, which (together with the fact that |P (m)| = 1) implies that the
resulting structure is a rooted tree. An easy consequence of the packing and
covering constraints is that the number of children of any node of this tree is a
constant (depending on the doubling constant of the containing metric space).
Our usage of the term “net tree” is not standard. There have been a number of
related data structures, based on a hierarchical collection of nets. Our definition
is based on the simplest forms of net tree [4, 10], whose height depends on the
aspect ratio. This is in contrast to more sophisticated forms given in [3, 5, 7],
which achieve height of O(log |P |), independent of the aspect ratio.

This definition can be easily generalized to assume that the nets forming each
level of the tree are (α, β)-slack nets. We refer to such a tree as an (α, β)-slack
net tree. Assuming that α and β are constants, this relaxation will affect only
the constant factors in the asymptotic complexity bounds.

Because our ultimate interest is in maintaining net trees under incremental
motion, it will be convenient to impose an additional constraint on the points P .
In a net tree, the input to the ith level of the tree is a (2i−1)-net, from which we
are to compute a 2i net. Thus, in our computation of an r-net, we will assume
that the point set P is an (r/2)-net. In addition to just moving the points, we
will also allow points to be inserted or deleted from the set at any time.

Recall that we interested in maintaining points under incremental black-
box motion. More formally, we assume that the points change locations syn-
chronously at discrete time steps T = {0, 1, . . . , tmax}. Given a point p ∈ P and
t ∈ T , we use p to refer to the point in the symbolic sense, and (when time is
significant) we use pt to denote its position at time t.

Let us now consider the certificates used in the maintenance of an r-net. In
order to maintain an (α, β)-slack r-net, the observer must be provided enough
information to verify that the covering and packing constraints are satisfied. At
any time t, let Pt denote the current point set and let Xt denote the current slack
net. We assume the incremental maintenance of any net is based on the following
two types of certificates, where the former validates the covering constraint and
the latter validates the packing constraint.

Assignment Certificate: Given p ∈ P and x ∈ X , rep(p) = x, and therefore
at each time t, dist(pt, xt) < αr.

Packing Certificate: Given x ∈ X , at each time t we have |Xt ∩ b(xt, r)| ≤ β.

6 Minkyoung Cho, David M. Mount, and Eunhui Park

The first condition requires constant time to verify. The second condition
involves answering a spherical range counting query. For the purposes of the
results presented here, it suffices to answer such queries approximately to within
a constant approximation error (which only affects the constant factors in the
analysis). Observe that O(|P |) certificates suffice to maintain the net.

3 Incremental Maintenance of a Slack Net

In this section we present an online algorithm for maintaining an r-net for a set of
points undergoing incremental motion and provide an analysis of its competitive
ratio. Given our metric space M, let β = β(M) denote the maximum number
of balls of radius r that can overlap an arbitrary ball of radius r, such that the
centers of these balls are at distance at least r from each other. We shall show in
Lemma 3 below that β ≤ λ2 = 4d, where λ is the doubling constant ofM, and
d is the doubling dimension ofM. The main result of this section is as follows.

Theorem 1. Consider any metric spaceM of constant doubling dimension, and
let β = β(M) be as defined above. There exists an incremental online algorithm,
which for any real r > 0, maintains a (2, β)-slack r-net for any point set P under
incremental motion in M. Under the assumption that P is a (2, β)-slack (r/2)-
net, the algorithm achieves a competitive ratio of at most (βλ3 + 2)(β + 2) =
O(λ7) = O(1).

The remainder of this section is devoted to proving this theorem.

3.1 Online Algorithm for Maintaining a Slack Net

In this section we present our online algorithm. The algorithm begins by in-
putting the initial placements of the points, and it communicates an initial set
of certificates to the observer. (We will discuss how this is done below.) Recall
that the observer then monitors the point motions over time, until first arriving
at a time step t when one or more of these certificates is violated or when a point
of P is explicitly inserted or deleted. It then wakes up the builder and informs
it of the current event. The builder applies the operations as described in our
algorithm below, and returns control to the observer.

Our algorithm maintains not only the points of the slack r-net, which we
denote by X , but also the assignment of each point p ∈ P to its representative
rep(p) ∈ X . For each point p ∈ P , we maintain a subset cand(p) ⊆ X , called the
candidate list.

Before describing the incremental update process, we begin with three useful
utility operations: reassignment, net-point creation, and net-point removal.

Reassign(p): If cand(p) 6= ∅, repeatedly extract elements from cand(p) until
finding a candidate x ∈ X that lies within distance 2r of p. If such a candidate
is found, set rep(p) ← x, and create a new assignment certificate involving
p and x. If no such candidate exists, invoke the net-point creation operation
for p.

Maintaining Nets and Net Trees under Incremental Motion 7

Create net point(p): We assume the precondition that cand(p) = ∅. Add p
to the current net X . Set rep(p) ← p. For each point p′ ∈ P \ {p} such
that dist(p′, p) < 2r, add p to the candidate list cand(p′). Finally, create a
packing certificate for p.

Remove net point(x): First, x is removed from both X and all the candidate
lists that contain it. Remove any packing certificate involving x. For all p ∈ P
such that rep(p) = x, invoke the reassignment operations on p.

Note that the reassignment operation generates one new assignment certifi-
cate (for p) and may create one packing certificate if p is added to X . Let us now
consider the possible actions of the builder, once the observer reports an event
(point insertion or deletion) or a certificate violation (assignment or packing).

Insert point(p): Set cand(p) to be the set of net points x ∈ X such that
dist(p, x) < 2r. Then apply the reassignment operation to p.

Delete point(p): All certificates involving p are removed. If p ∈ X , then invoke
the net-point removal operation on p. Finally, remove p from P .

Assignment-certificate violation(p): Let p be the point involved, and let
x = rep(p) be its representative. Remove x from p’s candidate list and apply
the reassignment operation to p.

Packing-certificate violation(x): Invoke net-point removal for each point of
X ∩ b(x, r).

Observe that the processing of any of the above events results in a constant
number of changes to the certificate set, and hence in order to account for the
total communication complexity, it suffices to count the number of operations
performed.

Initially, X is the empty set, and we start the process off by invoking the
insertion operation for each p ∈ P , placing it at its starting location. Observe
that after the processing of each assignment- and packing-certificate violation,
the condition causing the violation has been eliminated, and therefore we have
the following.

Lemma 1. If no certificates are currently violated, the set X maintained by the
above algorithm is a valid (2, β)-slack r-net.

3.2 Competitive Analysis for Maintaining Nets

In this section we present a competitive analysis of the computational complexity
of the online algorithm presented in the previous section. Recall that P denotes
the point set, which is in motion of some finite time period. For any time t, let
Nt(o) denote the optimal neighborhood consisting of the points of P that have o
assigned as their representative by the optimal algorithm. Our competitive anal-
ysis is based on showing that each of the operations performed by our algorithm
can be charged to some operation of the optimal algorithm, in such a manner
that each optimal operation is charged a constant number of times (depending
on the doubling dimension and associated packing lemma).

8 Minkyoung Cho, David M. Mount, and Eunhui Park

First, we present some geometric preliminaries, which will be useful later in
the analysis. Recall that λ denotes the doubling constant of the metric space.
Due to space limitations, the proofs of the lemmas are given in the appendix.

Lemma 2. Given any (α, β)-slack r-net X, at most βλlg⌈2R/r⌉ points of X can
lie within any ball of radius R.

Recall that the points of our slack r-net are assumed to arise from a slack
(r/2)-net. By the above lemma and the definition of (α, β)-slack r-net, we have
the following.

Corollary 1. Let P be an (α, β)-slack (r/2)-net and let X be an (α, β)-slack
r-net for P . Then the number of points of X (respectively, P) that lie within a
ball of radius 2kr is at most βλk+1 (respectively, βλk+2).

Our choice of β = λ2 in Theorem 1 is a direct consequence of the following
lemma.

Lemma 3. Let Z be a set of balls of radius r whose centers are taken from a
(strict) r-net. Then any ball b of radius r (not necessarily in Z) can have a
nonempty intersection with at most λ2 balls of Z.

Given the motion sequence for the point set P , let n denote the total number
of operations performed by our online slack-net algorithm, and let n∗ denote the
total number of operations processed by any correct (e.g., the optimal) algorithm.
In order to establish the competitive ratio, it suffices to show

n ≤ (βλ3 + 2)(β + 2)n∗. (1)

The remainder of this section is devoted to showing this.
Our analysis is based on a charging argument, which relates the total num-

ber of slack-net operations to the number of slack-net creations and then relates
the number of slack-net creations to the number of optimal operations. Let n∗

A,
n∗

C , n∗
R, n∗

I , and n∗
D, and denote, respectively, the total number of assignments,

net point creations, net-point removals, point insertions, and point deletions
performed by the optimal algorithm. Let nA, nC , nR, nI , and nD denote corre-
sponding quantities for our slack-net algorithm. Thus, we have

n = nA + nC + nR + nI + nD.

First, we bound the total number of assignments in terms of the number of
point insertions and slack-net creations. Changes in assignment in our algorithm
occur as a result of running of the reassignment operator. Since the assignment
is made to some point of the candidate list, it suffices to bound the total number
of insertions into candidate lists. This occurs when points are inserted and when
net points are created.

Lemma 4. nA ≤ βλ3nC + βλ2nI .

Maintaining Nets and Net Trees under Incremental Motion 9

Since point insertions and deletions must be handled by any correct algo-
rithm, we have nI = n∗

I and nD = n∗
D. The total number of net point removals

(nR) cannot exceed the total number of net point creations (nC). Thus, it suffices
to bound nC , the total number of slack-net point creations.

Before bounding nC we make a useful observation. Whenever a net point x
is created, it adds itself to the candidate list of all points that lie within distance
2r. Since (by strictness) the diameter of any optimal neighborhood is at most
2r, it follows that, in the absence of other events, the creation of net-point x
within an optimal neighborhood inhibits the creation of any other net points
within this neighborhood. Given t ≤ t′, let (t, t′] denote the interval [t + 1, t′].

Lemma 5. Let o denote an optimal net point. Suppose that no optimal assign-
ments occur to the points of N(o) during the time interval (t, t′], x ∈ N(o) is
added to X at time t, and x is not removed from X throughout (t, t′]. Then, for
any time in (t, t′] no point p ∈ N(o) will be added to X.

This implies that, without optimal assignments, each optimal net point o
can have at most one corresponding slack net point x ∈ N(o). Furthermore, if
x is removed from X (e.g., as the result of a packing-certificate violation), only
one of the points of N(o) may replace it as a slack-net point. When a net point
within an optimal neighborhood is created to replace a removed net point, we
call this a recovery. Whenever a packing-certification violation occurs, at least
β+1 slack-net points are removed. The following lemma implies that the number
of recovered net points is strictly smaller.

Lemma 6. The number of net points recovered as a result of the processing of
a packing-certificate violation is at most β.

We say that an optimal neighborhood N(o) is crowded (at some time t) if
|Nt(o) ∩ Xt| ≥ 2. Our next lemma states that whenever a packing-certificate
violation occurs, at least two of removed net points lie in the same crowded
neighborhood.

Lemma 7. Consider a packing-certificate violation which occurs in the slack
net but not within the optimal net, and let X ′ ⊆ X denote the net points that
have been removed as a result of its handling. Let O′ denote a subset of O of
overlapping neighborhoods, that is, O′ = {o | N(o) ∩ X ′}. Then, there exists at
least one optimal center o ∈ O′ such that |N(o) ∩X ′| ≥ 2.

The handling of the packing-certificate violation removes the points of X ′,
and by Lemma 5, this optimal neighborhood will recover at most one net point.
Thus, in the absence of other effects (optimal reassignment in particular) the
overall crowdedness of the system strictly decreases after processing each packing-
certificate violation. Intuitively, crowdedness increases whenever a point of the
slack net is moved from one optimal neighborhood to another. But such an event
implies that the optimal algorithm has changed an assignment. We can therefore
charge slack-net point creations to optimal assignments. The following lemma
formalizes this intuition.

10 Minkyoung Cho, David M. Mount, and Eunhui Park

Lemma 8. Each net point creation can be uniquely charged an optimal opera-
tion.

We summarize that above analysis to obtain the following bound.

Lemma 9. nC ≤ (β + 2) n∗
A + n∗

C + n∗
D.

The proof of Theorem 1 follows by combining the observations of this section
with Lemmas 4 and 9.

4 Incremental Maintenance Algorithm for Net Tree

Recall that a net tree is based on a hierarchy of nets of exponentially increasing
radius values. In particular, the points at level i are a (ri)-net of the points at
level i − 1, where ri = 2i. Recall that the height of net tree is h = ⌈lg Φ(P)⌉,
where Φ(P) is the worst-case aspect ratio of the point set. In this section we
present an efficient online algorithm for maintaining a slack net tree for a set of
points under incremental motion in a metric space M. The main result of this
section is presented below. In contrast to the results of the previous section, the
slackness parameter α in the net increases from 2 to 4 and the competitive ratio
increases by a factor of O(λh2). Recall from Section 3 that β = λ2 denotes the
maximum number of balls of radius r that can overlap an arbitrary ball of radius
r, such that the centers of these balls are at distance at least r from each other.

Theorem 2. Consider any metric space M of constant doubling dimension.
There exists an online algorithm, which maintains a (4, β)-slack net tree for
any point set P under incremental motion in M. The algorithm achieves a
competitive ratio of at most (βλ4 + βλ3 + 4)(β + 3)h2 = O(λ8h2) = O(h2).

In the next section we present the algorithm and in the following section we
present the competitive analysis of the algorithm.

4.1 Incremental Maintenance Algorithm for Net Tree

Intuitively, our algorithm for maintaining the net tree is based on applying the
algorithm of the previous section to maintain the net defining each level of the
tree. Creation and removal of net points at level will result in point insertions
and deletions at other levels of the tree. Let O(i) and X(i) denote nets at level i
of the tree generated by (strict) optimal algorithm and our slack-net algorithm,
respectively. Since X(i) is a slack ri-net of X(i−1), it will be convenient to use P (i)

as a pseudonym for X(i−1), in order to maintain symmetry with the terminology
of the previous section.

The competitive analysis of the previous section (recovery and crowdedness,
in particular) was based on the relationship between slack-net points and neigh-
borhoods of the optimal net. However, except at the leaf level, there is no reason
to believe that points of P (i) will reside in level i of the optimal net tree. Con-
sider an optimal net point o ∈ O(i). We define the optimal neighborhood, still

Maintaining Nets and Net Trees under Incremental Motion 11

denoted by N(o), to be the set of points of P lying in the leaves of the tree
that are descended from o. Because of the exponential decrease in the radius
values, it is easy to see that the descendants of o lie within distance of o of
2i + 2i−1 + · · ·+ 1 < 2i+1 = 2ri. Thus, the diameter of N(o) is at most 4ri. We
have the following result.

Lemma 10. Let o denote an optimal net point at level i. Then, for any x ∈
N(o), N(o) ⊆ b(x, 4ri) ∩ P .

This lemma implies that, if we choose any point x ∈ N(o) to be in our (4, β)-
slack net, it can be used to cover all the points of the optimal neighborhood.
This observation justifies our choice of α = 4 in Theorem 2.

Let us now consider the operations performed by our algorithm at level i.
Each operation is defined in terms of the analogous single-net operation of Sec-
tion 3.1 applied to the points at this level of the net tree. In each case the
operation may cause events to propagate to higher levels of the tree. We begin
by describing a few utility operations. Throughout i denotes the tree level at
which the operation is being applied.

Reassign(p, i): Invoke the net-reassignment operator to p for X(i), but use the
level-i net-creation operator (rather than the single-net operator).

Create net point(p, i): Invoke the net-point creation operation for p in X(i),
with one difference. The point p is added to the candidate lists of points
within distance 4ri (rather than 2ri). Invoke point insertion for p at level
i + 1.

Remove net point(x, i): Invoke the net-point removal operation for x in X(i).
Invoke a delete-point operation of x at level i + 1.

With the aid of these utility operations, we now present the actions taken by
the builder in response to the various events.

Insert point(p, i): Invoke the point insertion operation for p in P (i), but with
the following change. Set cand(p) to be the set of net points x ∈ X(i) such
that dist(p, x) < 4ri (rather than 2ri).

Delete point(p, i): Invoke the point deletion operation for p in P (i). If p ∈ X(i),
invoke an net-removal operation for p at level i.

Assignment-certificate violation(p, i): Invoke the assignment-certificate vi-
olation processing for p in P (i), but use the level-i reassignment operation
(rather than the single-net reassignment operator).

Packing-certificate violation(x, i): Invoke the packing-certificate processing
for x in X(i), but use the level-i net-point removal operation (rather than
the single-net removal operation).

Note that operations that involve the creation or removal of net points will
result in point insertion or deletion, respectively, at the next higher level of
the tree. As with single-net operations, each operation may induce addition
certificate violations. All these violations are stored in a priority queue, so that

12 Minkyoung Cho, David M. Mount, and Eunhui Park

operations are first applied to the lower levels of the tree and then propagate
upwards.

Due to space limitations, we have moved the competitive analysis for above
the net tree algorithm to the Appendix. The proof involves showing that each
of the operations performed by our algorithm can be charged to some operation
performed by the optimal algorithm, such that each optimal operation is charged
at most O(h2) times, where h is the height of the tree.

References

1. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled particle
fluids. In ACM SIGGRAPH, page 48, 2007.

2. S. Chib and E. Greenberg. Understanding the metropolis-hastings algorithm. The

American Statistician, 49:327–335, 1995.
3. R. Cole and L.-A. Gottlieb. Searching dynamic point sets in spaces with bounded

doubling dimension. In Proc. 38th Annu. ACM Sympos. Theory Comput., pages
574–583, 2006.

4. J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications.
Comput. Geom. Theory Appl., 35:2–19, 2006.

5. L.-A. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric
spaces. In Proc. 16th Annu. European Sympos. Algorithms, volume 5193/2008,
pages 478–489. Springer, 2008.

6. L. Guibas. Kinetic data structures. In D. Mehta and S. Sahni, editors, Handbook

of Data Structures and App., pages 23–1–23–18. Chapman and Hall/CRC, 2004.
7. S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics,

and their applications. SIAM J. Comput., 35:1148–1184, 2006.
8. S. Kahan. A model for data in motion. In Proc. 23rd Annu. ACM Sympos. Theory

Comput., pages 265–277, 1991.
9. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983.
10. R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity

search. In Proc. 15th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 798–
807, 2004.

11. J. J. Monaghan. Smoothed particle hydrodynamics. In Reports on Progress in

Physics, volume 68, pages 1703–1759, 2005.
12. D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu. A com-

putational framework for incremental motion. In Proc. 20th Annu. ACM Sympos.

Comput. Geom., pages 200–209, 2004.
13. H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco, 2005.
14. K. Yi and Q. Zhang. Multi-dimensional online tracking. In Proc. 20th Annu.

ACM-SIAM Sympos. Discrete Algorithms, pages 1098–1107, 2009.

A Competitive Analysis for Net Tree

We extend the proof of the competitive ratio for maintaining a single net to the
case of a net tree. The difference between the proof of net and net tree is that

Maintaining Nets and Net Trees under Incremental Motion 13

operations in the net tree can propagate events to other levels of the tree. Similar
to the analysis of competitive ratio for a net, our analysis is based on relating the
number of slack-net operations to the number of slack net-point creation events.
Then, we relate net-point creation to a corresponding optimal operation.

In order to establish Theorem 2, it suffices to show the following, where n
denotes the total number of operations executed by our slack-net algorithm and
n∗ denotes the total number of operations performed by the optimal algorithm.

n ≤ (βλ4 + βλ3 + 4)(β + 3)h2n∗.

As in the single-net analysis, let n∗
A, n∗

C , n∗
R, n∗

I , and n∗
D denote respectively

the total number of assignments, net-point creations, net-point removals, point
insertions, and point deletions performed by the optimal net-tree algorithm. Let
nA, nC , nR, nI , and nD denote corresponding quantities for our slack net-tree
algorithm.

First, we consider the total number of insertions (nI) and deletions (nD).
In contrast to the analysis of a single net, the points at level i of the slack net
tree may differ from those in the optimal tree, and hence insertions or deletions
of points may occur within at various levels within one tree but not the other.
Nonetheless, we can show the following bound on the number of these operations.

Lemma 11. nI ≤ n∗
I + nC and nD ≤ n∗

D + nC .

The following is the analog to Lemma 4, and its proof is similar.

Lemma 12. nA ≤ βλ4nC + βλ3nI .

As in the single-net case, the total number of net-point removals (nR) is
bounded by the total number of net-point creations (nC). It suffices to bound
nC . As we established in Lemma 5 for the single-net case, any optimal assignment
can generate at most one net-point creation. The same applies to each level of
the net tree. This leads to the following observation.

Lemma 13. Each optimal assignment is responsible for the creation of at most
h net-points in the slack net.

Recall that an optimal neighborhood is crowded if it contains two or more
points of the slack net. As with Lemmas 6 and 7 in the single-net case, each
packing-certificate violation results in a strict reduction in the number of crowded
optimal neighborhoods at this level of the tree.

Lemma 14. After handling a packing-certificate violation, the total number of
net points lying within crowded optimal neighborhoods decreases by at least one.

This shows that, in the absence of optimal assignments, whenever we pro-
cess a packing-certificate violation, the total number of net points of crowded
neighborhoods strictly smaller. Since each crowding event can be charged to an
optimal assignment, we have the following.

14 Minkyoung Cho, David M. Mount, and Eunhui Park

Corollary 2. The total number of packing-certificate violations is at most h·n∗
A.

Now, we consider all possible reasons that a net-point creation may occur
within the slack net tree. The analysis is essentially the same as in Lemma 8,
but there is an increase by a factor of h due to propagation.

Lemma 15. nC ≤ (β + 3)h2 · n∗
A + n∗

C + h · n∗
D.

We now summarize the results of this section to obtain the desired competi-
tive ratio.

n = nA + nC + nR + nD + nI

≤ nA + 2nC + nD + nI

≤
(

βλ3n∗
I + (βλ4 + βλ3)nC

)

+ 2nC + (n∗
D + nC) + (n∗

I + nC)

≤ (βλ3 + 1)n∗
I + (βλ4 + βλ3 + 4)

(

(β + 3)h2n∗
A + n∗

C + h · n∗
D

)

+ n∗
D

≤ (βλ4 + βλ3 + 4)(β + 3)h2n∗

This completes the proof of Theorem 2.

B Omitted Proofs

Lemma 2. Given any (α, β)-slack r-net X, at most βλlg⌈2R/r⌉ points of X can
lie within any ball of radius R.

Proof. First, we claim that for any p in the metric space, b(p, r/2) contains
at most β points of X . To see this, suppose not. Take any q ∈ b(q, r/2) ∩ X .
Clearly, b(q, r) contains b(p, r/2), and hence would contain more than β points
contradicting the fact that it is an (α, β)-slack r-net. In a metric space with
doubling constant λ, any ball of radius R can be covered by at most λlg⌈R/(r/2)⌉ =
λlg⌈2R/r⌉ balls of radius r/2. Thus, there are at most βλlg⌈2R/r⌉ points in X
within any ball of radius R. ⊓⊔

Lemma 3. Let Z be a set of balls of radius r whose centers are taken from
a (strict) r-net. Then any ball b of radius r (not necessarily in Z) can have a
nonempty intersection with at most λ2 balls of Z.

Proof. Let b′ be a ball concentric with b of radius 2r. Each ball of Z overlapping
b has its center inside b′. Let X be the set of centers of balls in Z. Since all
the points of X are separated from each other by distance r, any ball of radius
r centered at a point of X contains at most one point of X . (Recall that balls
are open.) Thus, by applying Lemma 2 (with β = 1), there can be at most
λlg⌈2·2r/r⌉ = λ2 points of X within a ball of radius 2r. ⊓⊔

Lemma 4. nA ≤ βλ3nC + βλ2nI .

Maintaining Nets and Net Trees under Incremental Motion 15

Proof. Observe that since each reassignment is made to a point in a candidate
list, nA is bounded by the total number of additions to all the candidate lists
throughout the course of the algorithm. Such an addition may occur whenever
either: (a) a net point is created or (b) a new point is inserted. Whenever a net
point x is created, it is added to the candidate lists of all points within distance
2r. Whenever a point p is inserted it adds all the net points within distance 2r
of itself to its candidate list. By Corollary 1, the number of such candidate-list
additions is at most βλ3 and βλ2, respectively. ⊓⊔

Lemma 5. Let o denote an optimal net point. Suppose that no optimal
assignments occur to the points of N(o) during the time interval (t, t′], x ∈ N(o)
is added to X at time t, and x is not removed from X throughout (t, t′]. Then,
for any time in (t, t′] no point p ∈ N(o) will be added to X.

Proof. When x is added to X at time t, x is added to the candidate lists of all
the points that lie within distance 2r of x, which includes all the points that
are currently in N(o). During the interval (t, t′], no new points are added or
removed from N(o), and x is not removed. Thus, x is a valid representative for
each p ∈ N(o). Therefore, (by our reassignment operator) no point of N(o) will
be added to X during this time interval. ⊓⊔

Lemma 6. The number of net points recovered as a result of the processing
of a packing-certificate violation is at most β.

Proof. Whenever a packing-certificate violation occurs at some point x, all the
points of X within distance r of x are removed. Consider the set O′ of optimal
centers whose neighborhoods contain one of these removed net points. Consider
the ball of radius r centered at each point of O′. By the properties of a strict
net and Lemma 2, |O′| ≤ β. By Lemma 5, at most one slack net point can be
created within each of these optimal neighborhoods. Therefore, we obtain the
desired bound. ⊓⊔

Lemma 7. Consider a packing-certificate violation which occurs in the slack
net but not within the optimal net, and let X ′ ⊆ X denote the net points that
have been removed as a result of its handling. Let O′ denote a subset of O of
overlapping neighborhoods, that is, O′ = {o | N(o) ∩ X ′}. Then, there exists at
least one optimal center o ∈ O′ such that |N(o) ∩X ′| ≥ 2.

Proof. We can assume that no optimal packing-certificate violation occurs since
optimal algorithm can avoid the packing-certificate violation simply by using
optimal assignments. Thus, assume that O′ is consistent during our operation.

A packing-certificate violation is triggered by at least β + 1 slack-net points
lying within in a ball b(x, r) for some x ∈ X , and X ′ = X ∩ b(x, r). For each
o ∈ O′, N(o)∩X ′ consists of some subset of points of X ′ that lie within the ball
b(o, r). By Lemma 3, at most β balls from O can have a nonempty intersection
with b(x, r). Clearly, therefore, at least one of these subsets contains at least two
points of X ′. ⊓⊔

Lemma 8. Each net point creation can be uniquely charged an optimal
operation.

16 Minkyoung Cho, David M. Mount, and Eunhui Park

Proof. Consider the creation of a slack-net point x at some time t and let o be
the optimal net point such that x ∈ N(o). We consider two cases. First, there
exists x′ ∈ X such that x, x′ ∈ N(o) and x′ ∈ cand(x) at some time t′ < t. (This
is a case of recovery.) Second, no such x′ exists. This can be further divided into
two subcases. First, x is the first slack-net point to appear in N(o) after o was
added to O. Second, some slack-net points in N(o) had already been added to
X , but x had never obtained any of them as its candidates. That is, from the
time that x was assigned to N(o) until time t, there had been no slack-net point
creations in N(o). More formally, we have the following cases:

1. [Recovery:] Let t′ be the latest of the following three events to occur: (1) x
is assigned to N(o), (2) x′ is assigned to N(o), and (3) x′ is added to X .
At time t′, x′ ∈ cand(x). Without loss of generality, x′ is the last element
of cand(x) ∩N(o). Since x was added to X , we know that x′ is not valid at
time t. There are three possible reasons. Either:

(a) x′ was assigned to some other optimal center o′,
(b) x′ was deleted, or
(c) x′ was removed from X .

2. (a) [Initial Creation:] x is the first slack-net point added to N(o). (Note
that this does not imply that there were no slack-net points in N(o), but
clearly any such points were not created when they were in N(o).) The
creation of x is charged to the creation of o. Clearly, this event can be
charged at most once.

(b) [x Recently Arrived:] Let t′ < t be last time such that point x′ ∈ N(o)
was added to X and suppose that x was assigned to N(o) at some time
t′′ > t′.
We observe that the optimal assignment of x generates at most one slack-
net point in N(o) (namely, x itself). Before x was added to X , it was not
a net point. Thus, x is not charged to any other net creations. Clearly,
each such optimal assignment can be charged by at most one such event.

Let us consider Case 1. Observe that each of the possible cases listed above
results in the creation of at most one new net point in N(o) by Lemma 5. The
cost of the creation of x will be charged to the operation that caused x′ to
become invalid.

Cases 1(a) and 1(b) can be charged directly to an optimal assignment or op-
timal deletion operation, respectively. Clearly this optimal operation is charged
at most once.

Finally, let us consider Case 1(c). Note that the removal of x′ is not directly
related to any optimal operation. First, we show that it is charged at most once.
After adding x to X , x becomes a candidate of all points of N(o). (That is, x takes
a role that x′ had performed in representing some of the points of N(o), since x
was the last element in cand(p)∩N(o) for all p ∈ N(o).) Thus, x′ is charged only
once in this way. We observe that a removal operation only happens during the
handling of a packing-certificate violation. During the handling of each packing-
certificate violation, we can create at most β net points by Lemma 6. Thus,

Maintaining Nets and Net Trees under Incremental Motion 17

the total number of net point creations due to Case 1(c) is bounded by β times
the total number of packing-certificate violations. Since each packing-certificate
violation satisfies the conditions of Lemma 7, we observe that the condition can
be made by only optimal assignments (see Cases 1(a) and 2(b)). Thus, the total
number of net point creations by Case 1(c) is at most β · n∗

A. ⊓⊔

Lemma 9. nC ≤ (β + 2) n∗
A + n∗

C + n∗
D.

Proof. Let nC1, nC2a, and nC2b denote the total numbers of net-point creations
arising due to cases 1, 2(a), and 2(b), respectively, as given in the proof of
Lemma 8. Clearly, nC2a is at most n∗

C and nC2b is at most n∗
A. As observed

earlier, for nC1, there are three cases. Each case bounds to the number of optimal
operations. Thus,

nC1 = n∗
A + n∗

D + β · n∗
A. (By Lemma 6 and 8)

Therefore, the total number of slack-net point creations is

nC ≤ nC1 + nC2a + nC2b

≤ (n∗
A + n∗

D + β · n∗
A) + n∗

C + n∗
A

≤ (β + 2) n∗
A + n∗

C + n∗
D

⊓⊔

Lemma 11. nI ≤ n∗
I + nC and nD ≤ n∗

D + nC .

Proof. Suppose that a point p is inserted at level i of the slack net tree. This
implies that p was added to X(i−1). Thus, the number of insertions is at least
the number of net point creations. Also, if p is inserted at the leaf level, the
optimal algorithm inserts p as well. Thus, the total number of insertions is at
most n∗

I + nC .
Similarly, suppose that a point p is deleted from level i. This implies that p is

a net point at level i−1. If p is deleted from the leaf level, the optimal algorithm
deletes p as well. Thus, the total number of deletions is at most n∗

D + nC . ⊓⊔

Lemma 12. nA ≤ βλ4nC + βλ3nI .

Proof. Because the radius increase to 4r, nA is at most βλ4nC + βλ3nI (by
Lemma 4 and Corollary 1). ⊓⊔

Lemma 13. Each optimal assignment is responsible for the creation of at
most h net-points in the slack net.

Proof. Let i denote the highest level of our slack-net tree such that p ∈ P (i). It
follows that p ∈ X(j), for all j < i. Since p ∈ X(j) may be assigned to another
optimal net point, an assignment violation may occur at the points having p as
their representative at each such level j. Such points may invoke the reassignment
operation and generate a new net point as a result. By Lemma 5 there will be at
most one such recovery per optimal neighborhood. In addition, at level i, p may
be added to X(i). Thus, the total number of net points generated by an optimal
assignment in a net tree is at most h. ⊓⊔

18 Minkyoung Cho, David M. Mount, and Eunhui Park

Lemma 14. After handling a packing-certificate violation, the total number
of net points lying within crowded optimal neighborhoods decreases by at least
one.

Proof. Let i denote the level at which the packing-certificate violation occurs. By
the same procedure as in the single-net case, we invoke the removal operation on
all the net points lying within radius r of the affected net point at level i. Recall
from Lemma 7 that in order for a packing-certificate violation to occur, there
exists at least one neighborhood that has at least two net points involved in the
violation. By Lemma 6, the total number of net points of crowded neighborhoods
will strictly decrease by at least one at level i.

Let us consider the lower and higher levels of our net tree. This handling
operation does not affect any of the levels below i since the net points are removed
from X(i) but are still in P (i). At the higher levels, some points will be deleted
due to their removal from level i. However, the deletion operation can only reduce
the number of net points. Then, during the reassignment operations (as part of
the removal operation), some net points may be created by recovery case (1(c))
or creation case (2(a)) of Lemma 8. However, these do not increase the number
of net points in crowded neighborhoods. It then invokes the insertion operation
on the next higher level. Whenever a point is inserted, the point searches nearby
net points first. It becomes a net point only if there is no net points nearby (that
is, within distance 4r). Thus, the insertion operation does not create a net point
in already crowded neighborhoods.

Thus, we have the desired bound. ⊓⊔

Lemma 15. nC ≤ (β + 3)h2 · n∗
A + n∗

C + h · n∗
D.

Proof. Let us consider case 1(c) first. A net point can be removed only as a result
of a packing-certificate violation or the explicit deletion of a point. Suppose that
at some level, the jth packing-certificate violation occurs. Then, for some kj ,
β +kj distinct net points resulted in this violation. Since the handler removes at
most β+kj times h net points, by Lemma 5, at most (β+kj)h net points will be
recovered. By Corollary 2 the sum

∑

j kj is at most h·n∗
A. Thus, the total number

of net-point creations due to case 1(c) is at most
∑

j(β +kj)h ≤ (β +1)h2 ·n∗
A.

For case 2(a), the number of net point creations is clearly at most n∗
C . For

cases 1(a), 1(b), and 2(b), the total number of net-point creations is at most h·n∗
A,

h · n∗
D, and h · n∗

A, respectively, since each operation at level i can propagate to
each of the other h levels of the tree. Thus we have

nC ≤ (β + 1)h2 · n∗
A + n∗

C + h · n∗
A + h · n∗

D + h · n∗
A

≤ (β + 3)h2 · n∗
A + n∗

C + h · n∗
D.

⊓⊔

