
Maximize expected reward

J o Efr x y
YPal.IN appffited

J ox Po x x x y

r n Poly x

u

REINFORCE Williams 1992

log trick multiply divide by

Poly x

rex y Polylx

log Poly x



remember log v

I r x y Po.ly x
logPoly x

w

u
this itself is an expectation

AJ E x y logPoly x

ynP Ix

1 Given a prompt we sample a response y

from our current model Po

2 Compute reward r x y from our

frozen reward model

3 Adjust in direction log Poly x

scaled by our reward



usually we sample 1 to 16 32

Y's per prompt to compute the update

don't generally use the raw

reward x y we usually
subtract a baseline first which
reduces variance

r x y b advantage

baseline

raw reward

if positive increase the prob

of y
if negative decrease prob of y

advantage A x y r x y b x

if A x y 0 better than usual

if A x y 0 worse than usual



batch

in Y r titi

Jcompte
X2 42 2142 as

mean

batch
reward

Yn Yn r Yn Yn

this strategy doesn't consider

prompt

to get a better estimate of b x

sample multiple y for that

use b x mean reward over 4

RLOO GRPO



Rehacking
model finds unintended ways to

maximize the reward

solutions

1 train a better rewardmodel

get more higherquality
pref data
start w a bigger LM

2 penalize large deviations

from SFT model

T.EE

Pref
To ref



use KL divergence to measure

difference between Po and Psft

D P Q E logP y1x logQly x

YNP Ix

if P and Q are equal D P Q 0

the more P places probability on responses

4 where Q doesn't place prob the

higher the KL penalty

A x y BD Pol Ps

hyperparameter that
controls strength of penalty



keydifferenesbetwen RLvsS.TT

RL's updates are scaled by the

prob of the model Po producing y
it penalizes low reward responses

that the model actually produces

SFT has no such scaling

pushing model towards y it

wouldn't currently produce


