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this itself is an expectation

AJ E x y logPoly x

ynP Ix

1 Given a prompt we sample a response y

from our current model Po

2 Compute reward r x y from our

frozen reward model

3 Adjust in direction log Poly x

scaled by our reward



usually we sample 1 to 16 32

Y's per prompt to compute the update

don't generally use the raw

reward x y we usually
subtract a baseline first which
reduces variance

r x y b advantage

baseline

raw reward

if positive increase the prob

of y
if negative decrease prob of y

advantage A x y r x y b x

if A x y 0 better than usual

if A x y 0 worse than usual



batch
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this strategy doesn't consider

prompt

to get a better estimate of b x

sample multiple y for that

use b x mean reward over 4

RLOO GRPO



Rehacking
model finds unintended ways to

maximize the reward

solutions

1 train a better rewardmodel

get more higherquality
pref data
start w a bigger LM

2 penalize large deviations

from SFT model
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use KL divergence to measure

difference between Po and Psft

D P Q E logP y1x logQly x
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if P and Q are equal D P Q 0

the more P places probability on responses

4 where Q doesn't place prob the

higher the KL penalty

A x y BD Pol Ps

hyperparameter that
controls strength of penalty



keydifferenesbetwen RLvsS.TT

RL's updates are scaled by the

prob of the model Po producing y
it penalizes low reward responses

that the model actually produces

SFT has no such scaling

pushing model towards y it

wouldn't currently produce


