


2



Linux Networking Basics

A Short Guide for a Short Course

Michael Marsh



ii



Contents

Preface v

1 Introduction 1

1.1 Terminology and References . . . . . . . . . . . . . . . . . . 1

1.2 Some Linux Basics . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Course Structure . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Network Overview 5

2.1 The OSI Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Connecting Hosts 13

3.1 Transport Layer and Multiplexing . . . . . . . . . . . . . . . 13

3.2 netcat — Simple Data Exchange . . . . . . . . . . . . . . . . 15

iii



iv CONTENTS

3.3 Standard Ports and Services . . . . . . . . . . . . . . . . . . . 18

3.4 Finding Active Ports . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Local Networking . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Examining Devices with ifconfig (The Old Way) . 23

3.5.2 Examining Devices with iproute2 (The New Way) . . 25

3.5.3 Creating Virtual Devices . . . . . . . . . . . . . . . . 26

3.6 End-to-End Connections . . . . . . . . . . . . . . . . . . . . 30

3.7 Network Namespaces . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Using Namespaces to Create Virtual Hosts . . . . . . 36

3.7.2 Routing Between Namespaces . . . . . . . . . . . . . 39

3.7.3 Network Emulation . . . . . . . . . . . . . . . . . . . 42

3.7.4 Adding Bridge Nodes . . . . . . . . . . . . . . . . . 43

4 Interactions Between Layers 47

4.1 Domain Name System . . . . . . . . . . . . . . . . . . . . . 47

4.2 Network Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Layers 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Scanning for Hosts and Ports . . . . . . . . . . . . . . . . . . 56

5 Network Programming 61

5.1 Socket Programming . . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS v

5.1.1 Creating a socket . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Socket options . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Socket addresses . . . . . . . . . . . . . . . . . . . . 64

5.1.4 Servers . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.5 Clients . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.6 Efficient Multiplexing . . . . . . . . . . . . . . . . . 75

5.2 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Reading and Writing . . . . . . . . . . . . . . . . . . 81

5.2.2 Formatting Data . . . . . . . . . . . . . . . . . . . . 83

5.2.3 Defining Messages . . . . . . . . . . . . . . . . . . . 89

6 Traffic 91

6.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Packet Capture . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 tcpdump . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Wireshark . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.3 tshark and dumpcap . . . . . . . . . . . . . . . . . 100

6.3 Extending Wireshark . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Lua Syntax Highlights . . . . . . . . . . . . . . . . . 102

6.3.2 Creating a Protocol and Defining Fields . . . . . . . . 102



vi CONTENTS

6.3.3 The Dissector . . . . . . . . . . . . . . . . . . . . . . 105

6.3.4 Dissecting the Bytes . . . . . . . . . . . . . . . . . . 106

6.3.5 Determining the Length of a Message . . . . . . . . . 109

6.3.6 Adding the Dissector to Wireshark . . . . . . . . . . . 110

6.4 Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



Preface

This book is intended as a companion for the University of Maryland course
CMSC389Z, which is a three-week Winter Term course on Network Manage-
ment and Programming in a Linux Environment. While it may be helpful out-
side of that context as a general introduction to some computer networking con-
cepts, it is not meant to be anywhere close to complete.

vii



viii PREFACE



Chapter 1

Introduction

This book was written as the text for a 3-week course Network Management
and Programming in a Linux Environment at the University of Maryland. The
material is very focused on the topics for this course, so there will necessarily
be a lot that is omitted, both in breadth and depth.

1.1 Terminology and References

Before we get into any details, let’s begin by defining some terms:

• host – This is a computer, phone, or any other device connected to a
network. We use this as a general term for anything on the network.

• network interface – This is something on a host that provides it access
to a network. Every host will have at least one of these.

• device – This is another name for a network interface. Often used because
it is shorter.

1



2 CHAPTER 1. INTRODUCTION

• traffic – This refers to data sent over a network. It will consist of many
packets implementing various protocols.

• packet –This is a discrete unit of traffic. The network operates bymoving
individual packets from their sources to their destinations.

• protocol – This is a set of messages and rules that hosts use to meaning-
fully communicate. Protocols tell hosts how to “speak” to other hosts in
a way that they will understand, and how to interpret those messages.

• network edge – This is the set of hosts that exchange data. Your phone
and laptop, as well as the web servers you connect to, are all part of the
network edge. There is some network infrastructure that is also consid-
ered part of the edge, such as your Wifi router.

• network core –This is the set of hosts that provide service for the network
edge. These are owned and managed by large Internet Service Providers,
and consist of routers (which we’ll see in Section 3.6), switches (which
we won’t discuss, but bear some similarity to routers), and some other
miscellaneous devices.

We’ll introduce other terms as needed, but these are the fundamental building
blocks of any discussion of networking. We’re going to focus on hosts at the
edge of the network, rather than the core.

You may find the following references helpful, both of which are available for
free from https://www.cs.umd.edu/∼mmarsh/books.html:

• Using the Bash Command Line – including common command-line util-
ities and scripting

• A General Systems Handbook – including numeric representations, git,
Linux system administration, and networking commands

https://www.cs.umd.edu/~mmarsh/books.html


1.2. SOME LINUX BASICS 3

If you plan to do more network programming in C, the following references
might be worth the investment:

• TCP/IP Sockets in C, by Michael J. Donahoo and Kenneth L. Calvert

• TCP Illustrated: The Protocols, Volume 1, 2nd Edition, by Kevin R. Fall
and W. Richard Stevens

• UNIX Network Programming: Networking APIs: Sockets and XTI, Vol-
ume 1, by W. Richard Stevens

1.2 Some Linux Basics

You should familiarize yourself withUsing the Bash Command Line, especially
Chapters 1 through 3, 5, 7, and 9. You will likely want to refer back to these
chapters frequently until you’ve internalized most of the information. Chapters
2, 3, and 5 of A General Systems Handbook will also be very useful, though we
will expand on the material in Chapter 5 (Network Commands) in this book.

Another important thing to note when using Linux is how files encode line
endings. There are two common ASCII characters used to indicate the end of a
line: carriage return (\r) and newline (\n). Newline is also sometimes called
line feed. You will see these abbreviated to CR in LF in much documentation.
With two different characters (representing different functions on a typewriter),
what do you use, and where?

This is where things get complicated. On Linux, line endings use newline (LF).
Macs also use newline now, but used to use carriage return (CR). Windows uses
a carriage return followed by a newline (CRLF). The CRLF encoding is also used
by ASCII-based network protocols, like HTTP.

Why do we care about this, when this is a Linux-focused course? Because
many students use Windows computers, their file editing software will produce



4 CHAPTER 1. INTRODUCTION

files with CRLF line endings. Some programs, like the C compiler, handle these
different encodings without problems. Others, like the bash shell, insist on LF
line endings. There is a helpful utility, called dos2unix, that you should install
in order to convert files. If you are writing a bash script, make sure you use
dos2unix to ensure that it has the correct line endings.

1.3 Course Structure

For the three-week course, the weeks will cover:

Week 1 Chapter 2: Network Overview, Chapter 3: Connecting Hosts, and
Chapter 4: Interactions Between Layers

Week 2 Chapter 5: Network Programming

Week 3 Chapter 6: Traffic



Chapter 2

Network Overview

In this chapter, we will explore the design of the network and the tools used to
configure and examine it. We will begin with the high-level network model,
then how pairs of hosts are connected, and finally how these are combined into
a large distributed system.

2.1 The OSI Model

To understand the design of the network, it is important to familiarize ourselves
with the Open Systems Interconnection (OSI) Model. In this model, we create
multiple layers, each of which is reponsible for a particular type of service.
These layers provide Application Programming Interfaces (APIs) to the layers
above and below them.

Within a layer, we define and implement various protocols to handle that layer’s
responsibilities. These protocols must adhere to established APIs, so that one
protocol at a layer can be replaced with another without impacting the rest of
the layers.

5



6 CHAPTER 2. NETWORK OVERVIEW

By organizing the protocols in this manner, we gain an abstraction of the net-
work. We like abstractions, because they allow us to reason about individual
components of a complex system, as well as replace pieces that no longer suit
the needs at that layer.

The OSI Model divides the network stack into seven layers:

1. Physical
This is how hosts and other devices are actually connected. Physical layer
devices include ethernet cables, RF antennas, fiber optic cables, etc. It
also includes how bits (or groups of bits) are encoded on those connec-
tions (voltages, durations, etc.).

2. Datalink (or just Link)
This defines how devices group collections of bits into messages, called
frames, each with a specified source and destination. Ethernet and WiFi
are examples of Link layer protocols. A network at this layer is generally
referred to as a subnet or local network.

3. Internetworking (or just Network)
This defines how local networks are connected in a way that allows for
world-wide communications. A single Network layer message, called a
packet, might be comprised of one or multiple Link layer frames, but a
single frame may only contain a single packet’s data. Most of the time
when we talk about the Network layer, we are talking about version 4 of
the Internet Protocol. When looking at a particular portion of the network,
we often refer to subsets of it as subnets, even if we are still referring to
the Network layer.

4. Transport
The Network layer only defines host-to-host connections. The Transport
layer adds multiplexing through at addition of ports, to support process-
to-process connections. That is the only thing that the User Datagram



2.1. THE OSI MODEL 7

Protocol (UDP) does, but the Transmission Control Protocol (TCP) adds
reliability and in-order packet delivery as well.

5. Session
Some protocols require using multiple Transport layer connections, ei-
ther on different ports of a single host or to different hosts. When this is
required, the Session layer coordinates these.

6. Presentation
This layer handles data encoding and decoding, so that the data as sent
“on the wire” is readable by the application, and vice-versa.

7. Application
This is where users interact with the network, through an interface such as
a web browser. There are many Application layer programs, both graph-
ical and command-line-based.

The Session and Presentation layers are often omitted from networking discus-
sions, because they are used either less frequently or so transparently that they
appear to be missing or part of another layer. We will limit our discussion of
these two layers by noting (this will make more sense later) that the Session
layer often appears in applications such as Voice-over-Internet-Protocol (VoIP)
which require coordination between multiple Transport-layer protocols, and the
Presentation layer is often captured in functions such as htonl.

We typically characterize connections between hosts with several quantities:

• Bandwidth This refers to the speed at which data can be written to and
read from the connection. It is typically given in terms of bits per second
(bps), with powers-of-10 prefixes such as kbps (103bps),Mbps (106bps),
and Gbps (109bps). Note that the typical byte is an octet (8 bits), so you
need to divide by 8 to obtain bytes per second, and bytes are usually ex-
pressed in powers-of-2 prefixes.



8 CHAPTER 2. NETWORK OVERVIEW

• Latency This refers to the time it takes for a single bit written at the
source to reach the destination. It is often given in milliseconds, but can
be considerably longer.

• Bit-Error Rate All physical media are imperfect, and this refers to the
average fraction (possibly, but not always, given as a percentage) of bits
transmitted that are either flipped or undiscernable at the destination. It
is often abbreviated BER. This does not include losses of data due to
overwhelming the network with more data than it can handle.

• Throughput This refers to how quickly we canmove data from its source
to its destination. Themost we could ever achieve is the connection band-
width, but this is rarely attainable. It is often helpful to consider through-
put for a specific layer, in which case the overhead of the lower layers
reduces the throughput relative to the bandwidth by predictable amounts.

• Goodput This refers to practical application-layer throughput (the good
throughput), which is what applications (and users) see.

2.2 Internet Protocol

The Internet Protocol (IP) has twomajor versions: IPv4 and IPv6. Wewill focus
on IPv4, but where appropriate we will provide analogous IPv6 information. IP
is a layer 3 (Internetworking) protocol, as you might guess from its name.

The purpose of IP is to forward data across a global network. This requires
unique addresses for all hosts on the network (though we will see how this
requirement can be loosened).

At layer 3, data is divided into packets. A packet has a header and a payload.
The payload is the actual data we are interested in delivering, while the header
provides sufficient information to move the packet through the network.



2.2. INTERNET PROTOCOL 9

IP performs two crucial functions: routing and forwarding. Routing involves
distributed protocols that allows participants to create routing tables (also called
forwarding tables). Forwarding is the method by which an IP participant deter-
mines what to do with a given packet: Is this the destination? Should the packet
be forwarded, and to whom? Should the packet be discarded (dropped)?

Hosts that perform routing and forwarding are called routers (because they route
traffic). These are only required to implement OSI layers 1–3, though many
provide extra functionality for remote administration or run on general-purpose
computers. End-hosts (such as your laptop, phone, smart thermostat, or even
some lightbulbs) can only be the source or destination for a packet — they do
not normally provide forwarding.

An example of network connection is shown in Figure 2.1. Here we have three
networks: a typical home network on the left, an Internet Service Provider (ISP)
network in themiddle, and a corporate network on the right. Solid lines are layer
1 and layer 2 connections; there might be other layer 1 devices, like repeaters,1
that are not shown. Laptop A is connected viaWiFi to aWiFi router B. From the
home network’s perspective, this router is the gateway router (GW). This router
is connected via Ethernet to an ISP edge router C. C is connected to switch D,
which is in turn connected to another switch E. E is then connected to edge
router F, which connects to the corporate gateway router G. In the corporate
network, G is connected to a switch H, which connects to the server I in the
data center. Dashed lines show the layer 3 connections, which we refer to as an
overlay on top of layer 2; this only connects the end hosts and the routers. The
dotted line is the layer 7 overlay on top of layer 3, where the only hosts are the
laptop and server. The ISP will likely refer to B and G as customer edge (CE)
routers, and C and F as provider edge (PE) routers.

1A repeater has two ports, and boosts signals from one to the other to overcome attenuation. This is like two
people in different rooms, who cannot hear one another, communicating through someone in the hallway who
repeats what each is saying for the other.



10 CHAPTER 2. NETWORK OVERVIEW

Figure 2.1: Network Diagram, including Layer 3 and 7 Overlays

2.3 Naming

Internet Protocol requires hosts to have unique names (with some caveats).
These names are 32-bit integers, or four bytes (usually referred to as octets
in networking, because there are 8 bits in each). We generally write these in
dotted-decimal notation, so while it is perfectly valid to refer to a host’s address
as 2148040452, we would generally write it as 128.8.127.4.

How do we get the dotted-decimal form? If we write 2148040452 in hexadec-
imal, it is 0x80087f04. An octet is two hexadecimal characters, so breaking
this down gives us 80 08 7f 04. If we then write these hexadecimal values
in decimal, with a dot between octets, we get 128.8.127.4.

An IP network is divided into subnets that are managed by different authorities.



2.3. NAMING 11

We specify these subnets using Classless Inter-Domain Routing (CIDR) nota-
tion. A CIDR block comprises as base address and a prefix length, separated by
a slash. The prefix length tells you how many bits in the base address specify
the subnet. That is, any address with the same first prefix-length bits as the base
address is part of the same network.

To make this clearer, let’s take a look at the subnet 128.8.0.0/16 (this is
University of Maryland’s network). Here, the /16 (read “slash-16”) tells us
that the first two octets of 128.8.0.0 specify the subnet. In this case, that’s
the 128.8 part, so any IP address beginning with 128.8 is part of this network.

Subnets can be subdivided further, and an individual host is sometimes treated
as a /32 CIDR block. Each subdivision of a network typically denotes hosts
that are physically closer together, though there are cases where this is not nec-
essarily true (such as with Virtual Private Networks). Forwarding proceeds by
moving a packet to the CIDR block containing the destination address with the
longest-possible prefix length. The forwarding table tells a router which out-
going connections can receive which CIDR blocks.



12 CHAPTER 2. NETWORK OVERVIEW



Chapter 3

Connecting Hosts

3.1 Transport Layer and Multiplexing

The simplest model for an end host is a computer with a single network con-
nection. This might be an ethernet cable, a WiFi radio, or something else. If
only one process on a host could access the network at a single time, we would
not have much of the functionality that we currently rely on. This was, in fact,
the case for many home computer users who used to use a telephone modem to
dial into a bulletin board system (BBS). To get around this limitation, we need
some way to multiplex connections over a single physical connection.

Layer 4, the Transport Layer, provides us with multiplexing through the use of
ports. You can think of ports as an additional address within the computer that
identifies not just a particular process, but a specific socket within a process.
We will discuss sockets in more detail in Chapter 5.

For our purposes, we will only consider the two most common Transport Layer
protocols for most applications: UDP and TCP. Each of these provides port-
based multiplexing. These are not the only Transport Layer protocols, and there
are even protocols that do not involve port-based multiplexing.

13



14 CHAPTER 3. CONNECTING HOSTS

UDP is the User Datagram Protocol. UDP adds a very simple header with
16-bit port numbers on the source and destination side. The destination port
enabled the destination host to pass the payload of the UDP packet, the data-
gram, to the appropriate process. While a single datagram can (but often does
not) contain multiple application-layer messages, a single messagemust be con-
tained within a single datagram. The sender port enables the receiving process
to send a reply. Otherwise, UDP adds no additional functionality.

TCP is the Transmission Control Protocol. TCP has a much more complex
header, which we will not discuss in detail here (see Chapter 6). For the mo-
ment, all that we care about is that, like UDP, it contains source and destination
ports. In addition, it contains information that allows each end to determine
when packets have been dropped, how fast data can be sent, and how to prop-
erly order the data received. Along with retransmission of dropped packets, this
means TCP provides a reliable in-order data stream.

How do we decide which of these to use in an application? If we have reason-
ably short, self-contained messages, then UDP is often sufficient. The advan-
tage of using UDP for these is that it has a much lower overhead cost than TCP.
We can add our own reliability at the application layer, if we need it. If we have
more continual data, then TCP is often a better choice, since we are guaran-
teed to have our data streamed to the application layer in the correct order with
nothing missing, and taking maximum advantage of the network connection.
However, we sometimes want to use UDP for streaming data. This typically
occurs in applications where the loss of data is less important than timely de-
livery. Consider streaming voice: If we lose a packet, we have a very small
amount of voice data that is lost, which might not even be noticeable. On the
other hand, if we require the lost packet to be detected and retransmitted, we
might end up with a very noticeable delay on the receiver’s side, which will
only grow as additional packets are dropped and retransmitted.

To summarize:

• Simple single-message protocols are often best with UDP.



3.2. NETCAT — SIMPLE DATA EXCHANGE 15

• Streaming data protocols where reliability is important are often best with
TCP.

• Streaming data protocols where latency is important are often best with
UDP.

3.2 netcat — Simple Data Exchange

You are hopefully familiar with the cat command, which reads data from stan-
dard input or specified files and concatenates it to standard output. There is a
network version of this, called netcat. While you would not ordinarily use this
to, say, browse the web, it can be very helpful when testing a new protocol or
implementation.

There are two programs commonly referred to as netcat: nc and ncat. Which
one you have installed depends on your operating system. ncat is provided by
nmap.org, as source code or binary for most operating systems. The options
differ slightly, and even basic usage depends on which version you are using.

Let’s begin by using netcat as a simple web browser. Specifically, we are going
to use it to do a search using Google for “netcat”. Here, the two versions are
almost the same. Either of the following will work:

nc www.google.com 80

ncat www.google.com 80

Both of these connect to the host www.google.com on port 80 (the standard
port for HTTP), and then wait for input. Run one of these, and then type:

GET /search?q=netcat

https://nmap.org/ncat/


16 CHAPTER 3. CONNECTING HOSTS

and hit Enter or Return. You should see the raw HTML returned by Google.
Here we see the first difference: nc will exit immediately after receiving the
response, while ncat will wait for additional input.

Netcat can operate as a client or a server. A server is a program that waits
for connections requesting its service, and responds to them; a web server is
probably the most familiar to people currently. The programs connecting to
those servers are clients; think of a web browser. We will start with netcat as a
client (as we did above), but first let’s look at some general options common to
both client and server operation.

Option Meaning Notes
-4 Use only IPv4
-6 Use only IPv6
-u Create UDP connections The default is TCP
-v Verbose output

We have seen some basic client operation already. The client behavior can be
summarized as:

1. Connect to a server.

2. Send a message.

3. Wait for a response.

The options we provide affect this behavior. We have already seen the -u op-
tion, to make a UDP connection instead of a TCP connection. As a client, you
must always supply a hostname and a port (www.google.com and 80, in our
previous example). While there are client-specific options, you are less likely
to use them. See the manpage for your particular version of netcat for details.

While it is possible to use netcat as a client generally, it is more useful for
debugging servers. Since many protocols are binary, you will often want to
store themessages to send in files, and redirect them using the shell’s < operator:



3.2. NETCAT — SIMPLE DATA EXCHANGE 17

nc example.com 1234 < message

This is also useful for text-based protocols, to save typing.

Just as running netcat as a client is useful for debugging servers, running netcat
as a server can help you debug clients. It is also useful if you just need to capture
messages from a client. Wewill see other ways to capture message in Chapter 6,
but if all you need is the application-layer payload, a netcat server could be all
that you need.

There are more options for running a server, and this is where the differences
between nc and ncat are more noticeable.

Option Meaning Notes
-l Listen for connections Basic server option

-p <port> Listen on port <port> Only for ncat, nc just takes the port
as a regular option

-k Keep the socket open Don’t exit after the initial client dis-
connects

Here are examples of how youwould start a netcat server listening on port 1234:

nc -l 1234

ncat -l -p 1234

If you run either of these and then run (in a separate terminal)

nc 127.0.0.1 1234

you can type on one terminal and see it appear on the other. This works in either
direction. When you close one side (with Ctrl-C or Ctrl-D), both sides will
close.



18 CHAPTER 3. CONNECTING HOSTS

3.3 Standard Ports and Services

There are a lot of common network protocols, such as HTTP, SMTP (email),
SSH, and DNS. Whether they use TCP or UDP, these have standardized ports
that all applications supporting those protocols should use by default. If you’re
implementing one of these applications, you need to know these standard ports.
Additionally, you might be logging attempted connections to your host, and
want to know what possible attackers are attempting to connect to.

On Posix systems, such as Linux or MacOS, these standard ports are enumer-
ated in the file /etc/services. A typical line might look like

http 80/tcp www www-http # World Wide Web HTTP

The first column tells us the protocol, which in this case is HTTP (Hypertext
Transfer Protocol). The next column tells us the port (80) and layer 4 protocol
(TCP) for this service. The remainder of the line contains common names for
the service, with general comments following the # comment character.

You are not likely to need to refer to this very often, but it is useful to know
where to find this information if you need it.

3.4 Finding Active Ports

The typical modern operating system has a lot of services running that receive
messages over the network. It also tends to send a lot of messages, both for
user-initiated actions as well as background tasks. All of these employ network
ports, so it is useful to be able to see what ports are in use.

The standard Linux command to view ports is netstat. Technically, this



3.4. FINDING ACTIVE PORTS 19

shows the sockets that are in use, which can include local (non-network) sock-
ets. The simplest usage is

root@efcc0d32f10f:/# netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type State I-Node Path

This is running on a docker container with no active connections. It does, how-
ever, have services listening:

root@efcc0d32f10f:/# netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 localhost:mysql *:* LISTEN

tcp 0 0 *:http *:* LISTEN

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node Path

unix 2 [ ACC ] STREAM LISTENING 53476 /var/run/mysqld/mysqld.sock

The -a flag tells netstat to list all sockets, whether there are active con-
nections or not. We can see that there are two network sockets running, and
one Unix (non-network) socket. The first network socket is listening for con-
nections from localhost only, on the standard TCP port used by MySql. The
second network socket is listening for HTTP connections from anywhere over
TCP.

If we look in /etc/services, we can find out what these ports are:

root@efcc0d32f10f:/# grep mysql /etc/services

mysql 3306/tcp

mysql 3306/udp

mysql-proxy 6446/tcp # MySQL Proxy

mysql-proxy 6446/udp

root@efcc0d32f10f:/# grep http /etc/services

# Updated from http://www.iana.org/assignments/port-numbers and other

# sources like http://www.freebsd.org/cgi/cvsweb.cgi/src/etc/services .



20 CHAPTER 3. CONNECTING HOSTS

http 80/tcp www # WorldWideWeb HTTP

http 80/udp # HyperText Transfer Protocol

https 443/tcp # http protocol over TLS/SSL

https 443/udp

http-alt 8080/tcp webcache # WWW caching service

http-alt 8080/udp

We can identify the relevant lines (exact service match, and TCP) as

mysql 3306/tcp

http 80/tcp www # WorldWideWeb HTTP

This is a bit cumbersome, so we will add the -n flag, to leave numbers as num-
bers, and not look them up:

root@efcc0d32f10f:/# netstat -an

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node Path

unix 2 [ ACC ] STREAM LISTENING 53476 /var/run/mysqld/mysqld.sock

Here we see not only that the ports are given numerically, but so are localhost
(127.0.0.1) and * (0.0.0.0). This will also tend to be faster, especially
once we are dealing with remote connections, where we would have to perform
a reverse DNS lookup to map IP addresses to host names.

We can also limit ourselves to TCP sockets:

root@efcc0d32f10f:/# netstat -ant

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN



3.4. FINDING ACTIVE PORTS 21

UDP sockets:

root@efcc0d32f10f:/# netstat -anu

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

or both:

root@efcc0d32f10f:/# netstat -antu

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

We can also request the process name and ID for the sockets:

root@efcc0d32f10f:/# netstat -antup

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 479/apache2

We do not always get this information, though.

An important thing to note is that we can list the arguments separately or com-
bined, and the order does not matter:

root@efcc0d32f10f:/# netstat -a -n -t -u

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

root@efcc0d32f10f:/# netstat -aunt

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN



22 CHAPTER 3. CONNECTING HOSTS

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

root@efcc0d32f10f:/# netstat -tuna

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

root@efcc0d32f10f:/# netstat -taun

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

It is also worth noting that some versions of netstat behave slightly differ-
ently. On MacOS, for example, the -u flag specifies Unix sockets, not UDP.

We can also see what an active connection looks like:

root@efcc0d32f10f:/# nc localhost 80

root@efcc0d32f10f:/# netstat -taun

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:80 127.0.0.1:35226 SYN_RECV

tcp 0 0 127.0.0.1:35226 127.0.0.1:80 ESTABLISHED

The first command is run in a separate shell. We can see that there are two new
sockets, one on port 80 that has received a connection from port 35226 and
another on port 35226 that has established a connection to port 80. A normal
interaction via a web browser would have both of these sockets in the ESTAB-
LISHED state, which is part of the TCP protocol.

Argument Meaning
-a Show all sockets
-t Show TCP sockets
-u Show UDP sockets
-n Show numbers, not names
-p Show PID and process name



3.5. LOCAL NETWORKING 23

3.5 Local Networking

Local networking is handled primarily by layer 2, the datalink layer. Linux
interacts with layer 2 through devices. These might be Ethernet cards, WiFi
radios, cellular radios, or even internal virtual devices. In practice, we need to
know very little about the layer 2 specifics, since the Linux kernel abstracts this
for us. Since applications more directly work with layer 3, we will also see how
this interacts with layer 2 at the local level.

3.5.1 Examining Devices with ifconfig (The Old Way)

We can examine all of the existing devices on our system with the command
ifconfig. By default, it will only show the active devices. The -a option will
list all devices. Here is an example, from the cmsc389z docker image:

crow@d1b9b82f7557:/$ ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)

RX packets 15 bytes 1226 (1.2 KB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

loop txqueuelen 1000 (Local Loopback)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

crow@d1b9b82f7557:/$

crow@d1b9b82f7557:/$ ifconfig -a

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)

RX packets 15 bytes 1226 (1.2 KB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ip6tnl0: flags=128<NOARP> mtu 1452

unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)

RX packets 0 bytes 0 (0.0 B)



24 CHAPTER 3. CONNECTING HOSTS

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

loop txqueuelen 1000 (Local Loopback)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

tunl0: flags=128<NOARP> mtu 1480

tunnel txqueuelen 1000 (IPIP Tunnel)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Consider the following lines for eth0 (Ethernet device 0):

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255

ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)

The first line tells us that the device is “up” and “running”, meaning it is ready
to send and receive traffic. It also tells us that the device supports both broad-
cast (send a message to every host on the local network) and multicast (send
a message to a specific set of hosts, possibly on other networks). Further, it
tells us that this device supports data frames up to 1500 bytes (the Maximum
Transmission Unit, or MTU).

The second line tells us the internet address for this device — each device will
have its own address. It also specifies a netmask, which we can use to identify
IP addresses on this same local network by performing a bitwise-AND of the
address and netmask. If these values are equal, then they are on the same subnet.
The broadcast address is the highest address in the subnet, and messages sent
to this address will be delivered to the entire subnet.

The third line tells us the layer 2 (ether) address for the device. This is of-
ten called the MAC (Media Access Control) address. While IP addresses are



3.5. LOCAL NETWORKING 25

written in dotted-quad format, MAC addresses are written in colon-separated
hexadecimal, where the colons separate individual bytes.

3.5.2 Examining Devices with iproute2 (The New Way)

While ifconfig is a useful command to know, and still commonly referenced,
we are not going to use it further. There is a newer networking package called
iproute2, that was introduced in 2006, and this is what we will use. The primary
command in this package is ip, which has a number of subcommands. We will
begin with the ip link subcommand, which is analogous to ifconfig:

crow@d1b9b82f7557:/$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ipip 0.0.0.0 brd 0.0.0.0

3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/tunnel6 :: brd ::

496: eth0@if497: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

We can look at a specific device with ip link show:

crow@d1b9b82f7557:/$ ip link show eth0

496: eth0@if497: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

We can see most of the information that ifconfig eth0would show us, with
additional information. Some of this will make more sense soon.

What we do not see is the layer 3 information. We can view this with ip ad-
dress show:

crow@d1b9b82f7557:/$ ip address show eth0

496: eth0@if497: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0

valid_lft forever preferred_lft forever

Now we see the rest of the information we looked at for ifconfig, but instead
of a netmask, we get the IP address in CIDR notation.



26 CHAPTER 3. CONNECTING HOSTS

We can see additional layer 3 information for our local network with the ip
route subcommand:

crow@475283dd6ec2:/$ ip route

default via 172.17.0.1 dev eth0

172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.2

This tells us that the default route, for anything not specified by an explicit
route, is using the gateway router with address 172.17.0.1, and which is
reachable via the eth0 device. Further, it tells us that any destination in the
172.17.0.0/16 CIDR block is reached via the eth0 device, and our source
address for this is 172.17.0.2. Note that this is the same address that appears
in ip address show eth0.

3.5.3 Creating Virtual Devices

At the beginning of this chapter, we mentioned virtual devices at layer 2. The
most common virtual device is loopback, and you might have noticed this in the
output of ifconfig and ip link. The device name is usually lo or lo0. This
is a virtual device for delivering layer 3 traffic between processes on the same
host, which has the special name localhost. It has a much simpler frame
structure than Ethernet, and is extremely fast (high bandwidth, low latency).

There are other virtual devices often found on a host. Tunnels provide virtual
devices that encapsulate data from one protocol in another, either to translate
between protocols (like forwarding IPv6 packets through an IPv4 network) or to
make traffic appear to flow through a different local network (such as a Virtual
Private Network). Virtual devices are also used to move data between a virtual
machine or container’s network and the host’s network.

We can create our own virtual devices using the ip link command by adding
a new link of type veth (virtual ethernet). This must be done as the root user,
as must most of the rest of the commands in this section.



3.5. LOCAL NETWORKING 27

root@eaa156967336:/# ip link add v0 type veth peer name v1

root@eaa156967336:/# ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ipip 0.0.0.0 brd 0.0.0.0

3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/tunnel6 :: brd ::

6: v1@v0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff

7: v0@v1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

The ip link add command adds a new device, in this case named v0. We
specify veth as the type, which then requires us to define a peer device locally,
which we name v1 with the peer name argument. Note that we now have
two devices, which are shown as v0@v1 and v1@v0. The actual device name
is given before the @, and the peer device is given after the @:

root@eaa156967336:/# ip link show v0

7: v0@v1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

What have we actually done here? We have essentially created a virtual ethernet
cable (Figure 3.1). Technically, we have actually created a cable with a virtual
NIC on either end, but this cable analogy will help us understand the structure
we are building.



28 CHAPTER 3. CONNECTING HOSTS

Figure 3.1: A Network Cable

These devices are, by default, created in the down state. That is, they are not
ready to send or receive data. In order to do this, we must first add IP addresses
to the devices:

root@eaa156967336:/# ip addr show v0

7: v0@v1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

root@eaa156967336:/#

root@eaa156967336:/# ip addr add 1.2.3.4/32 dev v0

root@eaa156967336:/# ip addr show v0

7: v0@v1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

inet 1.2.3.4/32 scope global v0

valid_lft forever preferred_lft forever

We see that initially there is no address set for device v0. We then run ip

addr add, after which the address has been set. Note that we have to specify



3.5. LOCAL NETWORKING 29

the address as a /32 CIDR block, and the device is given as the last option.
Now we can bring the link up:

root@eaa156967336:/# ip link set v0 up

root@eaa156967336:/# ip link show v0

7: v0@v1: <NO-CARRIER,BROADCAST,MULTICAST,UP,M-DOWN> mtu 1500 qdisc noqueue state LOWERLAYERDOWN mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

We cannot send data through this device until the other end of the link, the peer
v1, has also been configured and brought up:

root@eaa156967336:/# ip addr add 1.2.3.5/32 dev v1

root@eaa156967336:/# ip link set v1 up

root@eaa156967336:/# ip addr show v1

6: v1@v0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff

inet 1.2.3.5/32 scope global v1

valid_lft forever preferred_lft forever

At this point, we essentially have connected the two devices as shown in Fig-
ure 3.2. We will see how to add forwarding routes to these devices and make
them behave like physical links in Section 3.7.



30 CHAPTER 3. CONNECTING HOSTS

Figure 3.2: Connecting Devices

3.6 End-to-End Connections

We have already seen how we can use netcat to send data across a connection,
and this is certainly one way verify that a network connection is active. That
requires a specific application to run at each end, however, so it is more a test
of a data protocol than connectivity.

If what we want to test is whether it is possible to send any data between two
hosts, we want something lower-level that is (almost) always present. Fortu-



3.6. END-TO-END CONNECTIONS 31

nately, there is a protocol that can help us with this, called the Internet Control
Message Protocol, or ICMP.

ICMP has a number of uses. Mostly, it is used by the network to signal prob-
lems, such as a subnet or host being unreachable. All hosts implementing IP
must also implement at least some of the ICMP protocol. It also has a pair of
messages called Echo Request and Echo Response. We collectively refer to
these as ping.

We can use the command ping to send a series of ICMP Echo Requests to a
remote host, and wait for the corresponding responses. ping sends a packet
every second, and records the round-trip-time (RTT) which is the sum of the
one-way latencies. It also keeps track of how many requests do not receive
responses, providing a measure of the packet loss on the connection.

root@eaa156967336:/# ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=37 time=18.8 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=37 time=21.5 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=37 time=11.5 ms

64 bytes from 8.8.8.8: icmp_seq=4 ttl=37 time=13.4 ms

64 bytes from 8.8.8.8: icmp_seq=5 ttl=37 time=13.8 ms

64 bytes from 8.8.8.8: icmp_seq=6 ttl=37 time=16.1 ms

64 bytes from 8.8.8.8: icmp_seq=7 ttl=37 time=19.9 ms

64 bytes from 8.8.8.8: icmp_seq=8 ttl=37 time=20.6 ms

64 bytes from 8.8.8.8: icmp_seq=9 ttl=37 time=13.0 ms

64 bytes from 8.8.8.8: icmp_seq=10 ttl=37 time=16.2 ms

64 bytes from 8.8.8.8: icmp_seq=11 ttl=37 time=18.4 ms

64 bytes from 8.8.8.8: icmp_seq=12 ttl=37 time=19.3 ms

--- 8.8.8.8 ping statistics ---

12 packets transmitted, 12 received, 0% packet loss, time 11037ms

rtt min/avg/max/mdev = 11.514/16.865/21.451/3.187 ms

Since the RTT varies from packet to packet, ping presents some statistics at the
end. Roughly 60% of packets are expected to have RTTs within one standard
deviation (mdev) of the average (avg). We can also limit the number of ping
requests with the -c option. See the documentation for more details.

Not all hosts will respond to ping requests, so sometimes we will see 100%
packet loss:



32 CHAPTER 3. CONNECTING HOSTS

root@eaa156967336:/# ping 2.3.4.5

PING 2.3.4.5 (2.3.4.5) 56(84) bytes of data.

--- 2.3.4.5 ping statistics ---

7 packets transmitted, 0 received, 100% packet loss, time 6162ms

In this case, we do not know whether there is no host with address 2.3.4.5,
whether it is not responding to pings, or if there is a problem with the connec-
tion.

We have another tool that can shed some light on this, called traceroute.
This takes advantage of a field in the IP header called Time-to-Live, or TTL.
Each router that receives a packet decrements the value of this field, and if
it reaches 0 the packet is discarded. The main purpose of this is to prevent
packets from propagating indefinitely in the event of a routing loop. This occurs
when a router A forwards a packet to destination d, and some router B further
along the forwarding path sends it back to A. When the TTL reaches 0, the
router discarding the packet sends an ICMP TTL Exceeded message back to
the source.

How does traceroute use the TTL? It begins by sending a packet to the des-
tination with a TTL of 1. This causes the first router to send a TTL Exceeded
message back, which includes the router’s IP address as the source. It then
increases the initial TTL by 1, in order to learn the IP address of the second
router. This continues until either the destination responds or a certain number
of failures are observed.

root@eaa156967336:/# traceroute 8.8.8.8

traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets

1 172.17.0.1 (172.17.0.1) 2.479 ms 0.016 ms 0.006 ms

2 Fios_Quantum_Gateway.fios-router.home (192.168.1.1) 4.587 ms 4.861 ms 5.249 ms

3 lo0-100.WASHDC-VFTTP-368.verizon-gni.net (72.83.250.1) 15.181 ms 14.913 ms 14.952 ms

4 100.41.32.46 (100.41.32.46) 21.881 ms 21.711 ms 23.656 ms

5 0.ae1.GW16.IAD8.ALTER.NET (140.222.3.87) 24.254 ms 0.ae2.GW16.IAD8.ALTER.NET (140.222.3.89) 15.191 ms 0.ae1.GW16.IAD8.ALTER.NET (140.222.3.87) 24.418 ms

6 204.148.170.158 (204.148.170.158) 23.847 ms 9.642 ms 9.502 ms

7 * * *

8 142.251.70.110 (142.251.70.110) 12.857 ms dns.google (8.8.8.8) 11.014 ms 10.285 ms

What we see on each line is the TTL, the IP address (and possibly hostname) of
the router at that distance, and then three round-trip times. Why three? Because



3.6. END-TO-END CONNECTIONS 33

traceroute actually repeats each distance probe three times, to show the sta-
tistical variation. We also sometimes see multiple router addresses on a line.
That is because there are often multiple paths from a source to a destination, so
we do not always see the same routers along the way. This also means that just
because two routers appear on adjacent lines in the traceroute output, that
does not mean they are directly connected.

Let’s see our failed ping:

root@eaa156967336:/# traceroute 2.3.4.5

traceroute to 2.3.4.5 (2.3.4.5), 30 hops max, 60 byte packets

1 172.17.0.1 (172.17.0.1) 0.073 ms 0.013 ms 0.009 ms

2 Fios_Quantum_Gateway.fios-router.home (192.168.1.1) 9.976 ms 10.308 ms 10.273 ms

3 lo0-100.WASHDC-VFTTP-368.verizon-gni.net (72.83.250.1) 22.969 ms 23.104 ms 23.118 ms

4 100.41.32.44 (100.41.32.44) 23.456 ms 100.41.32.46 (100.41.32.46) 23.730 ms 23.492 ms

5 0.ae1.GW12.IAD8.ALTER.NET (140.222.234.27) 24.603 ms 0.ae2.GW12.IAD8.ALTER.NET (140.222.234.29) 23.815 ms 0.ae1.GW12.IAD8.ALTER.NET (140.222.234.27) 24.313 ms

6 63.88.105.94 (63.88.105.94) 23.912 ms 11.488 ms *

7 81.52.166.172 (81.52.166.172) 113.875 ms 108.002 ms *

8 ae324-0.ffttr7.frankfurt.opentransit.net (193.251.240.102) 103.174 ms 104.060 ms 103.430 ms

9 * * *

10 * * *

29 * * *

30 * * *

Each * represents a packet sent for which no response was received. The lines
with * * * received no responses from those TTL values. We have omitted
most of these. From this, we can see that the last router to receive our packet
was 193.251.240.102. So, what does this tell us? That depends on what we
know about the destination and the router. We will revisit this in Chapter 4.

There is an important consideration when looking at these IP addresses. We
noted in Section 3.5 that every device on a host has its own IP address. A
router has many network devices, and the IP address we see is for the device
that received the packet and decremented the TTL to 0. That is, what we are
learning are the “near-end” IP addresses of the router. It is entirely possible that
the router at 193.251.240.102 has another device in, say, 2.3.0.0/16.



34 CHAPTER 3. CONNECTING HOSTS

3.7 Network Namespaces

We have looked at the network stack (there is still a lot left to explore), and
seen how each host on the network has its own stack. Linux also allows us
to have multiple independent network stacks on the same host. It does this
using network namespaces. Much like namespaces in programming languages,
network namespacesmake their devices (objects) visible only to other processes
(methods) and devices within the same namespace.

The ip netns subcommand manages network namespaces in Linux. You can
view the existing namespaces:

root@eaa156967336:/# ip netns

root@eaa156967336:/# ip netns show

root@eaa156967336:/#

These commands are equivalent, and you can see that, by default, there are no
namespaces defined.

We can add a namespace with ip netns add:

root@eaa156967336:/# ip netns add foo

root@eaa156967336:/# ip netns

foo

We can also delete them with ip netns del:

root@eaa156967336:/# ip netns del foo

root@eaa156967336:/# ip netns

root@eaa156967336:/#

Any program can be run in a namespace using ip netns exec:



3.7. NETWORK NAMESPACES 35

root@eaa156967336:/# ip netns add foo

root@eaa156967336:/# ls

bin dev home lib32 libx32 mnt proc run srv tmp var

boot etc lib lib64 media opt root sbin sys usr

root@eaa156967336:/# ip netns exec foo ls

bin dev home lib32 libx32 mnt proc run srv tmp var

boot etc lib lib64 media opt root sbin sys usr

What does this show us? It shows that we are in the same filesystem, with
access to all of the files and programs. Let’s look at something that differs:

root@eaa156967336:/# ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ipip 0.0.0.0 brd 0.0.0.0

3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/tunnel6 :: brd ::

6: v1@v0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff

7: v0@v1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

root@eaa156967336:/#

root@eaa156967336:/# ip netns exec foo ip link

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ipip 0.0.0.0 brd 0.0.0.0

3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/tunnel6 :: brd ::

If we are not in the namespace, we have all of our normal devices (including the
veth link we created before). In the namespace, we have fewer, all of which
are down.

We can run ping on the loopback address 127.0.0.1:

root@eaa156967336:/# ping -c 3 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.045 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.091 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.094 ms

--- 127.0.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2060ms

rtt min/avg/max/mdev = 0.045/0.076/0.094/0.022 ms

root@eaa156967336:/# ip netns exec foo ping -c 3 127.0.0.1

ping: connect: Network is unreachable



36 CHAPTER 3. CONNECTING HOSTS

Herewe see that in the foo namespace, we are unable to ping ourselves, because
the lo device is down.

root@eaa156967336:/# ip netns exec foo ip link set lo up

root@eaa156967336:/# ip netns exec foo ping -c 3 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.050 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.087 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.109 ms

--- 127.0.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2027ms

rtt min/avg/max/mdev = 0.050/0.082/0.109/0.024 ms

Now that lo is up, we can ping over loopback.

3.7.1 Using Namespaces to Create Virtual Hosts

We are going to see how to use network namespaces to create a testbed. This
is an emulated network in a controlled environment, which can be an essential
part of debugging and testing a network protocol. To do this, we are going to
create a separate namespace for every virtual host in our testbed. We will then
add links between them, configure routing, and even set link characteristics to
control bandwidth, latency, and packet loss.

To start, we want a second namespace, which we will call bar:

root@eaa156967336:/# ip netns add bar

root@eaa156967336:/# ip netns

bar

foo

We will need to bring the lo device up in namespace bar before we can send
any packets. Recall that we have two virtual devices, v0 and v1, connected as
a virtual ethernet link.



3.7. NETWORK NAMESPACES 37

root@eaa156967336:/# ip link show type veth

6: v1@v0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff

7: v0@v1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff

16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

root@eaa156967336:/# ip netns exec foo ip link show type veth

root@eaa156967336:/# ip netns exec bar ip link show type veth

Our two namespaces have no virtual devices in them. Going back to our phys-
ical analogy, we now think of the Raspberry Pi and router as separate names-
paces (virtual hosts). The cable is not yet connecting them (Figure 3.3).

Figure 3.3: Devices Not Yet Connected

We can move devices between namespaces with another option to ip link
set:



38 CHAPTER 3. CONNECTING HOSTS

root@eaa156967336:/# ip link set v0 netns foo

root@eaa156967336:/# ip link set v1 netns bar

root@eaa156967336:/# ip link show type veth

16: eth0@if17: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0

root@eaa156967336:/# ip netns exec foo ip link show type veth

7: v0@if6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff link-netns bar

root@eaa156967336:/# ip netns exec bar ip link show type veth

6: v1@if7: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff link-netns foo

Nowwe see that v0 is no longer in the default namespace, but is instead in foo,
and similarly v1 is in bar. This is sometimes called “throwing the device over
the wall” into the namespace, because you no longer have access to it from the
initial (default) namespace.

In the foo namespace, the link v0 is unconfigured:

root@eaa156967336:/# ip netns exec foo ip addr show v0

7: v0@if6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff link-netns bar

The same is true of v1 in bar. Let’s add addresses to the devices and bring
them up:

root@eaa156967336:/# ip netns exec foo ip addr add 1.2.3.4/32 dev v0

root@eaa156967336:/# ip netns exec bar ip addr add 1.2.3.5/32 dev v1

root@eaa156967336:/# ip netns exec foo ip link set v0 up

root@eaa156967336:/# ip netns exec bar ip link set v1 up

root@eaa156967336:/# ip netns exec foo ip addr show v0

7: v0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000

link/ether 16:b6:e1:98:ed:b9 brd ff:ff:ff:ff:ff:ff link-netns bar

inet 1.2.3.4/32 scope global v0

valid_lft forever preferred_lft forever

inet6 fe80::14b6:e1ff:fe98:edb9/64 scope link

valid_lft forever preferred_lft forever

root@eaa156967336:/# ip netns exec bar ip addr show v1

6: v1@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000

link/ether 66:59:d5:2d:62:7b brd ff:ff:ff:ff:ff:ff link-netns foo

inet 1.2.3.5/32 scope global v1

valid_lft forever preferred_lft forever

inet6 fe80::6459:d5ff:fe2d:627b/64 scope link

valid_lft forever preferred_lft forever

At this point, we once again have the virtual equivalent of Figure 3.2, but now
the Pi and router are virtual hosts.



3.7. NETWORK NAMESPACES 39

3.7.2 Routing Between Namespaces

At this point, we have devices in foo and bar with addresses 1.2.3.4 and
1.2.3.5, and the devices are up and available for traffic. What we do not yet
have is a way for Linux to know how to use these devices. We add this by
modifying the routing tables for the namespace.

Since foo and bar are directly connected by a single veth link, we can do this
fairly simply with the ip route add command:

root@eaa156967336:/# ip netns exec foo ip route add 1.2.3.5/32 dev v0 proto static scope global src 1.2.3.4

root@eaa156967336:/# ip netns exec bar ip route add 1.2.3.4/32 dev v1 proto static scope global src 1.2.3.5

root@eaa156967336:/# ip netns exec foo ip route

1.2.3.5 dev v0 proto static src 1.2.3.4

root@eaa156967336:/# ip netns exec bar ip route

1.2.3.4 dev v1 proto static src 1.2.3.5

There is a lot going on here. ip route add takes a CIDR prefix for the des-
tination, which in this case is just the address of the other end of the link, the
device through which to send traffic to this destination, some “standard” op-
tions, and then the source address to attach to traffic forwarded through this
table entry. After doing this for both namespaces, we can see that we now have
routing tables with the routes we just created.

The proof of the routing is in the pinging, so let’s give it a try:

root@eaa156967336:/# ip netns exec foo ping -c 3 1.2.3.5

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

64 bytes from 1.2.3.5: icmp_seq=1 ttl=64 time=0.023 ms

64 bytes from 1.2.3.5: icmp_seq=2 ttl=64 time=0.075 ms

64 bytes from 1.2.3.5: icmp_seq=3 ttl=64 time=0.107 ms

--- 1.2.3.5 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2040ms

rtt min/avg/max/mdev = 0.023/0.068/0.107/0.034 ms

We have a working network!

Our network is not terribly useful, though. Let’s add a third namespace, baz,
and connect it to bar.



40 CHAPTER 3. CONNECTING HOSTS

ip netns add baz

ip netns exec baz ip link set lo up

ip link add v2 type veth peer name v3

ip link set v2 netns bar

ip link set v3 netns baz

ip netns exec bar ip addr add 1.2.3.5/32 dev v2

ip netns exec baz ip addr add 1.2.3.6/32 dev v3

ip netns exec bar ip link set v2 up

ip netns exec baz ip link set v3 up

ip netns exec bar ip route add 1.2.3.6/32 dev v2 proto static scope global src 1.2.3.5

ip netns exec baz ip route add 1.2.3.5/32 dev v3 proto static scope global src 1.2.3.6

What does our network now look like?

root@eaa156967336:/# ip netns exec foo ip route

1.2.3.5 dev v0 proto static src 1.2.3.4

root@eaa156967336:/# ip netns exec bar ip route

1.2.3.4 dev v1 proto static src 1.2.3.5

1.2.3.6 dev v2 proto static src 1.2.3.5

root@eaa156967336:/# ip netns exec baz ip route

1.2.3.5 dev v3 proto static src 1.2.3.6

What about connectivity?

root@eaa156967336:/# ip netns exec foo ping -c 3 1.2.3.5

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

64 bytes from 1.2.3.5: icmp_seq=1 ttl=64 time=0.046 ms

64 bytes from 1.2.3.5: icmp_seq=2 ttl=64 time=0.101 ms

64 bytes from 1.2.3.5: icmp_seq=3 ttl=64 time=0.044 ms

--- 1.2.3.5 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2041ms

rtt min/avg/max/mdev = 0.044/0.063/0.101/0.026 ms

root@eaa156967336:/# ip netns exec foo ping -c 3 1.2.3.6

ping: connect: Network is unreachable

root@eaa156967336:/# ip netns exec bar ping -c 3 1.2.3.4

PING 1.2.3.4 (1.2.3.4) 56(84) bytes of data.

64 bytes from 1.2.3.4: icmp_seq=1 ttl=64 time=0.022 ms

64 bytes from 1.2.3.4: icmp_seq=2 ttl=64 time=0.271 ms

64 bytes from 1.2.3.4: icmp_seq=3 ttl=64 time=0.362 ms

--- 1.2.3.4 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2035ms

rtt min/avg/max/mdev = 0.022/0.218/0.362/0.143 ms

root@eaa156967336:/# ip netns exec bar ping -c 3 1.2.3.6

PING 1.2.3.6 (1.2.3.6) 56(84) bytes of data.

64 bytes from 1.2.3.6: icmp_seq=1 ttl=64 time=0.061 ms

64 bytes from 1.2.3.6: icmp_seq=2 ttl=64 time=0.074 ms

64 bytes from 1.2.3.6: icmp_seq=3 ttl=64 time=0.079 ms

--- 1.2.3.6 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2045ms

rtt min/avg/max/mdev = 0.061/0.071/0.079/0.007 ms

root@eaa156967336:/# ip netns exec baz ping -c 3 1.2.3.4

ping: connect: Network is unreachable

root@eaa156967336:/# ip netns exec baz ping -c 3 1.2.3.5



3.7. NETWORK NAMESPACES 41

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

64 bytes from 1.2.3.5: icmp_seq=1 ttl=64 time=0.039 ms

64 bytes from 1.2.3.5: icmp_seq=2 ttl=64 time=0.073 ms

64 bytes from 1.2.3.5: icmp_seq=3 ttl=64 time=0.099 ms

--- 1.2.3.5 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2056ms

rtt min/avg/max/mdev = 0.039/0.070/0.099/0.024 ms

From this, we can see that foo and bar can ping each other, as can bar and
baz. foo and baz, however, cannot.

If we look at our routing tables again, we can see at least part of what the prob-
lem is: foo has no forwarding rule that applies to the address 1.2.3.6, and
baz has no forwarding rule that applies to the address 1.2.3.4. We can add
these, and see what changes:

ip netns exec foo ip route add 1.2.3.0/24 dev v0 proto static scope global src 1.2.3.4

ip netns exec baz ip route add 1.2.3.0/24 dev v3 proto static scope global src 1.2.3.6

Now we examine our routing tables and try to ping:

root@eaa156967336:/# ip netns exec foo ip route

1.2.3.0/24 dev v0 proto static src 1.2.3.4

1.2.3.5 dev v0 proto static src 1.2.3.4

root@eaa156967336:/# ip netns exec baz ip route

1.2.3.0/24 dev v3 proto static src 1.2.3.6

1.2.3.5 dev v3 proto static src 1.2.3.6

root@eaa156967336:/# ip netns exec foo ping -c 3 1.2.3.6

PING 1.2.3.6 (1.2.3.6) 56(84) bytes of data.

From 1.2.3.4 icmp_seq=1 Destination Host Unreachable

From 1.2.3.4 icmp_seq=2 Destination Host Unreachable

From 1.2.3.4 icmp_seq=3 Destination Host Unreachable

--- 1.2.3.6 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2085ms

pipe 3

We still cannot connect foo and baz, but why not? When bar receives a packet
through device v1with a destination of 1.2.3.6, it does not actually know that
it is supposed to forward it further. That means it just ignores the packet, and
it goes no further. Instead, we need bar to act as a bridge between devices v1



42 CHAPTER 3. CONNECTING HOSTS

and v2. Without bridging, we would have to have point-to-point links between
all hosts in our network (called amesh network). This will work, but it becomes
unmanageable, and is not appropriate for all testing situations. We will look at
adding bridges, but first we are going to take a look at something useful even
in small mesh networks.

3.7.3 Network Emulation

One of the additional programs in iproute2 is tc, which implements traffic con-
trol. There is a lot you can do with this, but we are going to limit ourselves to
simple queueing discplines (qdisc). We can add a queueing discipline to a
device with

ip netns exec foo tc qdisc add dev v0 root handle 1:0 netem

This adds a new qdisc to foo’s v0 device, and configures it for network emu-
lation (netem). We can then update the qdisc to emulate real network behav-
iors:

ip netns exec foo tc qdisc change dev v0 root netem delay 10ms rate 1Mbit loss random 30

Now the v0 device in the foo namespace will send traffic with a latency of
10ms, a bandwidth of 1Mbps, and will randomly drop 30% of the packets. This
is one-way, so if we ping bar:

root@eaa156967336:/# ip netns exec foo ping -c 5 1.2.3.5

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

64 bytes from 1.2.3.5: icmp_seq=2 ttl=64 time=11.4 ms

64 bytes from 1.2.3.5: icmp_seq=3 ttl=64 time=13.5 ms

64 bytes from 1.2.3.5: icmp_seq=5 ttl=64 time=14.2 ms

--- 1.2.3.5 ping statistics ---

5 packets transmitted, 3 received, 40% packet loss, time 4086ms

rtt min/avg/max/mdev = 11.365/13.014/14.210/1.204 ms



3.7. NETWORK NAMESPACES 43

We see RTTs slightly over 10ms because of the bandwidth limit. If we lower
the bandwidth to 100kbps, this becomes more pronounced:

root@eaa156967336:/# ip netns exec foo tc qdisc change dev v0 root netem delay 10ms rate 100kbit loss random 30

root@eaa156967336:/# ip netns exec foo ping -c 5 1.2.3.5

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

64 bytes from 1.2.3.5: icmp_seq=2 ttl=64 time=18.2 ms

64 bytes from 1.2.3.5: icmp_seq=3 ttl=64 time=18.4 ms

64 bytes from 1.2.3.5: icmp_seq=4 ttl=64 time=18.4 ms

64 bytes from 1.2.3.5: icmp_seq=5 ttl=64 time=18.0 ms

--- 1.2.3.5 ping statistics ---

5 packets transmitted, 4 received, 20% packet loss, time 4147ms

rtt min/avg/max/mdev = 18.002/18.249/18.442/0.167 ms

We are not seeing precisely 30% packet loss, because of the small sample size.
If we increase this:

root@eaa156967336:/# ip netns exec foo ping -q -c 20 1.2.3.5

PING 1.2.3.5 (1.2.3.5) 56(84) bytes of data.

--- 1.2.3.5 ping statistics ---

20 packets transmitted, 14 received, 30% packet loss, time 19757ms

rtt min/avg/max/mdev = 18.259/19.568/22.042/1.315 ms

The -q flag makes ping “quiet”, printing only the summary at the end.

3.7.4 Adding Bridge Nodes

At this point, we can create mesh networks with realistic network link emula-
tion. We still do not have actual packet forwarding, however, so now it is time
to revisit bridging. Within the Linux kernel, a bridge device allows externally
facing devices, like our veth endpoints, to interact through the routing table.1

The old way to create a bridge was with the brctl command. Here are the
steps to do this:

1Technically, we can configure the system to forward received packets if it is not the destination. This method
gives us more control, however, and demonstrates some additional commands.



44 CHAPTER 3. CONNECTING HOSTS

ip netns exec bar brctl addbr br0

ip netns exec bar ip addr add dev br0 local 1.2.3.5

ip netns exec bar ip link set dev br0 up

ip netns exec bar brctl addif br0 v1

ip netns exec bar brctl addif br0 v2

After executing these commands, we can communicate between foo and baz!

root@eaa156967336:/# ip netns exec foo ping -c 3 1.2.3.6

PING 1.2.3.6 (1.2.3.6) 56(84) bytes of data.

64 bytes from 1.2.3.6: icmp_seq=1 ttl=64 time=33.6 ms

64 bytes from 1.2.3.6: icmp_seq=2 ttl=64 time=19.3 ms

--- 1.2.3.6 ping statistics ---

3 packets transmitted, 2 received, 33.3333% packet loss, time 2009ms

rtt min/avg/max/mdev = 19.326/26.444/33.563/7.118 ms

The iproute2 package has a bridge command that replaces brctl, and has
additional functionality. We actually do not even need this to create a simple
bridge, as the ip command can do the basic configuration”

ip netns exec bar ip link add name br0 type bridge

ip netns exec bar ip link set dev br0 up

ip netns exec bar ip link set dev v1 master br0

ip netns exec bar ip link set dev v2 master br0

This begins by creating a new device (br0) of type bridge. Once we have
brought the device up, we can set our virtual devices v1 and v2 as subordinate
to br0 with the master property. We can see the bridge configuration with:

root@eaa156967336:/# ip netns exec bar bridge link show

6: v1@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state forwarding priority 32 cost 2

9: v2@if8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state forwarding priority 32 cost 2

Now we can create an arbitrary2 number of virtual hosts, with realistic for-
warding tables and link characteristics. This allows us to test protocols in a

2If you try to create too many, you might crash your system, but you should be able to manage 1000.



3.7. NETWORK NAMESPACES 45

wide variety of network configurations, including those that involve network
failures or attacks.



46 CHAPTER 3. CONNECTING HOSTS



Chapter 4

Interactions Between Layers

We have mostly looked at the OSI model’s layers independently, but when was
the last time you typed an IP address into your web browser, not to mention
a sequence of MAC addresses? Instead, we present a reasonable name at an
appropriate layer, and rely on additional network services to convert this to the
address used by the layer below or above.

4.1 Domain Name System

Let’s start with the one you are likely to see many times every day. This book
is currently hosted on a server with IP address 128.8.127.4, but you almost
certainly did not provide this address directly to your browser. Instead, you
would have entered (or followed a link to) www.cs.umd.edu. This human-
friendly name is not routable by the network, so we need to get the associated
IP address. How does this work?

The Domain Name System (DNS) is a globally distributed database. Its pri-
mary (but not only) function is to provide mappings between fully qualified
domain names (FQDNs, such as www.cs.umd.edu) and IP addresses (such as

47



48 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

128.8.127.4). Domain names are organized hierarchically, beginning with
the top-level domains (TLDs), and delegating to registries. The TLDs are de-
fined and managed by the Internet Corporation for Assigned Names and Num-
bers (ICANN), as are the country-code domains (such as .us).

Most applications that take FQDNs (ie, hostnames) perform DNS lookups au-
tomatically. You can do this from the command line, as well, which is often
useful. Some systems still use an old program called nslookup for this, but
that has largely been deprecated in favor of the programs host and dig.

Most of the time, host is the program you want to use. Given a FQDN, it will
tell you the IP address or addresses associated with it:

� 12:58:45 389Z $ host www.cs.umd.edu

www.cs.umd.edu is an alias for www-hlb.cs.umd.edu.

www-hlb.cs.umd.edu has address 128.8.127.4

In this case, the FQDN www.cs.umd.edu is an alias for another FQDN, www-
hlb.cs.umd.edu, so host retrieves the address record for this as well. You
can also perform reverse lookups, where you ask for the FQDN matching an IP
address:

� 13:00:47 389Z $ host 128.8.127.4

4.127.8.128.in-addr.arpa domain name pointer www-hlb.cs.umd.edu.

Here we actually perform a special DNS lookup in the in-addr.arpa domain,
with the order of the quads reversed. The reason for this is that FQDNs begin
with the host-specific part of the name and end with the top-level domain, but IP
addresses begin with the largest network segment and end with the host-specific
part of the address. Not all IP addresses will have a reverse entry.

When you want to resolve a FQDN, you first contact your local resolver, also
called aDNS server. The resolver should be set for you automatically when you



4.1. DOMAIN NAME SYSTEM 49

join the network if you are using DHCP (Dynamic Host Configuration Proto-
col), which you almost always are. This local resolver maintains local informa-
tion and a cache of retrieved DNS database records, and will recursively contact
other resolvers for you if it does not know the requested information.

We are using “FQDN” rather than “hostname” deliberately here. While a FQDN
is a hostname, a hostname might not be a FQDN. In particular, a host on your
local network could be known simply by its short hostname, such as www (on
the CS department’s network):

� 13:00:51 389Z $ host www

www.cs.umd.edu is an alias for www-hlb.cs.umd.edu.

In this case, the local host appends its known domain to the requested hostname
to obtain the FQDN for the DNS request.

There is another program called dig that does substantially the same thing. The
main difference is in the information displayed:

� 13:43:15 389Z $ dig www.cs.umd.edu

; <<>> DiG 9.10.6 <<>> www.cs.umd.edu

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12444

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;www.cs.umd.edu. IN A

;; ANSWER SECTION:

www.cs.umd.edu. 11373 IN CNAME www-hlb.cs.umd.edu.

www-hlb.cs.umd.edu. 83373 IN A 128.8.127.4

;; Query time: 32 msec

;; SERVER: 10.72.14.49#53(10.72.14.49)

;; WHEN: Tue Nov 08 13:48:48 EST 2022

;; MSG SIZE rcvd: 81



50 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

We have been given a lot more information here, including all of the options
that were included in the request and a detailed breakdown of the response.
Comparing what we saw in the output from host, an alias is resolved through
a CNAME (“Canonical Name”) DNS record, while an address is resolved through
an A (“Address”) record. The number that appears after the FQDN (which tech-
nically ends in a dot, though you would not provide that as part of a hostname)
is the time to live for this record. Unlike the TTL of an IP packet, this TTL is
measured in seconds, and is how long the record may be cached before it ex-
pires and should be retrieved again. In this case, www.cs.umd.edu should be
checked again in a little over 3 hours to make sure it is still an alias for www-
hlb.cs.umd.edu, which itself should be checked in almost 14 hours to see if
its IP address has changed.

4.2 Network Blocks

As with the DNS hierarchy, the IP address space is also managed as a hierarchy.
The largest network blocks (netblocks) are assigned by the Internet Assigned
Numbers Authority (IANA), and those blocks are then subdivided by their re-
spective owners. Some of this is publicly available, though as networks are
divided into ever-smaller subnets, this information becomes purely internal.

We can learn a good deal about both domains and netblocks with the whois
program, which queries yet another distributed database. Here is an example
of a domain registration lookup:

� 14:17:29 389Z $ whois umd.edu

% IANA WHOIS server

% for more information on IANA, visit http://www.iana.org

% This query returned 1 object

refer: whois.educause.edu

domain: EDU

organisation: EDUCAUSE



4.2. NETWORK BLOCKS 51

address: 282 Century Place, Suite 5000

address: Louisville, CO 80027

address: United States

contact: administrative

name: Information Services Administration

organisation: EDUCAUSE

address: 4772 Walnut Street, Suite 206

address: Boulder Colorado 80301

address: United States

phone: +1-303-449-4430

fax-no: +1-303-440-0461

e-mail: netadmin@educause.edu

contact: technical

name: Registry Customer Service

organisation: VeriSign Global Registry

address: 12061 Bluemont Way

address: Reston Virginia 20190

address: United States

phone: +1-703-925-6999

fax-no: +1-703-948-3978

e-mail: info@verisign-grs.com

nserver: A.EDU-SERVERS.NET 192.5.6.30 2001:503:a83e:0:0:0:2:30

nserver: B.EDU-SERVERS.NET 192.33.14.30 2001:503:231d:0:0:0:2:30

nserver: C.EDU-SERVERS.NET 192.26.92.30 2001:503:83eb:0:0:0:0:30

nserver: D.EDU-SERVERS.NET 192.31.80.30 2001:500:856e:0:0:0:0:30

nserver: E.EDU-SERVERS.NET 192.12.94.30 2001:502:1ca1:0:0:0:0:30

nserver: F.EDU-SERVERS.NET 192.35.51.30 2001:503:d414:0:0:0:0:30

nserver: G.EDU-SERVERS.NET 192.42.93.30 2001:503:eea3:0:0:0:0:30

nserver: H.EDU-SERVERS.NET 192.54.112.30 2001:502:8cc:0:0:0:0:30

nserver: I.EDU-SERVERS.NET 192.43.172.30 2001:503:39c1:0:0:0:0:30

nserver: J.EDU-SERVERS.NET 192.48.79.30 2001:502:7094:0:0:0:0:30

nserver: K.EDU-SERVERS.NET 192.52.178.30 2001:503:d2d:0:0:0:0:30

nserver: L.EDU-SERVERS.NET 192.41.162.30 2001:500:d937:0:0:0:0:30

nserver: M.EDU-SERVERS.NET 192.55.83.30 2001:501:b1f9:0:0:0:0:30

ds-rdata: 28065 8 2 4172496CDE85534E51129040355BD04B1FCFEBAE996DFDDE652006F6F8B2CE76

whois: whois.educause.edu

status: ACTIVE

remarks: Registration information:

remarks: http://www.educause.edu/edudomain

created: 1985-01-01

changed: 2020-12-10

source: IANA

# whois.educause.edu



52 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

This Registry database contains ONLY .EDU domains.

The data in the EDUCAUSE Whois database is provided

by EDUCAUSE for information purposes in order to

assist in the process of obtaining information about

or related to .edu domain registration records.

The EDUCAUSE Whois database is authoritative for the

.EDU domain.

A Web interface for the .EDU EDUCAUSE Whois Server is

available at: http://whois.educause.edu

By submitting a Whois query, you agree that this information

will not be used to allow, enable, or otherwise support

the transmission of unsolicited commercial advertising or

solicitations via e-mail. The use of electronic processes to

harvest information from this server is generally prohibited

except as reasonably necessary to register or modify .edu

domain names.

-------------------------------------------------------------

Domain Name: UMD.EDU

Registrant:

University of Maryland

Division of Information Technology

Bldg 224, Room 3309-C

College Park, MD 20742

USA

Administrative Contact:

Domain Admin

University of Maryland

Division of Information Technology

Bldg 224, Room 3309-C

College Park, MD 20742-2411

USA

+1.3014053003

dnsadmin@noc.umd.edu

Technical Contact:

University of Maryland

Office of Information Technology

Network Operations Center

College Park, MD 20742

USA

+1.3014053003

dnstech@noc.umd.edu



4.2. NETWORK BLOCKS 53

Name Servers:

NS1.UMD.EDU

NS2.UMD.EDU

NS.UMS.EDU

Domain record activated: 31-Jul-1985

Domain record last updated: 26-Sep-2022

Domain expires: 31-Jul-2023

This is very long, and includes both the top-level (EDU-DOM) registration and a
recursive lookup in EDUCAUSE’s system. In both cases, we get DNS resolvers
(name servers) and points of contact. It has become increasingly common for
some of this information to be hidden, particularly for smaller domains.

whois can also tell us the CIDR block for an address, and who owns that block:

� 14:26:04 389Z $ whois 128.8.127.4

% IANA WHOIS server

% for more information on IANA, visit http://www.iana.org

% This query returned 1 object

refer: whois.arin.net

inetnum: 128.0.0.0 - 128.255.255.255

organisation: Administered by ARIN

status: LEGACY

whois: whois.arin.net

changed: 1993-05

source: IANA

# whois.arin.net

NetRange: 128.8.0.0 - 128.8.255.255

CIDR: 128.8.0.0/16

NetName: UMDNET-1

NetHandle: NET-128-8-0-0-1

Parent: NET128 (NET-128-0-0-0-0)

NetType: Direct Allocation

OriginAS: AS27

Organization: University of Maryland (UNIVER-262-Z)

RegDate: 1984-08-01

Updated: 2021-12-14

Ref: https://rdap.arin.net/registry/ip/128.8.0.0



54 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

OrgName: University of Maryland

OrgId: UNIVER-262-Z

Address: Office of Information Technology

Address: Patuxent Building

City: College Park

StateProv: MD

PostalCode: 20742

Country: US

RegDate: 2010-01-06

Updated: 2010-01-06

Ref: https://rdap.arin.net/registry/entity/UNIVER-262-Z

OrgTechHandle: UM-ORG-ARIN

OrgTechName: UMD DNS Admin Role Account

OrgTechPhone: +1-301-405-9955

OrgTechEmail: dnsadmin@noc.net.umd.edu

OrgTechRef: https://rdap.arin.net/registry/entity/UM-ORG-ARIN

OrgAbuseHandle: UARA-ARIN

OrgAbuseName: UMD Abuse Role Account

OrgAbusePhone: +1-301-405-8787

OrgAbuseEmail: abuse@umd.edu

OrgAbuseRef: https://rdap.arin.net/registry/entity/UARA-ARIN

RAbuseHandle: UARA-ARIN

RAbuseName: UMD Abuse Role Account

RAbusePhone: +1-301-405-8787

RAbuseEmail: abuse@umd.edu

RAbuseRef: https://rdap.arin.net/registry/entity/UARA-ARIN

RNOCHandle: UM-ORG-ARIN

RNOCName: UMD DNS Admin Role Account

RNOCPhone: +1-301-405-9955

RNOCEmail: dnsadmin@noc.net.umd.edu

RNOCRef: https://rdap.arin.net/registry/entity/UM-ORG-ARIN

RTechHandle: UM-ORG-ARIN

RTechName: UMD DNS Admin Role Account

RTechPhone: +1-301-405-9955

RTechEmail: dnsadmin@noc.net.umd.edu

RTechRef: https://rdap.arin.net/registry/entity/UM-ORG-ARIN



4.3. LAYERS 2 AND 3 55

4.3 Layers 2 and 3

Consider the routing table we saw before:

crow@475283dd6ec2:/$ ip route

default via 172.17.0.1 dev eth0

172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.2

This tells us that all of our outgoing packets should, by default, be sent through
the router with address 172.17.0.1. When we are assembling the ethernet
frame, we need to provide a MAC address, but that is not the information we
have. How do we get the MAC address for an IP address on our local network?

The Address Resolution Protocol (ARP) allows us to learn these mappings, just
as DNS allows us to learn the mappings between FQDNs and IP addresses.
It works by broadcasting a message that says, “Who has this IP address I’m
looking for? Please respond to me.” This is flooded through the local network
until it reaches the host with that address, which then responds with its MAC
address. The requesting host caches this information so that it does not need to
send another ARP request for this IP address until the cache entry expires.

We can examine the current ARP cache with the arp program:

crow@9802b196582a:/$ arp

Address HWtype HWaddress Flags Mask Iface

172.17.0.1 ether 02:42:ff:bc:4d:47 C eth0

This tells us the the address 172.17.0.1 corresponds to an ethernet address
02:42:ff:bc:4d:47, and that we can reach this through the eth0 device.
There are additional arguments to perform a lookup, manually add entries, or
delete entries. The ARP table is maintained in the file /proc/net/arp, which
you can view using cat, but you should never modify this file manually.



56 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

4.4 Scanning for Hosts and Ports

If you are going to scan a network, you must have the permission of:

• The network owner

• The owners of all hosts connected to the network

• All of the people using the network

Scanning a network without permission is a serious invasion of privacy, and
in many cases might be illegal. If you just want to play with the tools we are
looking at in this section, you can create a testbed using the commands from
Section 3.7 and run them on that.

The nmap (https://nmap.org) program scans a host or subnet for open ports. If
it is able to connect to the port, it also attempts to identify the host’s operating
system, service, and version. There are a lot of options, but we will only look
at a few.

The simplest scan you can do is:

crow@9802b196582a:/$ nmap scanme.nmap.org

Starting Nmap 7.80 ( https://nmap.org ) at 2022-11-10 17:05 UTC

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.083s latency).

Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

9929/tcp open nping-echo

31337/tcp open Elite

Nmap done: 1 IP address (1 host up) scanned in 1.54 seconds

Here we see four TCP ports listening, with not much additional information
provided.



4.4. SCANNING FOR HOSTS AND PORTS 57

We can add the -A flag gives us considerably more information:

crow@9802b196582a:/$ nmap -A scanme.nmap.org

Starting Nmap 7.80 ( https://nmap.org ) at 2022-11-10 17:07 UTC

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.094s latency).

Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux; protocol 2.0)

| ssh-hostkey:

| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)

| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)

| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)

|_ 256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0:f1:54:41:56 (ED25519)

80/tcp open http Apache httpd 2.4.7 ((Ubuntu))

|_http-server-header: Apache/2.4.7 (Ubuntu)

|_http-title: Go ahead and ScanMe!

9929/tcp open nping-echo Nping echo

31337/tcp open tcpwrapped

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 14.65 seconds

Now we are getting specifics about the actual programs and versions that nmap
was able to learn. We also have an inferred operating system.

We can scan multiple hosts, which might be listed as separate command-line
options or as CIDR blocks (which might take a while):

crow@9802b196582a:/$ nmap -T5 192.168.1.0/24

Starting Nmap 7.80 ( https://nmap.org ) at 2022-11-10 17:46 UTC

Warning: 192.168.1.156 giving up on port because retransmission cap hit (2).

Nmap scan report for 192.168.1.0

Host is up (0.014s latency).

All 1000 scanned ports on 192.168.1.0 are closed

Nmap scan report for Fios_Quantum_Gateway.fios-router.home (192.168.1.1)

Host is up (0.017s latency).

Not shown: 992 closed ports

PORT STATE SERVICE

22/tcp filtered ssh

53/tcp open domain

80/tcp open http



58 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

443/tcp open https

4567/tcp filtered tram

8022/tcp filtered oa-system

8080/tcp open http-proxy

8443/tcp open https-alt

Nmap scan report for Mikes-MBP.fios-router.home (192.168.1.156)

Host is up (0.0046s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

7937/tcp filtered nsrexecd

Nmap scan report for 192.168.1.184

Host is up (0.023s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

443/tcp open https

5000/tcp open upnp

Nmap scan report for celephais.fios-router.home (192.168.1.195)

Host is up (0.037s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

4000/tcp open remoteanything

Nmap scan report for WyzeCam.fios-router.home (192.168.1.201)

Host is up (0.015s latency).

All 1000 scanned ports on WyzeCam.fios-router.home (192.168.1.201) are closed

Nmap scan report for WyzeCam.fios-router.home (192.168.1.202)

Host is up (0.014s latency).

All 1000 scanned ports on WyzeCam.fios-router.home (192.168.1.202) are closed

Nmap scan report for 192.168.1.205

Host is up (0.0068s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

53/tcp open domain

80/tcp open http

7777/tcp open cbt

Nmap scan report for Pixel-6a.fios-router.home (192.168.1.211)

Host is up (0.017s latency).

All 1000 scanned ports on Pixel-6a.fios-router.home (192.168.1.211) are closed

Nmap scan report for 192.168.1.255

Host is up (0.033s latency).

All 1000 scanned ports on 192.168.1.255 are closed

Nmap done: 256 IP addresses (10 hosts up) scanned in 10.10 seconds



4.4. SCANNING FOR HOSTS AND PORTS 59

This is my home network. We have omitted the -A option, but added -T5,
which sets it to do the fastest scan it can. We see my work laptop, my personal
laptop, my router, two webcams, the subnet broadcast address, and some other
stuff.

What is this other stuff on my network?

crow@9802b196582a:/$ nmap -A 192.168.1.184 192.168.1.205

Starting Nmap 7.80 ( https://nmap.org ) at 2022-11-10 18:02 UTC

Nmap scan report for 192.168.1.184

Host is up (0.011s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.1 (protocol 2.0)

| ssh-hostkey:

| 2048 06:ff:63:a5:ca:87:fe:4b:df:50:19:1d:8a:05:85:66 (RSA)

| 256 3b:24:08:80:33:08:52:66:2b:8f:a8:d0:a1:ee:fb:7c (ECDSA)

|_ 256 c6:49:68:73:23:60:aa:e4:57:ab:6e:52:6f:14:2c:98 (ED25519)

443/tcp open ssl/http Neato Botvac Connected

|_http-title: Site doesn't have a title.

| ssl-cert: Subject: commonName=Lennox/organizationName=Lennox International Inc./stateOrProvinceName=TX/countryName=US

| Not valid before: 2016-11-07T12:22:46

|_Not valid after: 2116-10-14T12:22:46

|_ssl-date: TLS randomness does not represent time

| sslv2:

| SSLv2 supported

|_ ciphers: none

5000/tcp open upnp?

Service Info: Device: specialized

Nmap scan report for 192.168.1.205

Host is up (0.068s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

53/tcp open domain ISC BIND 9.11.35

| dns-nsid:

|_ bind.version: 9.11.35

80/tcp open http Arris TG862G http config

| http-auth:

| HTTP/1.1 401 Unauthorized\x0D

|_ Basic realm=NETGEAR WAC104

|_http-title: Authorization warning

7777/tcp open upnp MiniUPnP 1.6 (Netgear SDK 4.2.0.0; UPnP 1.0)

Service Info: Device: WAP; CPE: cpe:/h:arris:tg862g

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Nmap done: 2 IP addresses (2 hosts up) scanned in 179.92 seconds



60 CHAPTER 4. INTERACTIONS BETWEEN LAYERS

By adding -A for just the two unknown hosts, we see more detail. One of the
hosts is myWiFi access point (a layer 2 device), and the other is presumably the
controller for my furnace and air conditioner (which allows ssh connections,
for some reason).



Chapter 5

Network Programming

Most programming languages have some way of interacting with the network,
with varying degrees of abstraction. We will focus on using C, because it ex-
poses the network connections with considerably more detail than other lan-
guages, so you will become more familiar with these details by writing net-
working code in C. Once you are familiar with network programming in C,
transferring that knowledge to another language that provides a “friendlier” ab-
straction will be much easier.

5.1 Socket Programming

A socket is an abstraction used by the operating system to treat one end of an
inter-process communications link as a file. Like other files, a process can read
from or write to a socket. Unlike other files, a socket is specifically bound to a
single process, so only that process has access to the socket.

We commonly have three types of sockets: stream, datagram, and raw. Stream
sockets instantiate the TCP protocol. Datagram sockets instantiate the UDP
protocol. Raw sockets do not have a layer 4 protocol abstraction, so it is up to

61



62 CHAPTER 5. NETWORK PROGRAMMING

the application to handle any necessary layer 4 processing. Creating raw sockets
is a protected operation, and can only be done by a user with root privileges. You
will rarely work with raw sockets, and then only for very low-level operations.
As an application developer, you will mostly use TCP and UDP, as discussed
in Section 3.1.

5.1.1 Creating a socket

The programming interface for sockets in C is defined in the header filesys/socket.h
(or files included by it). You include it as you would any header file:

#include <sys/socket.h>

As mentioned previously, Linux (and many other operating systems) treat a
socket as a special kind of file. That means creating a socket is a similar oper-
ation to opening a file, with the basic function being

int sockfd = socket(PF_INET, SOCK_STREAM, 0);

The arguments to socket() tell the kernel the desired protocol family (PF_INET
is IPv4), socket type (SOCK_STREAM is TCP), and protocol (0 for TCP, because
there is only one protocol supported for this type of socket). For SOCK_DGRAM
(UDP), we would also specify 0 for the protocol. There are other, less common,
socket types that might require a protocol. See the documentation for details if
you are curious.

The value returned by socket() is a file descriptor. This is just an integer,
much like the file descriptors for standard input (0), standard output (1), and
standard error (2). On failure, socket() instead returns -1, so you should al-
ways check the returned value. If socket() returns -1, then it will also set the



5.1. SOCKET PROGRAMMING 63

errno global variable to indicate the cause of the failure. See the documen-
tation for a list of these, but often a failed socket creation is a fatal error for a
program.

The documentation might show AF_INET in the place of PF_INET, depending
on where you look. These constants should have the same value, but technically
AF_INET refers to the IPv4 address family, rather than the protocol family.
It is largely a matter of style which you use, but we will use PF_INET when
specifying a protocol family and AF_INET when specifying an address family,
just to keep these concepts clear and separate.

5.1.2 Socket options

When created, a socket has some default set of options, depending on the type
of socket and protocol. Often, these defaults are appropriate, but sometimes
you will need to change them for your program to work as intended. We can
change these options with setsockopt(), as illustrated here:

int opt = 1;

setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));

Here the sockfd is what was returned by socket(). SOL_SOCKET indicates
that we are setting a socket-level (as opposed to protocol-level) option. The
specific option we are setting is SO_REUSEADDR, which controls whether we
want the operating system to reuse the associated port before the standard timer
expires. This is somewhat dangerous in certain circumstances, because you are
allowing a new process to claim your port number after you exit, meaning they
can potentially receive traffic that was intended for you. The last two arguments
are the option itself, and how many bytes it is. Note that we are providing a
pointer, rather than just the literal number 1. We have to do this because not all
options take an integer. Some might actually take arrays or structures, so it is



64 CHAPTER 5. NETWORK PROGRAMMING

important to let setsockopt() know how much data we are providing for the
option.

We mentioned that SOL_SOCKET is for socket-level options. We can also spec-
ify options for TCP (IPPROTO_TCP) or UDP (IPPROTO_UDP), if we want to
adjust the behavior of those. If you are writing an interactive TCP program, for
instance, you might want to specify the TCP_NODELAY option to disable TCP’s
buffering of small chunks of data. It is extremely unlikely that you will want or
need to do this, however, and you should definitely take a course on computer
networking (such as CMSC417) before using this option, so that you know the
implications of disabling the delays.

5.1.3 Socket addresses

At this point, we have created a socket, but we cannot do anything with it yet.
We have two choices:

1. We can wait for someone to connect to us, or

2. We can try to connect to someone else.

Either way, we need to add a socket address to the socket. For the first case (a
server), this determines who is able to connect to us. For the second case (a
client), this specifies the server we are trying to contact.

There are two structures we will look at: sockaddr and sockaddr_in. Why
do we have two? Actually, we have many more, but these are the only two we
will worry about, and the others should be fairly clear from these. In simple
terms, sockaddr is a generic socket address, akin to a base class in an object-
oriented language; while sockaddr_in is a socket address specific to the IPv4
protocol (in for “internet”), akin to a subclass of sockaddr. Functions that
take a socket address generally take a pointer to a sockaddr, but if we want to
set or read specific fields, we need to use a structure like sockaddr_in.



5.1. SOCKET PROGRAMMING 65

Many of the fields in sockaddr_inwill be 0, so we generally begin by making
everything 0, and then setting what we need:

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr));

The memset() function allows you to set all of the bytes in some structure
(treated as a simple byte array) to a single value. In this case, that value is 0.
By passing our server_addr with an ampersand, memset() is receiving it
as an address; that is, as a pointer (a void* here, more specifically). Because
memset() knows nothing about the destination other than that it’s a pointer,
we have to tell it how many bytes to overwrite with 0, which is why we pass
sizeof(server_addr) as the last argument. This is the size of the actual
structure, in bytes.

Now that we have an empty server_addr, it is time to set the fields that matter.
There are generally three that we care about:

• server_addr.sin_family is the address family. For a sockaddr_in,
this will usually be AF_INET (the IPv4 address family).

• server_addr.sin_port is the port on which we will listen for con-
nections. If this were a client, this would be the port on the server to
connect to.

• server_addr.sin_addr.s_addr is the relevant IP address.
For a server, this will generally be INADDR_ANY (to listen for connections
from any host on the network) or INADDR_LOOPBACK (to only listen for
connections coming from this host over the loopback device). We can,
however, specify the IP address bound to a specific device to allow con-
nections from outside of this host, but only on that device. This is useful
for multi-homed servers, which are connected to two or more layer 2 net-
works.
For a client, this would be the address of the server we are connecting to.



66 CHAPTER 5. NETWORK PROGRAMMING

An important thing to note is that ports and addresses must be in network byte
order. This is always big-endian, regardless of the operating system’s byte
ordering. That means your code should always convert numbers to the appro-
priate ordering, unless you are guaranteed to have received them in network
byte order. We will see examples of this later. For a detailed discussion of byte
ordering, see the General Systems Handbook.

5.1.4 Servers

A server is a process that provides some service to client processes via the
network. This might be serving web pages, providing hostname resolution, up-
loading or downloading files, or just about anything else. There will be slightly
different workflows for a server depending on whether it is using TCP or UDP.

TCP Server

Wewill start with the workflow for a TCP server, as illustrated by the following
code:

#include <sys/socket.h>

#include <stdio.h>

#include <stdint.h>

#include <string.h>

#include <endian.h>

#include <unistd.h>

#include <netinet/in.h>

#include <error.h>

#include <errno.h>

int main(int argc, char** argv) {

// 1. Create a socket.

int sockfd;

sockfd = socket(PF_INET, SOCK_STREAM, 0);

if ( sockfd < 0 ) {

fprintf(stderr, "Socket creation failed with error %d\n", errno);

return 1;

}



5.1. SOCKET PROGRAMMING 67

int e;

// 2. Bind a port to the socket.

uint16_t port = 1234;

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htobe16(port);

server_addr.sin_addr.s_addr = INADDR_ANY;

e = bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr));

if ( e < 0 ) {

fprintf(stderr, "Binding port %d failed with error %d\n", port, errno);

return 1;

}

// 3. Configure the socket to listen for new connections.

e = listen(sockfd, 5);

if ( e < 0 ) {

fprintf(stderr, "Listening failed with error %d\n", errno);

return 1;

}

while ( 1 ) {

// 4. Accept a new connection.

struct sockaddr_in client_addr;

socklen_t client_addr_len = sizeof(client_addr);

int clientfd = accept(sockfd,

(struct sockaddr*)(&client_addr),

&client_addr_len);

if ( clientfd < 0 ) {

fprintf(stderr, "Accept failed with error %d\n", errno);

return 1;

}

// 5. Exchange data with the client on the new socket.

unsigned char buf[1024];

int n = recv(clientfd, buf, sizeof(buf), 0);

if ( n < 0 ) {

fprintf(stderr, "Reading from client failed with error %d\n", errno);

return 1;

}

// 6. Close the client's socket.

close(clientfd);

}

return 0;

}



68 CHAPTER 5. NETWORK PROGRAMMING

Let’s go through these steps one-by-one:

1. We first create a socket. If you have socket options to set, you will do
that here, as well.

2. Next, we specify how this socket should receive new connections, in a
process called binding. The bind() function takes a socket file descrip-
tor, a pointer to a struct sockaddr, and the size of the actual structure
pointed to by the second argument. Note that when we create our struct
sockaddr_in, we convert the port number to network byte order with
htobe16(port).

3. Now we have to tell the socket that it is ready for new connections, with
listen(). This takes the socket file descriptor, as well as a backlog,
which is how many new connections will be buffered in a queue while
waiting for the next step. Additional connections while the queue is full
will fail with ECONNREFUSED (Error: Connection Refused).

4. When a new connection is available, the accept() function creates a
new socket. It also provides the caller with the socket address of the
connecting client by filling in the structure pointed to in the second ar-
gument. As before, since there can be different types of sockets with
different types of socket addresses, we have to provide a pointer to an in-
teger (which is what socklen_t is) so that accept() knows howmuch
space is available and can fill it in with the actual size stored.

5. Now the client socket is ready to exchange data with the client. We will
explore this in more detail in Section 5.2.

6. Finally, when we are finished with the client, we call close() on the
client’s socket file descriptor.

Note that we have error-handling blocks after each of these function calls (ex-
cept close()). These are important: There are many reasons why one of these



5.1. SOCKET PROGRAMMING 69

functions might produce an error, and it is important to understand what these
error are. Some are fatal (the program should terminate), and some are not. It
is possible for accept() or data transfer to produce a non-fatal error, though
they might require terminating the client connections. Some data transfer errors
just need to be attempted again later, as we will see.

As written, this code only handles connections from one client at a time. This
is usually not what we want, so we need some way to multiplex our client con-
nections. The easiest (but extremely limiting) way to do this is to either fork
the process or create a new thread for each client. We will see a much better
option in Section 5.1.6.

UDP Server

We now look at the workflow for a UDP server. This will be somewhat sim-
ilar to our TCP server, but there will be differences, due to the fact that TCP
is connection-oriented, while UDP is connectionless. That is, TCP maintains
some state (data, status, etc.) for a client connection, while UDP does not.

Here is our UDP server code:

#include <sys/socket.h>

#include <stdio.h>

#include <stdint.h>

#include <string.h>

#include <endian.h>

#include <unistd.h>

#include <netinet/in.h>

#include <errno.h>

int main(int argc, char** argv) {

// 1. Create a socket.

int sockfd;

sockfd = socket(PF_INET, SOCK_DGRAM, 0);

if ( sockfd < 0 ) {

fprintf(stderr, "Socket creation failed with error %d\n", errno);

return 1;

}



70 CHAPTER 5. NETWORK PROGRAMMING

int e;

// 2. Bind a port to the socket.

uint16_t port = 1234;

struct sockaddr_in server_addr;

memset(&server_addr, 0, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htobe16(port);

server_addr.sin_addr.s_addr = INADDR_ANY;

e = bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr));

if ( e < 0 ) {

fprintf(stderr, "Binding port %d failed with error %d\n", port, errno);

return 1;

}

while ( 1 ) {

// 3. Receive data from a client.

unsigned char buf[1024];

struct sockaddr_in client_addr;

struct sockaddr* caddr = (struct sockaddr*)(&client_addr);

socklen_t client_addr_len = sizeof(client_addr);

int n;

n = recvfrom(sockfd, buf, sizeof(buf), 0, caddr, &client_addr_len);

if ( n < 0 ) {

fprintf(stderr, "Receiving from client failed with error %d\n", errno);

return 1;

}

// 4. Send a reply to the client.

n = sendto(sockfd, buf, n, 0, caddr, client_addr_len);

if ( n < 0 ) {

fprintf(stderr, "Sending to client failed with error %d\n", errno);

}

}

return 0;

}

Aside from changing the type of socket from SOCK_STREAM to SOCK_DGRAM in
the socket() call, the first two steps are the same. The biggest change is that
we no longer have to listen() for and accept() connections. Instead, we
use recvfrom() to receive a datagram (a single UDP packet payload) from a
client, storing the address of the client so that we can send a reply, if needed.
Essentially, we have combined the accept() and recv() functions, captur-
ing the client’s address when we read data, rather than before we are ready to
read data. We also show the sendto() function, which uses the client address



5.1. SOCKET PROGRAMMING 71

from recvfrom() to determine its destination. Again, we will examine these
functions in greater detail in Section 5.2. Since each client is using the main
socket, we do not close the socket when we are done providing service to a
client.

5.1.5 Clients

A client, at its core, is a process that requests service from a server. This is
easiest to understand by example. Here are some clients you might be familiar
with:

• Web browser

• Discord app

• Online game app

All of these connect to some remote host, the server, and interact with it. host,
dig, and whois are also clients, and we saw netcat operating as both a server
and a client.

The biggest difference between a server and a client is that a server is waiting
for connections from other hosts (with accept()), while a client initiates con-
nections to other hosts. As an additional wrinkle, there are some processes that
both initiate connections and receive connections. These might be performing
different roles (you connect via a browser client to a web server, which con-
nects as a client to a database server), or they might be acting as peers. While
we will not go into details about peer-to-peer applications, once you understand
how clients and servers work, it is a fairly simple extrapolation (though the pro-
tocols themselves can be somewhat complex).



72 CHAPTER 5. NETWORK PROGRAMMING

TCP Client

Again, we begin with the TCP version of the client. Here is our code:

#include <sys/socket.h>

#include <stdio.h>

#include <stdint.h>

#include <string.h>

#include <unistd.h>

#include <endian.h>

#include <netdb.h>

#include <errno.h>

int main(int argc, char** argv) {

// 1. Read the server address and port from the command line.

if ( argc < 3 ) {

fprintf(stderr, "Usage: %s <server> <port>\n",argv[0]);

return 1;

}

struct addrinfo hints;

struct addrinfo* addrlist;

memset(&hints, 0, sizeof(hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

if ( getaddrinfo(argv[1], argv[2], &hints, &addrlist) ) {

fprintf(stderr, "Error looking up %s:%s\n",argv[1],argv[2]);

return 1;

}

if ( NULL == addrlist ) {

fprintf(stderr, "No address found for %s:%s\n",argv[1],argv[2]);

return 1;

}

// 2. Create a socket.

int sockfd;

sockfd = socket(addrlist->ai_family,

addrlist->ai_socktype,

addrlist->ai_protocol);

if ( sockfd < 0 ) {

fprintf(stderr, "Socket creation failed with error %d\n", errno);

return 1;

}

int e;

// 3. Connect to the server.

e = connect(sockfd, addrlist->ai_addr, addrlist->ai_addrlen);

if ( e < 0 ) {



5.1. SOCKET PROGRAMMING 73

fprintf(stderr, "Could not connect\n");

return 1;

}

// 4. Exchange data with the server.

int n = send(sockfd, "hello", 6, 0);

if ( n < 0 ) {

fprintf(stderr, "Sending to server failed with error %d\n", errno);

return 1;

}

// 5. Close the socket.

close(sockfd);

return 0;

}

Here we see a rather different workflow than we had in our server:

1. First, we take the command-line arguments and use them to obtain the
struct sockaddr* for the server. argv[0] is always the process
name, so here we assume argv[1] holds the hostname, and argv[2]
holds the port. We are using getaddrinfo(), and letting it figure out the
appropriate address type, limiting ourselves to TCP sockets (SOCK_STREAM).
Note that this code will work whether the server is running IPv4 or IPv6,
since we have left the protocol family unspecified (PF_UNSPEC). This is
a good idea in your client code, and will make your code more portable to
different network environments. getaddrinfo() returns 0 on success,
and creates a linked list in its last argument, which is why we are passing
a pointer to a pointer (this is a very common design).

2. Next, we create a socket to the server. Here we rely on what getad-
drinfo() has returned to us. Since we really only expect one result,
and only care about out, we ignore the linked-list nature of addrlist,
and just use the first entry. You could create a loop over the linked list, if
you expect multiple results, only some of which might respond.

3. For our network functions, this is the first major difference between the



74 CHAPTER 5. NETWORK PROGRAMMING

client and server. Where the server calls bind(), listen(), and ac-
cept(), the client just calls connect(). This takes a socket address
pointer and the length of the structure, and again we can get these directly
from addrlist.

4. As before, we now are ready to exchange data with the server. Here we
see the send() function, which is the complement of the recv() in the
server.

5. When we are done with the socket, we again call close() on it.

UDP Client

Now we will take a look at the UDP version of our client:

#include <sys/socket.h>

#include <stdio.h>

#include <stdint.h>

#include <string.h>

#include <endian.h>

#include <netdb.h>

#include <errno.h>

#include <unistd.h>

int main(int argc, char** argv) {

// 1. Read the server address and port from the command line.

if ( argc < 3 ) {

fprintf(stderr, "Usage: %s <server> <port>\n",argv[0]);

return 1;

}

struct addrinfo hints;

struct addrinfo* addrlist;

memset(&hints, 0, sizeof(hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_DGRAM;

if ( getaddrinfo(argv[1], argv[2], &hints, &addrlist) ) {

fprintf(stderr, "Error looking up %s:%s\n",argv[1],argv[2]);

return 1;

}

if ( NULL == addrlist ) {

fprintf(stderr, "No address found for %s:%s\n",argv[1],argv[2]);



5.1. SOCKET PROGRAMMING 75

return 1;

}

// 2. Create a socket.

int sockfd;

sockfd = socket(addrlist->ai_family,

addrlist->ai_socktype,

addrlist->ai_protocol);

if ( sockfd < 0 ) {

fprintf(stderr, "Socket creation failed with error %d\n", errno);

return 1;

}

// 3. Exchange data with the server.

int n = sendto(sockfd, "hello", 6, 0,

addrlist->ai_addr,

addrlist->ai_addrlen);

if ( n < 0 ) {

fprintf(stderr, "Sending to server failed with error %d\n", errno);

return 1;

}

// 4. Close the socket.

close(sockfd);

return 0;

}

This is almost identical to the TCP client. Instead of SOCK_STREAM, we specify
SOCK_DGRAM for the socket type in the hints to getaddrinfo(). We remove
the call to connect(), since UDP is connectionless. We also replace the call
to send() with sendto(), which now includes the server’s address info.

5.1.6 Efficient Multiplexing

As previously mentioned, we can multiplex connections within a server using
separate threads or processes for each client. This ends up wasting resources,
however, and switching between threads may be fast, but it is not instantaneous.

A better solution is to make our sockets non-blocking, and use either select()
or poll() to tell us when they are ready for reading or writing. We can make



76 CHAPTER 5. NETWORK PROGRAMMING

a socket non-blocking with:

#include <fcntl.h>

fcntl(sockfd, F_SETFL, O_NONBLOCK);

This will mostly apply to TCP, but we can also use these techniques if we have
multiple UDP ports open, a mix of TCP and UDP, or if we are also accepting
input from standard input (file descriptor 0).

When we call send() or recv(), and there is not yet enough data to read, the
functions will usually block. That is, they will not return until they have com-
pleted the request. By making the socket non-blocking, these functions will
instead return -1 (indicating an error), and set errno to EAGAIN or EWOULD-
BLOCK (which might, and often will, be same value).

As we mentioned above, we can use select() or poll() to tell us when a
socket is ready for a particular operation (typically reading or writing). These
functions are similar, but have (for us) essentially the same functionality. They
block until:

• a file descriptor is ready, or

• a timeout expires, or

• an error occurs.

The main difference (again, for us), is how the file descriptors and timeout are
provided.

In both cases, we will modify the server workflow from what we had in Sec-
tion 5.1.4:

• If we are reading from the listening socket, we will call accept and add
the client information to the set of file descriptors to watch. (step 4)



5.1. SOCKET PROGRAMMING 77

• If we are reading from or writing to a client socket, we will exchange as
much data as we safely can without blocking. (step 5)

• If a send or recv on a client socket returns 0, we will close the socket.
(step 6)

Select

For select(), we specify three file descriptor sets, any of which might be
NULL, and a pointer to a timeval with the timeout information, which might
also be NULL. Here is some (incomplete) example code:

#include <sys/select.h>

#include <sys/time.h>

fd_set read_set, write_set, err_set;

timeval timeout;

timeout.tv_sec = 1;

timeout.tv_usec = 0;

while(1) {

FD_ZERO(&read_set);

FD_ZERO(&write_set);

FD_ZERO(&err_set);

FD_SET(sockfd, &read_set);

int nfd = select(sockfd+1, &read_set, &write_set, &err_set, &timeout);

if ( 0 < nfd ) {

if ( FD_ISSET(sockfd, &read_set) ) {

...

}

} else if ( -1 == nfd ) { ... }

}

fd_set is basically a bitmap of possible file descriptors, and we operate on it
with a set of macros FD_ZERO, FD_SET, and FD_ISSET, all of which expect
a pointer to an fd_set. We must clear each set before calling select, which
we do with FD_ZERO. Then we specify which file descriptors to watch in a set



78 CHAPTER 5. NETWORK PROGRAMMING

with FD_SET. Once select() returns, we can test if a particular descriptor has
been set with FD_ISSET.

We have to tell select() how many file descriptors it should be looking at.
Since fd_set is a bitmap, this number is the greatest file descriptor number,
plus 1. That is, it is the effective length of the bitmap that includes all of our file
descriptors. This is the first argument to select(), followed by the read set,
the write set, the error set, and the timeout. The return value from select()

is the number of file descriptors with something matching from any of the sets,
or -1 if there was an error.

timeval has two fields, specifying number of seconds (tv_sec) andmicrosec-
onds (tv_usec). If the timeout is 0 (in both fields), select() will always
return immediately. If it is NULL, then select() will not return until one of
the specified file descriptor sets is ready.

What does “ready” mean? For the read set, it means there is a file descriptor in
that set that currently has data we can read. This is the most common case (aside
from timeouts). For the write set, “ready” means that a file descriptor in that
set is ready to receive more data from us. This might arise when we attempted
to write to a socket, but it had no more room in its buffer. Once the buffer
has cleared sufficiently, it will return as ready for writing. For the error set,
“ready” means there was an out-of-band error that we cannot detect by reading
or writing, so we need to check for it. This might be due to the socket being
closed.

While it is common for the timeout to be NULL (often with only the read set
non-NULL), there are times when everything except the timeout is NULL. Why
would we do this? The reason is that C provides us with a sleep() function,
which takes an integer number of seconds. If we want to sleep for less than
a second, or some other fractional value, we need a different mechanism, and
select() provides us with this. For example, to sleep for half a second we
could do:



5.1. SOCKET PROGRAMMING 79

timeval timeout;

timeout.tv_sec = 0;

timeout.tv_usec = 500000;

select(0,NULL,NULL,NULL,&timeout);

Because we have not told select() to monitor any file descriptors, this will
wait until the timeout expires, doing nothing else until then.

Poll

The poll() function scales better than select(), though for most applica-
tions this will not make a substantial difference. Rather than a set of bitmaps,
it takes an array of struct pollfd, and this structure contains the relevant
information, including the file descriptor and what events to watch for. Rather
than a timeval, the timeout is specified as an integer holding the number of
milliseconds (-1 means to wait indefinitely). The following is the poll()
equivalent of our select() example:

#include <poll.h>

#include <limits.h>

struct pollfd fdarray[FOPEN_MAX];

unsigned long nfds = 0;

int timeout = 1000; // 1 second

fdarray[0].fd = sockfd;

fdarray[0].events = POLLIN | POLLOUT | POLLERR;

nfds++;

while (1) {

int nfd = poll(fdarray, nfds, timeout);

if ( 0 < nfd ) {

for ( int i = 0 ; i < nfds ; ++i ) {

if ( fdarray[i].revents & POLLIN ) { ... }

}

} else if ( -1 == nfd ) { ... }

}

FOPEN_MAX is a guaranteed minimum to the number of file descriptors that a



80 CHAPTER 5. NETWORK PROGRAMMING

process can open simultaneously. Usually, the actual limit will be higher than
this. struct polldf has three fields, the file descriptor (fd), a bitmap of flags
indicating the events to poll for (events), and a bitmap of flags indicating what
events were detected (revents). Setting POLLIN is equivalent to putting the
file descriptor in select()’s read set, POLLOUT is the equivalent of the write
set, and POLLERR is the equivalent of the error set.

As with select(), we have to tell poll() how much of the array to consider.
Unlike select(), this only needs to be the actual number of file descriptors
we want to watch, since the array can be densely packed from the beginning.
We can also temporarily disable a file descriptor by negating the fd field, since
negative numbers are ignored. Another nice feature is that, because the events
fields is unmodified by poll(), we do not have to clear and re-set the entries
for each call. Instead, we just do a bitwise AND for the flags of interest. As
with select(), the return value of poll() is the number of file descriptors
with events returned, or -1 if there is an error.

Additional details

With TCP, you typically have one file descriptor that is listening for new con-
nections. When it is ready for reading, that means a new connection has been re-
ceived, requiring a call to accept(). The resulting client file descriptor should
then be added to read_set or fdarray, depending on whether you are using
select() or poll(). It is important to only attempt to read from or write to
a client socket.

When a client disconnects, with select() you would no longer add its file
descriptor to any of the fd_sets, while for poll() you would set the fields
of its struct pollfd to 0, or just the fd field to a negative number. These
entries in the array can then be reused for the next new connection.

You should always check to see if a client has disconnected or an error has
occurred. Otherwise, you are likely to get strange behavior, and possibly seg-



5.2. DATA TRANSFER 81

mentation faults. If you are storing state for clients, make sure you clean this
up — free any dynamically allocated memory and make sure that you are no
longer looking for socket events from it.

5.2 Data Transfer

In this section, we will explore how to read and write data through sockets, and
some ways to format that data.

5.2.1 Reading and Writing

We interact with a socket through a file descriptor, which means the read()
and write() functions will work. There are much better options, however,
which you should use instead, and which we have seen in our example code.

TCP

To read from a TCP socket, we use the recv() (receive) function; to write
to a socket, we use the send() function. Both of these have almost identical
signatures:

1. The first argument is the socket file descriptor.

2. The second argument is a buffer, which is an array of bytes.

3. The third argument is the number of bytes to receive or send.

4. The fourth argument is a bitmap of flags, which will usually be 0.



82 CHAPTER 5. NETWORK PROGRAMMING

The return value is the number of bytes received or sent, 0 if the socket has
been closed, or -1 if there was an error (in which case errno will be set). You
should always check the return value, and not assume that data was received or
sent successfully or completely.

Because TCP is a stream protocol, you do not have to receive or send an entire
message at once. Instead, you can work with smaller amounts of data. Note that
this is considerably less efficient when sending than when receiving. When
receiving, you will read as many bytes as requested from the socket’s buffer.
When sending, if you write a few bytes, they might be sent immediately, or
they might be buffered into a larger packet.

Since the buffer is of type void*, we can provide any pointer to recv() or
send(). These might be char arrays (strings), unsigned char arrays (es-
sentially byte arrays), pointers to integers, pointers to structs, etc. We will
take a closer look at some of these options later.

UDP

UDP is a datagram protocol, which means that a message must be contained
entirely within a single packet. It is also connectionless, so a single socket can
service multiple clients (or servers). That means two things:

1. When we read from a UDP socket, we must read the entire packet — any
unread data is discarded.

2. When we read from or write to a UDP socket, we must include structures
containing information about the other end of the connection. When read-
ing, this structure will be filled in for us.

Since recv() and send() do not provide the required fields, we instead use
two new functions: recvfrom() and sendto(). These functions are very



5.2. DATA TRANSFER 83

similar to recv() and send(), but they include a pointer to a socket ad-
dress and an address length as the fifth and sixth arguments. In the case of
recvfrom(), the address length must be a pointer, so that we can store the
actual length of the structure. Before calling, it must be the size of the actual
structure (such as a struct sockaddr_in) to which we’re passing a pointer.

5.2.2 Formatting Data

There are many ways to format data. We could use a string-based format (like
XML or JSON), a flexible binary format (like ASN.1), or other methods. We
are going to do something simpler, however.

Integers and Strings

Say we have an integer, i, and we have defined it as a 4-byte value:

#include <stdint.h>

uint32_t i = 12;

Since a 32-bit integer is stored in memory as four contiguous bytes, we could
send this with something like:

int n = send(sockfd,&i,4,0);

Here we have passed a pointer to i as the void* from which send()will read,
and we are sending four bytes from that initial address. This will work, but it
is not quite correct.

The problem is that we have not considered byte-order. To help us understand
what is happening, we will consider a new type that is defined as a union:



84 CHAPTER 5. NETWORK PROGRAMMING

typedef union {

uint32_t i;

uint8_t b[4];

} i32b;

Because this is a union, the fields i and b overlap in memory. That is, the
address of the field i is the same as the address of the element b[0]. Because
the fields have the same lengths, all of the bytes of i are elements of b, and
vice-versa. We now change our code to:

i32b v;

v.i = 12;

n = send(sockfd,&(v.i),4,0);

Say we are on a big-endian system. The uint32_t value 12 corresponds to

v.b[0] = 0;

v.b[1] = 0;

v.b[2] = 0;

v.b[3] = 12;

Now say we are on a little-endian system. That 12 now corresponds to

v.b[0] = 12;

v.b[1] = 0;

v.b[2] = 0;

v.b[3] = 0;

These are very different when sent to a remote host.

How do the hosts know what to send and how to interpret what they receive?
They have to agree on some standard. Almost always, this is big-endian, and we
refer to big-endian as network byte order. If we expect our code to be portable



5.2. DATA TRANSFER 85

(which we absolutely should), then we have to convert between network byte
order and host byte order:

#include <stdint.h>

#include <sys/types.h>

uint32_t i = htobe32(12);

int n = send(sockfd,&i,4,0);

Here the htobe32() function converts a 32-bit integer in host byte order to
a 32-bit integer in big endian (ie, network) byte order. The reverse of this is
be32toh(). These are frequently implemented as preprocessor macros, rather
than actual C functions, so there is no extra cost to calling them even if your
host byte order is already big endian. In this case, you would have (essentially)

#define htobe32(x) x

We can reverse the process, as well:

#include <stdint.h>

#include <sys/types.h>

uint32_t i;

int n = recv(sockfd,&i,4,0);

if ( 4 == n ) {

i = be32toh(i);

}

See A General Systems Handbook, Chapter 2, for more details about integer
sizes, byte ordering, and byte conversions.

Strings are, in some ways, easier. To send a string, it can be as simple as:



86 CHAPTER 5. NETWORK PROGRAMMING

char s[] = "hello";

int n = send(sockfd,s,strlen(s)+1,0);

This will send the string, including the terminal NULL. Receiving it is more
difficult, though, because we do not know how long the string is. We could
speculatively receive bytes until we see a NULL, or we could send the length
first:

char s[] = "hello";

uint8_t len = strlen(s) + 1;

int n = send(sockfd,&len,1,0);

n = send(sockfd,s,len,0);

As long as the string length is less than 255, this will work just fine. On the
receiving end:

char s[256];

uint8_t len;

int n = recv(sockfd,&len,1,0);

n = recv(sockfd,s,len,0);

Buffers

As previously mentioned, it can be inefficent to send values one-by-one. We
would prefer to fill a buffer, and then send that with one function call. To begin,
we need to know how long our buffer must be. Consider the string case. We
have some string (a literal here, but it does not need to be), and we want to put
the string and its length in a single buffer. Again, assuming the length of the
string is less than 255, we could have:



5.2. DATA TRANSFER 87

#include <stdlib.h>

unsigned char* buffer;

char s[] = "hello";

uint8_t len = strlen(s) + 1;

buffer = malloc(len+1);

Here len is the length of the string, with 1 added for the terminating NULL. Our
buffer must accommodate not just this length, but also the additional byte for
the length specifier, which is why we allocate len+1 bytes, or strlen(s)+2.

Nowwe can fill the buffer using memcpy(), which copies bytes from onemem-
ory location to another:

#include <string.h>

buffer[0] = len;

memcpy(buffer+1,s,len);

int n = send(sockfd,buffer,sizeof(buffer),0);

Since len is a single byte, we can assign it directly to the first element of
buffer. The string s is copied into the buffer starting at the address of buffer[1].

You can extend this as necessary. Say we have two 4-byte integers and a string
to put into our buffer:

uint32_t a = htobe32(1234);

uint32_t b = htobe32(5678);

char s[] = "hello";

uint8_t len = strlen(s) + 1;

unsigned char* buffer = malloc( 4 + 4 + len + 1 );

memcpy(buffer, &a, 4);

memcpy(buffer+4, &b, 4);

buffer[8] = len;

memcpy(buffer+9, s, len);

int n = send(sockfd, buffer, sizeof(buffer), 0);



88 CHAPTER 5. NETWORK PROGRAMMING

You will often see an additional pointer used to make this look a little nicer, and
to make it easier to rearrange things, if needed:

uint32_t a = htobe32(1234);

uint32_t b = htobe32(5678);

char s[] = "hello";

uint8_t len = strlen(s) + 1;

unsigned char* buffer = malloc( 4 + 4 + len + 1 );

unsigned char* p = buffer;

memcpy(p, &a, 4); p += 4

memcpy(p, &b, 4); p += 4;

p[0] = len; p += 1;

memcpy(p, s, len); p += len;

int n = send(sockfd, buffer, sizeof(buffer), 0);

We advance our pointer p (initially pointing to the start of buffer) by the num-
ber of bytes written, so that it is always pointing to the next location where we
want to write.

Structures

You might be wondering whether we can just send structures directly, since
they are just a collection of fields in memory. We can, but only under certain
conditions:

• The fields must not include pointers (nested structures are fine).

• The structure must be packed.

What is a packed structure? Normally, the compiler will add some padding
bytes to a complex structure. These bytes are not used, but they cause the fields’
bytes to be aligned in memory in a way that makes accessing them more effi-
cient. This will vary from system to system, however, so we need to ensure that
there are no padding bytes in a structure that we send across the network. That
is what we mean by a packed structure.



5.2. DATA TRANSFER 89

We can define a packed structure with:

struct __attribute__((__packed__)) msg_struct {

...

};

This must be done for every structure you are going to use this way, including
structures that are included as fields within our message structures. You should
be very carefulwhen using this feature, as it is easy to get things wrong. When
in doubt, stick to the earlier methods in this section.

5.2.3 Defining Messages

As a stream protocol, there is no mechanism built into TCP to tell us where
a message begins or ends. We will look at one fairly simple way to do this
in our application, but it is not the only option. Most of the other methods do
some variation on this, but with the details abstracted away from the application
developer.

We begin by defining a set ofmessage types. These are short fixed-length num-
bers, often one or two bytes, depending on how many types you need. We start
reading data from the socket with this number, and use it to determine how to
proceed.

Here is an example:

#define INIT_MSG 0

#define REQ_MSG 1

unsigned char msgType;

int n = recv(sockfd, &msgType, 1, 0);

switch(msgType) {

case INIT_MSG: ...

case REQ_MSG: ...

}



90 CHAPTER 5. NETWORK PROGRAMMING

Our message type here is a single byte, which can be 0 or 1 (any other value
is undefined). We read a single byte from our socket, and then conditionally
execute based on the type of message.

From this point, our protocol should specify what fields are in each type of
message, in what order, and what sizes they are. We have already seen how
to handle values such as integers and strings, but it is worth considering some
other types of fields.

We can handle arrays similarly to strings, in that we begin with a length field,
and then read that many values in a loop. Note that these values can themselves
be complex, with internal message types.

Another option, if our array elements all have the same size, is to read this
amount of data in a loop until we detect an end-of-field marker. If this marker
is not the same size as the data elements, we can have a linked-list-like structure,
where each element contains a has_next field, or similar.

As long as we specify our messages appropriately, we can use some combina-
tion of these techniques to encode and decode anything.



Chapter 6

Traffic

So far, we have looked at how the network is constructed, and how to send
messages over that network. Nowwe will take a look at howwe examine traffic
in-flight. That is, we will attach processes directly to network interfaces to
observe the actual packets (and layer 2 frames). This will include both basic
(but powerful) packet capturing tools, as well as filtering tools like firewalls.

6.1 Packet Structure

To start, we need to take a look at the structure of an IPv4 packet:

91



92 CHAPTER 6. TRAFFIC

Figure 6.1: Structure of an IPv4 packet.

The first byte is divided between a version (which is 4 for IPv4) and a header
length, which is measured in 4-byte words (5 for the minimal 20-byte header).
The next byte is the type of service, which is often 0, and which we will not
worry about. The next two bytes are the total length of the packet, in bytes,
including the header and payload.

The next four bytes are used to identify and reconstruct packets that might have
been fragmented. Fragmentation occurs with the packet’s total length is greater
than the path MTU. The two-byte identifier, when combined with the source
and destination, uniquely identifies the entire packet. The next two bytes are
split between 3 bits of fragmentation flags, and 13 bits for the fragment offset.
The flags might indicate that the packet should not be fragmented, or that there



6.2. PACKET CAPTURE 93

are additional fragments following this one. The offset gives the byte offset in
the payload for this fragment, but must be multiplied by 8 to obtain the actual
offset (because we have used 3 bits for the flags).

The next four bytes are the TTL (1 byte), the layer 4 protocol specifier (1 byte),
and a 2-byte header checksum, which allows devices to detect errors. Following
those are the 4-byte source address and the 4-byte destination address. If the
header length is greater than 5 (that is, more than 20 bytes), the remainder of
the header are IPv4 options, which we will not cover.

6.2 Packet Capture

There are a number of tools that we can use for packet capturing. Here, we will
focus on tcpdump (the classic), as well as Wireshark and its associated pro-
grams tshark and dumpcap. We will also look at how we can extend Wire-
shark and tshark.

Another tool you might want to look at, if you want to go a bit further, is the
scapy package for python. There is a discussion of this in A General Systems
Handbook. There are also other, more specialized, tools, which you can find in
references more focused on network security.

6.2.1 tcpdump

tcpdump is a widely-available packet capturing utility. A system with limited
capabilities is more likely to have this than the other tools we will look at, so
it is worth exploring in a bit of detail. Moreover, many of the options used by
tcpdump are the same or very close to options you will see in something like
tshark. It is likely that you will need to run tcpdump as the root user.

Despite the name, tcpdump captures all network traffic, not merely TCP. You



94 CHAPTER 6. TRAFFIC

can tell it to capture from specific interfaces, filter on protocols or packet data,
and even write to or read from files.

The option you will most often want to specify is -i, which you use to select an
interface to capture. If you do not provide this, tcpdump will typically connect
to the first configured interface, which may or may not be what you want. To
capture on all interfaces, you would specify -i any (on some systems this
might be all).

Another common option is -n, which tells tcpdump not to perform reverse-
lookups to convert numbers to names. That is, the normal behavior is for tcp-
dump to take the IP addresses it sees, and attempt to resolve them to hostnames.
This can take a while, so it is generally faster to add -n to your command, and
perform any reverse lookups you need manually.

The -x option tells tcpdump, which normally only prints header information,
to include the packet contents, in hexadecimal format. If you are looking for
specific information from the packets, this can be very useful. You can limit the
amount that will be printed by setting the snapshot length with the -s option,
which takes the number of bytes as an argument. Related options to -x are -xx
(include the link layer), -X (include ASCII as well as hex), and -XX (-X, but
including the link layer).

The -v option provides more verbose output, and can be specified multiple
times for additional details.

If you are viewing TCP traffic, tcpdump will construct relative sequence num-
bers. The sequence numbers are used by TCP to correctly order data and detect
lost packets. They generally start from random offsets, so relative sequence
numbers begin both sides’ counts from 0. If you need to see the actual, abso-
lute sequence numbers, you can do this with the -S option.

If you want to save the packet capture to a file, you can use the -w option,
which should be followed by a filename. The complement of this is the -r
option, which reads packets from a file rather than capturing from an interface.



6.2. PACKET CAPTURE 95

Like many programs, tcpdump will buffer data before printing it to the screen
or writing to a file. You can unbuffer (ie, disable the buffering) with the -U flag,
which is very useful when you want to be certain that you do not lose any data.

Finally, you can apply a filter to the packets, so that only certain ones are dis-
played or written to a file. For example, if you only want to see ICMP packets,
you would add icmp as the filter. If you want to capture HTTPS traffic, you
could add tcp port 443, which will match the standard HTTPS port as either
the source or destination.

Here is an example to capture and display HTTP traffic on the eth0 interface,
including packet data (limited to 128 bytes):

$ sudo tcpdump -i eth0 -nx -s 128 tcp port 80

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 128 bytes

19:31:25.623476 IP 172.17.0.2.60522 > 128.8.127.4.80: Flags [S], seq 3656059548, win 64240,

options [mss 1460,sackOK,TS val 725693382 ecr 0,nop,wscale 7], length 0

0x0000: 4500 003c a09b 4000 4006 ef00 ac11 0002

0x0010: 8008 7f04 ec6a 0050 d9eb 0a9c 0000 0000

0x0020: a002 faf0 ab4e 0000 0204 05b4 0402 080a

0x0030: 2b41 33c6 0000 0000 0103 0307

19:31:25.642768 IP 128.8.127.4.80 > 172.17.0.2.60522: Flags [S.], seq 2871939518,

ack 3656059549, win 65535, options [mss 1460,wscale 2,eol], length 0

0x0000: 4500 0030 0000 4000 2506 aaa8 8008 7f04

0x0010: ac11 0002 0050 ec6a ab2e 51be d9eb 0a9d

0x0020: 7012 ffff 09bf 0000 0204 05b4 0303 0200

19:31:25.642846 IP 172.17.0.2.60522 > 128.8.127.4.80: Flags [.], ack 1, win 502, length 0

0x0000: 4500 0028 a09c 4000 4006 ef13 ac11 0002

0x0010: 8008 7f04 ec6a 0050 d9eb 0a9d ab2e 51bf

0x0020: 5010 01f6 ab3a 0000

19:31:25.642999 IP 172.17.0.2.60522 > 128.8.127.4.80: Flags [P.], seq 1:142, ack 1, win 502,

length 141: HTTP: GET / HTTP/1.1

0x0000: 4500 00b5 a09d 4000 4006 ee85 ac11 0002

0x0010: 8008 7f04 ec6a 0050 d9eb 0a9d ab2e 51bf

0x0020: 5018 01f6 abc7 0000 4745 5420 2f20 4854

0x0030: 5450 2f31 2e31 0d0a 5573 6572 2d41 6765

0x0040: 6e74 3a20 5767 6574 2f31 2e32 302e 3320

0x0050: 286c 696e 7578 2d67 6e75 290d 0a41 6363

0x0060: 6570 743a 202a 2f2a 0d0a 4163 6365 7074

0x0070: 2d45

19:31:25.643352 IP 128.8.127.4.80 > 172.17.0.2.60522: Flags [.], ack 142, win 65535, length 0

0x0000: 4500 0028 0000 4000 2506 aab0 8008 7f04

0x0010: ac11 0002 0050 ec6a ab2e 51bf d9eb 0b2a

0x0020: 5010 ffff 35f6 0000

19:31:25.666966 IP 128.8.127.4.80 > 172.17.0.2.60522: Flags [P.], seq 1:592, ack 142,

win 65535, length 591: HTTP: HTTP/1.1 301 Moved Permanently

0x0000: 4500 0277 0000 4000 2506 a861 8008 7f04

0x0010: ac11 0002 0050 ec6a ab2e 51bf d9eb 0b2a

0x0020: 5018 ffff a8b8 0000 4854 5450 2f31 2e31

0x0030: 2033 3031 204d 6f76 6564 2050 6572 6d61

0x0040: 6e65 6e74 6c79 0d0a 6461 7465 3a20 4672



96 CHAPTER 6. TRAFFIC

0x0050: 692c 2033 3020 4465 6320 3230 3232 2031

0x0060: 393a 3331 3a32 3520 474d 540d 0a73 6572

0x0070: 7665

As you can see, tcpdump is able to determine some of the application informa-
tion, such as the initial request being a GET /, and the response a 301 Moved

Permanently.

Here are some filter examples:

• host www.cs.umd.edu: To or from www.cs.umd.edu

• src www.cs.umd.edu: From www.cs.umd.edu

• dst www.cs.umd.edu: To www.cs.umd.edu

• tcp port 443: TCP traffic to or from port 443 (HTTPS)

• tcp src port 443: TCP traffic from port 443

• greater 100: Packet length greater than 100 bytes

• less 100: Packet length less than 100 bytes

• and/or/not: Boolean operators (parentheses also supported)

The pcap-filtermanpage (libpcap is the underlying library that tcpdump
uses) has comprehensive details on the filter language.

6.2.2 Wireshark

Wireshark (wireshark.org) is a graphical packet capture and display ap-
plication. It has all of the features of tcpdump, but a friendlier display. Like

wireshark.org


6.2. PACKET CAPTURE 97

tcpdump, it can write packet captures and read them in. The output format it
uses is slightly different, but it is able to read files produced by tcpdump. This
can be very convenient if you have tcpdump as your only capture option on a
system, since you can write the captured packets to a file, and then transfer that
file to another machine where Wireshark is available.

When you first start Wireshark, it will ask you to select an interface or an exist-
ing capture file. The following is from a Mac, but (aside from interface names)
it would look similar under Linux or Windows:

Figure 6.2: Wireshark input selection

The line diagrams next to the interface names show you the amount of traffic
on those interfaces. If we select one of these, we get the following:



98 CHAPTER 6. TRAFFIC

Figure 6.3: Wireshark capture

The display is separated into three areas:

• The packet stream

• Details of the selected packet

• Full packet data

The packet stream shows all of the packets that have been captured and match
the current filter (if there is one). It shows much of the header information for
each packet, making it fairly easy to pick out packets of interest.



6.2. PACKET CAPTURE 99

When you select one of the packets, the bottom area shows you the actual bytes,
in hexadecimal, and any printable ASCII characters. This includes the layer 2
frame header, so the actual IPv4 header begins with the last two bytes of the
first line (45 00) at byte 14 (000e).

The middle area shows the packet dissection, where Wireshark has examined
the bytes to determine the protocols and their details. We can see details like
the source and destination, the fact that it is a TCP packet, and even that at the
application layer it is protected with TLS (that is, it is encrypted).

The filter format for Wireshark is very different than that of tcpdump. If we
want to see DNS responses containing more than one answer, we could specify
the filter dns.count.answers > 0, as shown in Figure 6.4.

Figure 6.4: Wireshark capture of DNS responses



100 CHAPTER 6. TRAFFIC

Since DNS is not encrypted, Wireshark is able to display details of the response,
including all of the records that were returned. If you select an item from the
dissection, Wireshark will highlight the corresponding bytes. The reverse is
also true: clicking on a byte will highlight all of the bytes corresponding to its
field in the dissection, as well as the dissection item. You can also right-click
on something in the dissection or data areas, and save the corresponding data.

6.2.3 tshark and dumpcap

Wireshark comes with two command-line tools, which you might have to spec-
ify when installing it. The first, tshark, is a terminal version of Wireshark. It
can do everything that Wireshark can, just with text instead of a graphical dis-
play. The second, dumpcap, only does packet capturing, and does not display
the packet contents.

By default, tshark produces output somewhat similar to tcpdump. You can
change this with options, however:

• tshark -Tjson: This produces a JSON string with all of the packets
in the capture, including detailed dissections.

• tshark -Tfields: This allows you to specify a set of space-delimited
columns containing desired fields. This must be accompanied by at least
one -e option, which specifies fields, such as data or dns.count.answers.

You can also specify stop conditions for tshark and dumpcap. With the -
c option, you can tell the program to exit after capturing a certain number of
packets. More interestingly, you can use the -a option to specify an autostop
condition, such as -a duration:30, which will automatically stop after 30
seconds.

For both tshark and dumpcap, the -h option gives you detailed usage infor-
mation.



6.3. EXTENDING WIRESHARK 101

6.3 Extending Wireshark

While Wireshark comes with many built-in dissectors, you can write your own.
You can also write your own filters, but we will not consider those. Unless you
are going to compile your own version of Wireshark, the recommended way to
write a dissector is in the lua programming language.

Lua is fairly simple and lightweight, so it has become popular for extensions in
a number of applications such as customizable video games. The syntax is not
very complex, and if you have programmed in Javascript, a lot of the design
principles should look somewhat familiar.

There are two ways to load a dissector into Wireshark or tshark:

1. Put the file in the directory ∼/.local/lib/wireshark/plugins/.
If Wireshark is currently running, you will need to select the “Analyze”
menu, and then “Reload Lua Plugins”.

2. When starting the program, add the option -X lua_script:<filename>,
where <filename> should be replaced with the actual filename.

You can find examples athttps://gitlab.com/wireshark/wireshark/
-/wikis/Lua/Examples, and we will base our discussion on fpm.lua

(©2015 by Hadriel Kaplan, released under the 3-clause BSD license). For gen-
eral information about lua, seehttps://www.lua.org/pil/contents.
html.

TCP dissectors are somewhat complicated, because messages might be split
between packets, and a single packetmight have parts ofmultiplemessages in it.
That means we have to maintain state while dissecting packets, and determine
whether we have a complete message yet or not.

https://gitlab.com/wireshark/wireshark/-/wikis/Lua/Examples
https://gitlab.com/wireshark/wireshark/-/wikis/Lua/Examples
https://www.lua.org/pil/contents.html
https://www.lua.org/pil/contents.html


102 CHAPTER 6. TRAFFIC

6.3.1 Lua Syntax Highlights

Before we take a look at the actual code, we should go over a little bit of Lua
syntax.

• Single-line comments beginwith --, while block comments are delimited
by --[[ and ]].

• ∼= is the inequality binary operator (!= in most other languages).

• If we have a class MyClass, we can call a classmethod (static in many
languages) foo with MyClass.foo. If we have an instance myClass,
we can call an instance method bar with myClass:bar().

• We define a function with the function keyword, and the function def-
inition ends with the end keyword. The return keyword specifies the
value to return.

• By default, variables and functions are created in the global namespace.
You can prepend them with the local keyword to keep them in the local
scope instead.

• Loops have the form for x in list do ... end or
for i = start,end,step do ... end.

• We also have while loops and if-elseif-else blocks, similarly de-
fined (that is, do to begin the body of the block and end to end it).

6.3.2 Creating a Protocol and Defining Fields

fpm.lua has a lot of comments, which are worth reading for details on why
the dissector is written the way it is. It also has some features we will not bother
with, such as configuration and debugging with different verbosity levels.



6.3. EXTENDING WIRESHARK 103

The actual dissector code begins with

--------------------------------------------------------------------------------

-- creates a Proto object, but doesn't register it yet

local fpm_proto = Proto("fpm", "FPM Header")

This defines a new Proto object. The protocol dissection will be nested under
this, so all fields will begin with fpm, the first argument. Compare this with
the filter dns.count.answers > 0, where dns is the top-level value. The
second argument is the verbose name for the protocol. Again comparing with
DNS, this is the equivalent of “Domain Name System” in the packet details.

The next thing in the file is a helper function

----------------------------------------

-- a function to convert tables of enumerated types to value-string tables

-- i.e., from { "name" = number } to { number = "name" }

local function makeValString(enumTable)

local t = {}

for name,num in pairs(enumTable) do

t[num] = name

end

return t

end

Given a mapping A 7→ B, this creates the inverse mapping B 7→ A. We use
this in

local msgtype = {

NONE = 0,

NETLINK = 1,

}

local msgtype_valstr = makeValString(msgtype)

Here we have defined an enumeration msgtype that assigns a protocol value
(0 or 1) to a name (NONE or NETLINK), and then creates the reverse msg-

type_valstr. This means that when we extract a message type from a packet,
we can use msgtype_valstr to recover the name.



104 CHAPTER 6. TRAFFIC

The FPM protcol has three header fields, and these are what we define next.

----------------------------------------

-- a table of all of our Protocol's fields

local hdr_fields =

{

version = ProtoField.uint8 ("fpm.version", "Version", base.DEC),

msg_type = ProtoField.uint8 ("fpm.type", "Type", base.DEC, msgtype_valstr),

msg_len = ProtoField.uint16("fpm.length", "Length", base.DEC),

}

-- register the ProtoFields

fpm_proto.fields = hdr_fields

The last line sets this mapping as the protocol’s fields. For each field, we use
a class method to construct an explicitly sized object, with the field name (eg,
fpm.type), the text to display for the field (eg, “Type”), the format for the field
(eg, base.DEC for decimal), and optionally a mapping to display a text field
corresponding to the numeric value (eg, msgtype_valstr).

Next we define the header length (which is constant in this case) and provide
forward declarations for helper functions.

-- this is the size of the FPM message header (4 bytes) and the minimum FPM

-- message size we need to figure out how much the rest of the Netlink message

-- will be

local FPM_MSG_HDR_LEN = 4

-- some forward "declarations" of helper functions we use in the dissector

local createSllTvb, dissectFPM, checkFpmLength

If we have a variable header length (like the IPv4 header), then we would want
a minimum length.



6.3. EXTENDING WIRESHARK 105

6.3.3 The Dissector

Nowwe come to the actual dissector, which is somewhat long. We have omitted
the definition of tvbs and dprint2. The comments are very descriptive, so
we will just note that we have to look at all of the data in the packet, because
there might be multiple messages or partial messages. The return value at the
end of this should either be the total number of bytes consumed by the dissector
(that is, we have converted these bytes into one or more complete messages)
or −1 times the number of bytes we need to complete the partial message at
the end of the packet. Some of the work has been pushed to the dissectFPM
helper function, which we will look at after this function.

--------------------------------------------------------------------------------

-- The following creates the callback function for the dissector.

-- It's the same as doing "fpm_proto.dissector = function (tvbuf,pkt,root)"

-- The 'tvbuf' is a Tvb object, 'pktinfo' is a Pinfo object, and 'root' is a TreeItem object.

-- Whenever Wireshark dissects a packet that our Proto is hooked into, it will call

-- this function and pass it these arguments for the packet it's dissecting.

function fpm_proto.dissector(tvbuf, pktinfo, root)

dprint2("fpm_proto.dissector called")

-- reset the save Tvbs

tvbs = {}

-- get the length of the packet buffer (Tvb).

local pktlen = tvbuf:len()

local bytes_consumed = 0

-- we do this in a while loop, because there could be multiple FPM messages

-- inside a single TCP segment, and thus in the same tvbuf - but our

-- fpm_proto.dissector() will only be called once per TCP segment, so we

-- need to do this loop to dissect each FPM message in it

while bytes_consumed < pktlen do

-- We're going to call our "dissect()" function, which is defined

-- later in this script file. The dissect() function returns the

-- length of the FPM message it dissected as a positive number, or if

-- it's a negative number then it's the number of additional bytes it

-- needs if the Tvb doesn't have them all. If it returns a 0, it's a

-- dissection error.

local result = dissectFPM(tvbuf, pktinfo, root, bytes_consumed)

if result > 0 then

-- we successfully processed an FPM message, of 'result' length

bytes_consumed = bytes_consumed + result



106 CHAPTER 6. TRAFFIC

-- go again on another while loop

elseif result == 0 then

-- If the result is 0, then it means we hit an error of some kind,

-- so return 0. Returning 0 tells Wireshark this packet is not for

-- us, and it will try heuristic dissectors or the plain "data"

-- one, which is what should happen in this case.

return 0

else

-- we need more bytes, so set the desegment_offset to what we

-- already consumed, and the desegment_len to how many more

-- are needed

pktinfo.desegment_offset = bytes_consumed

-- invert the negative result so it's a positive number

result = -result

pktinfo.desegment_len = result

-- even though we need more bytes, this packet is for us, so we

-- tell wireshark all of its bytes are for us by returning the

-- number of Tvb bytes we "successfully processed", namely the

-- length of the Tvb

return pktlen

end

end

-- In a TCP dissector, you can either return nothing, or return the number of

-- bytes of the tvbuf that belong to this protocol, which is what we do here.

-- Do NOT return the number 0, or else Wireshark will interpret that to mean

-- this packet did not belong to your protocol, and will try to dissect it

-- with other protocol dissectors (such as heuristic ones)

return bytes_consumed

end

6.3.4 Dissecting the Bytes

Most of the real work is being done in the following helper function. It will
start by checking the number of bytes we have received so far, and see whether
we have a complete message. The while loop in the dissector ensures we are
only dealing with a single protocol message here. If we do not have enough
data yet, we return −1 times the number of bytes still to come, as returned by
checkFpmLength. If we have a complete message, we pull apart the bytes
within it and build up the protocol’s dissection tree. All that you really need



6.3. EXTENDING WIRESHARK 107

to know about the Tvb type is that it has a range instance method that takes
an offset and number of bytes and returns a TvbRange, and that TvbRange
can be converted to useable types with its instance methods like uint. The
TvbRange is what you add to the tree for a given field. This particular protocol
has internal data that can either be parsed as the NetLink protocol or the generic
Data protocol.

----------------------------------------

-- The following is a local function used for dissecting our FPM messages

-- inside the TCP segment using the desegment_offset/desegment_len method.

-- It's a separate function because we run over TCP and thus might need to

-- parse multiple messages in a single segment/packet. So we invoke this

-- function only dissects one FPM message and we invoke it in a while loop

-- from the Proto's main disector function.

--

-- This function is passed in the original Tvb, Pinfo, and TreeItem from the Proto's

-- dissector function, as well as the offset in the Tvb that this function should

-- start dissecting from.

--

-- This function returns the length of the FPM message it dissected as a

-- positive number, or as a negative number the number of additional bytes it

-- needs if the Tvb doesn't have them all, or a 0 for error.

--

dissectFPM = function (tvbuf, pktinfo, root, offset)

dprint2("FPM dissect function called")

local length_val, length_tvbr = checkFpmLength(tvbuf, offset)

if length_val <= 0 then

return length_val

end

-- if we got here, then we have a whole message in the Tvb buffer

-- so let's finish dissecting it...

-- set the protocol column to show our protocol name

pktinfo.cols.protocol:set("FPM")

-- set the INFO column too, but only if we haven't already set it before

-- for this frame/packet, because this function can be called multiple

-- times per packet/Tvb

if string.find(tostring(pktinfo.cols.info), "^FPM") == nil then

pktinfo.cols.info:set("FPM")

end

-- We start by adding our protocol to the dissection display tree.

local tree = root:add(fpm_proto, tvbuf:range(offset, length_val))



108 CHAPTER 6. TRAFFIC

-- dissect the version field

local version_tvbr = tvbuf:range(offset, 1)

local version_val = version_tvbr:uint()

tree:add(hdr_fields.version, version_tvbr)

-- dissect the type field

local msgtype_tvbr = tvbuf:range(offset + 1, 1)

local msgtype_val = msgtype_tvbr:uint()

tree:add(hdr_fields.msg_type, msgtype_tvbr)

-- dissect the length field

tree:add(hdr_fields.msg_len, length_tvbr)

-- ok now the hard part - try calling a sub-dissector?

-- only if settings/prefs told us to of course...

if default_settings.subdissect and (version_val == 1) and (msgtype_val == msgtype.NETLINK) then

-- append the INFO column - this will be overwritten/replaced by the

-- Netlink dissector, which sadly appears to clear it but not set

-- anything, so doing this is kind of silly/pointless, but since this

-- is a tutorial script, this showswhat you might want to do for your

-- protocol

if string.find(tostring(pktinfo.cols.info), "^FPM:") == nil then

pktinfo.cols.info:append(": Netlink")

else

pktinfo.cols.info:append(", Netlink")

end

-- it carries a Netlink message, so we're going to create a new Tvb

-- with a a fake Linux SLL header for the built-in Netlink dissector

-- to use

local tvb = createSllTvb(tvbuf, offset + FPM_MSG_HDR_LEN, length_val - FPM_MSG_HDR_LEN)

dprint2("FPM trying sub-dissector for wtap encap type:", default_settings.subdiss_type)

-- invoke the Netlink dissector (we got the Dissector object earlier,

-- as variable 'netlink')

netlink:call(tvb, pktinfo, root)

dprint2("FPM finished with sub-dissector")

else

dprint2("Netlink sub-dissection disabled or not Netlink type, invoking 'data' dissector")

-- append the INFO column

if string.find(tostring(pktinfo.cols.info), "^FPM:") == nil then

pktinfo.cols.info:append(": Unknown")

else

pktinfo.cols.info:append(", Unknown")

end

tvbs[#tvbs+1] = tvbuf(offset + FPM_MSG_HDR_LEN, length_val - FPM_MSG_HDR_LEN):tvb()

data:call(tvbs[#tvbs], pktinfo, root)

end



6.3. EXTENDING WIRESHARK 109

return length_val

end

6.3.5 Determining the Length of a Message

Now we look at the function to determine whether we have a complete mes-
sage. If all protocol messages are not the same length, this will have to do some
parsing without actually consuming bytes. It returns a pair of values. The first
element the length of the message,−1 times the number of bytes still needed, or
0 if there was an error. If we have not yet received enough bytes to determine the
actual message length, we instead return -DESEGMENT_ONE_MORE_SEGMENT.
The second element is the TvbRange object containing the message, or nil if
we do not yet have a complete message.

----------------------------------------

-- The function to check the length field.

--

-- This returns two things: (1) the length, and (2) the TvbRange object, which

-- might be nil if length <= 0.

checkFpmLength = function (tvbuf, offset)

-- "msglen" is the number of bytes remaining in the Tvb buffer which we

-- have available to dissect in this run

local msglen = tvbuf:len() - offset

-- check if capture was only capturing partial packet size

if msglen ~= tvbuf:reported_length_remaining(offset) then

-- captured packets are being sliced/cut-off, so don't try to desegment/reassemble

dprint2("Captured packet was shorter than original, can't reassemble")

return 0

end

if msglen < FPM_MSG_HDR_LEN then

-- we need more bytes, so tell the main dissector function that we

-- didn't dissect anything, and we need an unknown number of more

-- bytes (which is what "DESEGMENT_ONE_MORE_SEGMENT" is used for)

dprint2("Need more bytes to figure out FPM length field")

-- return as a negative number

return -DESEGMENT_ONE_MORE_SEGMENT

end



110 CHAPTER 6. TRAFFIC

-- if we got here, then we know we have enough bytes in the Tvb buffer

-- to at least figure out the full length of this FPM messsage (the length

-- is the 16-bit integer in third and fourth bytes)

-- get the TvbRange of bytes 3+4

local length_tvbr = tvbuf:range(offset + 2, 2)

-- get the length as an unsigned integer, in network-order (big endian)

local length_val = length_tvbr:uint()

if length_val > default_settings.max_msg_len then

-- too many bytes, invalid message

dprint("FPM message length is too long: ", length_val)

return 0

end

if msglen < length_val then

-- we need more bytes to get the whole FPM message

dprint2("Need more bytes to desegment full FPM")

return -(length_val - msglen)

end

return length_val, length_tvbr

end

6.3.6 Adding the Dissector to Wireshark

The last thing we need to do is add our dissector to Wireshark’s table of dis-
sectors. We get the appropriate table for mapping TCP ports to dissectors with
DissectorTable.get("tcp.port"), and then call the instancemethod add
with the port to use and the Proto object.

--------------------------------------------------------------------------------

-- We want to have our protocol dissection invoked for a specific TCP port,

-- so get the TCP dissector table and add our protocol to it.

local function enableDissector()

-- using DissectorTable:set() removes existing dissector(s), whereas the

-- DissectorTable:add() one adds ours before any existing ones, but

-- leaves the other ones alone, which is better

DissectorTable.get("tcp.port"):add(default_settings.port, fpm_proto)

end

-- call it now, because we're enabled by default

enableDissector()



6.4. FIREWALLS 111

local function disableDissector()

DissectorTable.get("tcp.port"):remove(default_settings.port, fpm_proto)

end

6.4 Firewalls

Linux generally comes with a firewall package called iptables. This can
actually do more than just filter out traffic that might be harmful. It can also
be used to create a network address translator (NAT) or set quality of service
(QoS) bits in a packet.

iptables has four default tables:

• filter does packet filtering, which is what you would typically think
of as firewall behavior

• nat provides network address translation

• mangle modifies packets, typically for quality of service

• raw is used for anything that does not fit elsewhere

When you want to operate on a specific table (the default is filter), you can
specify the table with the -t option.

Each table contains a set of chains, and each chain contains a list of rules. At
different stages of processing a packet, different chains will be invoked. For a
particular chain, the rules are checked in order until one matches. The standard
chains are

• PREROUTING: This is applied to packets before routing. That is, before
the host consults the routing table for the next hop. This chain exists in
the nat, mangle, and raw tables.



112 CHAPTER 6. TRAFFIC

• INPUT: This is applied to packets with this host as the destination. It
exists in the filter, nat, and mangle tables.

• FORWARD: If the current host is neither the source nor destination (that is,
it is forwarding the packet), this chain is applied. It exists in the filter
and mangle tables.

• OUTPUT: This is applied to packets originating at this host. It exists in all
tables.

• POSTROUTING: This is applies after the outgoing interface has been de-
termined by the routing table, but before the packet is passed to that in-
terface. It exists in the nat and mangle tables.

Here is a summary table:

Chain filter nat mangle raw

PREROUTING no yes yes yes
INPUT yes yes yes no
FORWARD yes no yes no
OUTPUT yes yes yes yes
POSTROUTING no yes yes no

You can view a chain with the --list option. You can also define your own
chains with -N (new chain). As noted previously, the chains are ordered lists
of rules. Each rule has a condition and a target. The first rule whose condition
is met by the packet is applied, and the rest are ignored. Chains will have a
default policy, usually with a target of ACCEPT or DROP, for any packets that
do not match another rule. This can be set with the -P option, which takes the
chain and target as options. The most common filter targets are:

• ACCEPT: The packet passes through the chain.

• DROP: The packet is silently dropped.



6.4. FIREWALLS 113

• REJECT: The packet is dropped, and an error message is returned.

There aremany other targets, which are documented inhttps://www.frozentux.
net/iptables-tutorial/iptables-tutorial.html#TARGETS.
Some of these allow you to modify the packet, such as changing addresses,
ports, or protocol options.

To append a new rule to a chain, you use the -A option. To replace a rule, you
use the -R option. To insert a rule (moving the rest down), you use the -I
option. To delete a rule, you use the -D option. Except for appending, you need
to specify the index at which the operation should be applied. These begin at
1. The general format for these operations is, after the initial option, the chain,
the index (where appropriate), the conditions, and the target (specified with the
-j option).

Here are some examples (all operating on the filter table):

iptables -A INPUT -p tcp --dport 1234 -j ACCEPT

This appends a rule to the INPUT chain, with the TCP protocol and a destination
port of 1234. These packets should be accepted.

iptables -R INPUT 1 -p tcp --dport 4321 -j ACCEPT

Assuming we began with an empty chain, this replaces the rule above with the
same rule, but the destination port changed to 4321. The original rule is no
longer present.

iptables -I INPUT 1 -p udp --dport 1234 -j ACCEPT

This inserts a new rule before the one we created, specifying that UDP packets
with a destination port of 1234 should be accepted.

https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#TARGETS
https://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#TARGETS


114 CHAPTER 6. TRAFFIC

iptables -D INPUT 2

This removes the TCP rule, leaving only the UDP rule.


	Preface
	Introduction
	Terminology and References
	Some Linux Basics
	Course Structure

	Network Overview
	The OSI Model
	Internet Protocol
	Naming

	Connecting Hosts
	Transport Layer and Multiplexing
	netcat — Simple Data Exchange
	Standard Ports and Services
	Finding Active Ports
	Local Networking
	Examining Devices with [0.75]ifconfig (The Old Way)
	Examining Devices with iproute2 (The New Way)
	Creating Virtual Devices

	End-to-End Connections
	Network Namespaces
	Using Namespaces to Create Virtual Hosts
	Routing Between Namespaces
	Network Emulation
	Adding Bridge Nodes


	Interactions Between Layers
	Domain Name System
	Network Blocks
	Layers 2 and 3
	Scanning for Hosts and Ports

	Network Programming
	Socket Programming
	Creating a socket
	Socket options
	Socket addresses
	Servers
	Clients
	Efficient Multiplexing

	Data Transfer
	Reading and Writing
	Formatting Data
	Defining Messages


	Traffic
	Packet Structure
	Packet Capture
	[0.75]tcpdump
	Wireshark
	[0.75]tshark and [0.75]dumpcap

	Extending Wireshark
	Lua Syntax Highlights
	Creating a Protocol and Defining Fields
	The Dissector
	Dissecting the Bytes
	Determining the Length of a Message
	Adding the Dissector to Wireshark

	Firewalls


