

2

A General Systems Handbook

Michael Marsh

ii

Preface

This book is designed to be a handy reference for students taking systems courses
in Computer Science. It covers a range of topics from some basic architectural
details, to numeric representations in memory, to a number of useful tools. It is
not intended to be exhaustive, but should be a good starting point, so that you
are better-equipped to find and understand more detailed documentation.

iii

iv PREFACE

Contents

Preface iii

1 Some Architecture Basics 1

1.1 Process Memory Layout . 1

1.2 Types of Memory . 2

1.3 Segmented Virtual Memory 3

1.4 Loading a Binary . 3

1.5 Processing Instructions . 6

1.6 The Stack and Function Callings 8

2 Numeric Representations 13

2.1 Integer Type Sizes . 13

2.2 Byte Encoding . 14

2.3 Host and Network Byte Order 15

v

vi CONTENTS

2.4 Converting Between Encodings 15

3 Git 17

3.1 Installation . 17

3.2 Basic Git Operations . 18

3.2.1 init . 18

3.2.2 status . 20

3.2.3 add . 21

3.2.4 commit . 22

3.2.5 log . 23

3.2.6 clone [may require Internet access] 24

3.2.7 init –bare . 25

3.2.8 push [may require Internet access] 25

3.2.9 pull [may require Internet access] 26

3.2.10 config . 26

3.3 More Advanced Git Operations 27

3.3.1 rm . 27

3.3.2 mv . 28

3.3.3 .git/config . 29

3.3.4 remote . 30

CONTENTS vii

3.3.5 branch . 32

3.3.6 tag . 33

3.3.7 checkout . 35

3.3.8 update-index and ls-files 37

3.3.9 tag . 38

3.3.10 merge . 38

3.3.11 fetch [may require Internet access] 39

3.3.12 Dealing with conflicts 40

3.3.13 reset . 42

3.3.14 gitk . 43

4 Linux System Administration 45

4.1 Root . 45

4.2 Running as Another User . 47

4.3 Managing Users and Groups 48

5 Network Commands 51

5.1 ifconfig . 51

5.2 ip link . 53

5.3 ip address . 53

5.4 Routing Tables . 54

viii CONTENTS

5.5 Connecting Layers 2 and 3 55

5.6 Existing Network Connections 56

5.7 Examining Connectivity . 56

5.8 Finding Other Hosts . 58

6 Docker 61

6.1 Installation . 61

6.2 Docker Images . 63

6.3 Running an Image in a Container 65

6.4 Stopping a Running Container 69

6.5 Removing Stopped Containers 70

6.6 Other Options for Running Containers 70

6.7 Executing Commands in a Running Container 71

6.8 Getting Process Output . 71

7 Python 73

7.1 Terminal Output . 74

7.2 Terminal Input . 74

7.3 Files . 76

7.4 Scalar Types . 76

7.5 Iterable Types . 77

CONTENTS ix

7.6 Dictionaries . 78

7.7 None . 79

7.8 List Comprehensions . 79

7.9 Formatted Strings . 80

7.10 Control Flow . 80

7.11 Combining Lists . 81

7.12 Functions . 82

7.13 Classes . 84

7.14 Modules . 85

7.15 Useful Modules . 86

7.16 A Complete Script . 88

8 Python Scapy 89

8.1 Importing Scapy . 89

8.2 Reading and Writing Packet Capture Files 90

8.3 Dissecting Packets and Frames 91

8.4 Creating Scapy Objects . 92

8.5 Sending and Receiving Packets 94

x CONTENTS

Chapter 1

Some Architecture Basics

Let’s take a brief look at how things work in a typical computer. We will focus
on a single process, which is a program instance being run by the operating
system’s kernel.

1.1 Process Memory Layout

A typical process layout contains (from lowest memory addresses to highest):

• Text – this is where the actual binary instructions are stored

• Data – global and static data that’s initialized when the program starts

• BSS – global and static data that is uninitialized when the program starts

• Heap – dymanmically allocated memory

• unallocated space

• Stack – function-local data

1

2 CHAPTER 1. SOME ARCHITECTURE BASICS

The heap and stack grow and shrink as the program runs, the heap from the bot-
tom up through previously unallocated space, and the stack from the top down.
It’s important to not that while the stack grows downwards, data strucutres
in the stack still behave normally, address-wise. That is, if we have an array
in the stack, the address of the first element of the array is the lowest mem-
ory address of the array. Somewhat confusingly, we refer to the lowest stack
memory address as the top of the stack.

1.2 Types of Memory

When we think of memory, we’re usually thinking of Random-Access Memory
(RAM). There are other types of memory, however, and typically the faster
memory accesses are, the less of that type of memory we have, due to cost.

The absolute fastest memory is part of the procesor. This memory consists of a
set of registers, which are used for computations that are currently in progress,
or certain state that the processor needs to keep track of.

Between the registers and RAM there are usually between 1 and 3 layers of
cache. These are fast RAM chips where data actively being accessed is stored.
When looking up amemory address during execution, the cache is checked first.
A cache hit means the values can be read or written very quickly. A cache miss
means we have to go to the main memory, which is noticeably slower.

In order to support memory needs beyond what the computer physically has
available, many operating systems support virtual memory, which includes swap
space. This is a region of an attached disk (such as your hard drive) that the
kernel can use to store data that doesn’t fit in RAM. A page fault means that a
memory address is located in a page of memory (a large block) that is in swap,
rather than RAM. When more working memory (in RAM) is needed, pages are
swapped out to disk. This is, by far, the slowest type of local memory access.
If your system is making considerable use of swap, you will notice it running

1.3. SEGMENTED VIRTUAL MEMORY 3

substantially slower.

1.3 Segmented Virtual Memory

Virtual memory has another use beyond allowing for extra space. The common
memorymodel is segmented virtual memory, whichwhich each process is given
a restricted view of the memory space. From the perspective of the process,
it exists in a computer with addresses in the range (for a 32-bit architecutre)
0x0000001 through 0x7fffffff, and those are the only addresses it can see.
The processor translates memory access requests from the process from the
memory segment’s address to the actual address in main memory (or cache).

If a process attempts to access memory outside of this range, it generates a
segmentation violation (SEGV) signal, which produces a Segmentation Fault.
This prevents processes from reading or writing memory belonging to other
processes (sometimes called “stomping”).

1.4 Loading a Binary

When you compile (and assemble) a program, it produces a binary file. When
we run the program, it loads this file into memory and sets up the data structures
needed for execution. Let’s consider this in a series of steps.

First, we have a C file (foo.c):

#include <stdio.h>

int main(int argc, char** argv) {

for (int i = 0; i < 10; ++i) {

printf("i = %d\n",i);

}

return 0;

}

4 CHAPTER 1. SOME ARCHITECTURE BASICS

Now, let’s compile this with gcc -S foo.c. This produces an assembly file
foo.s, with the following for main:

main:

.LFB0:

.cfi_startproc

endbr64

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $32, %rsp

movl %edi, -20(%rbp)

movq %rsi, -32(%rbp)

movl $0, -4(%rbp)

jmp .L2

.L3:

movl -4(%rbp), %eax

movl %eax, %esi

leaq .LC0(%rip), %rdi

movl $0, %eax

call printf@PLT

addl $1, -4(%rbp)

.L2:

cmpl $9, -4(%rbp)

jle .L3

movl $0, %eax

leave

.cfi_def_cfa 7, 8

ret

.cfi_endproc

If we then assemble this (producing foo), we can view the assembly and cor-
responding bytecode in gdb:

(gdb) disassemble/r main

Dump of assembler code for function main:

0x0000000000001149 <+0>: f3 0f 1e fa endbr64

0x000000000000114d <+4>: 55 push %rbp

0x000000000000114e <+5>: 48 89 e5 mov %rsp,%rbp

0x0000000000001151 <+8>: 48 83 ec 20 sub $0x20,%rsp

0x0000000000001155 <+12>: 89 7d ec mov %edi,-0x14(%rbp)

0x0000000000001158 <+15>: 48 89 75 e0 mov %rsi,-0x20(%rbp)

0x000000000000115c <+19>: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

1.4. LOADING A BINARY 5

0x0000000000001163 <+26>: eb 1a jmp 0x117f <main+54>

0x0000000000001165 <+28>: 8b 45 fc mov -0x4(%rbp),%eax

0x0000000000001168 <+31>: 89 c6 mov %eax,%esi

0x000000000000116a <+33>: 48 8d 3d 93 0e 00 00 lea 0xe93(%rip),%rdi

0x0000000000001171 <+40>: b8 00 00 00 00 mov $0x0,%eax

0x0000000000001176 <+45>: e8 d5 fe ff ff callq 0x1050 <printf@plt>

0x000000000000117b <+50>: 83 45 fc 01 addl $0x1,-0x4(%rbp)

0x000000000000117f <+54>: 83 7d fc 09 cmpl $0x9,-0x4(%rbp)

0x0000000000001183 <+58>: 7e e0 jle 0x1165 <main+28>

0x0000000000001185 <+60>: b8 00 00 00 00 mov $0x0,%eax

0x000000000000118a <+65>: c9 leaveq

0x000000000000118b <+66>: c3 retq

End of assembler dump.

Themiddle section (between the : and assembly) is the bytecode corresponding
to the assembly that follows it. Note that the assembly is in a different format
than in foo.s, but it should be fairly straightforward to connect them.

Here’s the important part: The bytecode for this function is (with some refor-
matting):

f30f 1efa 5548 89e5 4883 ec20 897d ec48

8975 e0c7 45fc 0000 0000 eb1a 8b45 fc89

c648 8d3d 930e 0000 b800 0000 00e8 d5fe

ffff 8345 fc01 837d fc09 7ee0 b800 0000

00c9 c3

If we view the program with xxd foo, we’ll see the following:

00001140: f30f 1efa e977 ffff fff3 0f1e fa55 4889

00001150: e548 83ec 2089 7dec 4889 75e0 c745 fc00

00001160: 0000 00eb 1a8b 45fc 89c6 488d 3d93 0e00

00001170: 00b8 0000 0000 e8d5 feff ff83 45fc 0183

00001180: 7dfc 097e e0b8 0000 0000 c9c3 0f1f 4000

Notice that about halfway through the first line, we see the beginning of the
bytecode as reported by gdb. In fact, if we look at the first line from gdb, it
reports an address of 0x1149, and if we count the bytes from the offset in the

6 CHAPTER 1. SOME ARCHITECTURE BASICS

file of 0x1140 (as shown above), we see that this corresponds to the location
of the first byte in the file!

1.5 Processing Instructions

Because we hadn’t run the program yet in gdb, we were only seeing addresses
relative to the start of the Text section of the process, not the actual addresses.
Once we start the program, we’ll see the actual addresses. If we set a breakpoint
in main, then run, we’ll see something like the following when we disassem-
ble:

(gdb) disassemble main

Dump of assembler code for function main:

=> 0x0000560f61c4b149 <+0>: endbr64

0x0000560f61c4b14d <+4>: push %rbp

0x0000560f61c4b14e <+5>: mov %rsp,%rbp

0x0000560f61c4b151 <+8>: sub $0x20,%rsp

0x0000560f61c4b155 <+12>: mov %edi,-0x14(%rbp)

0x0000560f61c4b158 <+15>: mov %rsi,-0x20(%rbp)

0x0000560f61c4b15c <+19>: movl $0x0,-0x4(%rbp)

0x0000560f61c4b163 <+26>: jmp 0x560f61c4b17f <main+54>

0x0000560f61c4b165 <+28>: mov -0x4(%rbp),%eax

0x0000560f61c4b168 <+31>: mov %eax,%esi

0x0000560f61c4b16a <+33>: lea 0xe93(%rip),%rdi # 0x560f61c4c004

0x0000560f61c4b171 <+40>: mov $0x0,%eax

0x0000560f61c4b176 <+45>: callq 0x560f61c4b050 <printf@plt>

0x0000560f61c4b17b <+50>: addl $0x1,-0x4(%rbp)

0x0000560f61c4b17f <+54>: cmpl $0x9,-0x4(%rbp)

0x0000560f61c4b183 <+58>: jle 0x560f61c4b165 <main+28>

0x0000560f61c4b185 <+60>: mov $0x0,%eax

0x0000560f61c4b18a <+65>: leaveq

0x0000560f61c4b18b <+66>: retq

End of assembler dump.

Now we’re seeing actual memory addresses, with an indicator that we’re on the
first instruction of the function. Running info frame then gives us:

1.5. PROCESSING INSTRUCTIONS 7

(gdb) info frame

Stack level 0, frame at 0x7ffc71427c20:

rip = 0x560f61c4b149 in main; saved rip = 0x7f20725020b3

Arglist at 0x7ffc71427c10, args:

Locals at 0x7ffc71427c10, Previous frame's sp is 0x7ffc71427c20

Saved registers:

rip at 0x7ffc71427c18

There’s a lot here, but the important thing is:

rip = 0x560f61c4b149 in main; saved rip = 0x7f20725020b3

Here, rip is the register holding the instruction pointer, and it’s value is the
address of the start of main. This register tells the CPU the address at which
the next instruction to process resides in memory.

How does the CPU process this instruction? It begins by reading the byte at the
instruction pointer. If that byte represents a complete instruction, it executes it
and advances the instruction pointer to the next byte. If the first byte is only
the start of an instruction, it continues reading bytes until it gets a complete
instruction to execute, and then advances the instruction pointer by the number
of bytes read.

Not all sequences of bytes represent valid instructions, however. Let’s consider
an analogy: We’re reading a simple mathematics problem, “multiply 3 and 5”.
Taking this one character at a time, we can see the following sequence of events:

1. “m” – not a complete instruction

2. “mu” – not a complete instruction

3. “mul” – not a complete instruction

4. “mult” – not a complete instruction

8 CHAPTER 1. SOME ARCHITECTURE BASICS

5. “multi” – not a complete instruction

6. “multip” – not a complete instruction

7. “multipl” – not a complete instruction

8. “multiply” – not a complete instruction

9. “multiply “ – instruction type recognized, but more information needed

Wewould continue reading characters until we have a complete instruction, and
then we would solve the math problem.

Now consider the case where our “instruction pointer” is off by one:

1. “u” – not a complete instruction

2. “ul” – not a complete instruction

3. “ult” – not a complete instruction

4. “ulti” – not a complete instruction

5. “ultip” – no valid instruction begins with these letters!

When this happens to the CPU, it signals that it received an Illegal Instruction.
The same thing happens for an instruction like “multiply 3 and grapefruit”.

1.6 The Stack and Function Callings

We’re going to take a look at the structure of the stack. When we call a function,
we add a new frame to the stack, containing state for that function call. This
includes the arguments passed to it, local variables, some working space, and

1.6. THE STACK AND FUNCTION CALLINGS 9

information about what to do when the function returns. This information in-
cludes the next instruction pointer (as we saw previously), and where the calling
function’s stack frame is.

Because the stack grows into the unused memory between it and the heap, it can
get a bit confusing. Adding to this confusion is the fact that the stack interacts
with a number of CPU registers, and actually holds old values of some registers
so that they can be restored.

The stack grows in two ways:

1. When a function calls another function, it adds a new stack frame below
its own frame (in terms of addresses). This is lowest-addressed frame is
referred to being at the top of the stack.

2. Within a function, we sometimes add new local variables or other values
to the stack. These are added below the memory address of the “top”
of the stack. This lowest address is stored in a register esp (on 32-bit
systems) or rsp (on 64-bit systems), and is called the stack pointer.

We also have a base pointer (ebp or rbp). This provides a reference address
for all of the local variables in the current (top) stack frame. While the stack
pointer register just holds an address representing whatever is at the top of the
stack (lowest address), the base pointer register holds the address of another
pointer address.

So, what does the stack hold at rbp? It holds the base pointer of the calling
function. The stack also holds another important address just above this, which
is the return address for the function. Because our instructions are in the pro-
cess’s text section, the instruction pointer rip keeps track of the next instruction
to execute. Function calls make this jump around, though, so when a function
calls another function, it needs to store the address of the instruction to execute
after that other function returns. That’s the return address, or saved instruction
pointer. To see all of this in action, let’s consider the following code, which
we’ve put in file bar.c:

10 CHAPTER 1. SOME ARCHITECTURE BASICS

#include <stdio.h>

void g(int a) {

int b = a*4;

printf("%d x 4 = %d\n",a,b);

}

void f(int a) {

int b = a*3;

g(b);

}

int main(int argc, char** argv) {

f(3);

return 0;

}

This is a very simple sequence of function calls: main calls f, and f calls g.
We’ll examine the registers and stack with gdb. When we’re in f, just before
calling g, we see the following registers:

(gdb) info registers rsp rbp

rsp 0x7ffc59e797e0 0x7ffc59e797e0

rbp 0x7ffc59e79800 0x7ffc59e79800

This tells us that the stack pointer is 0x7ffc59e797e0, and the base pointer is
0x7ffc59e79800, so there are 32 bytes on the stack for local variables.

When we continue executing into g, we see:

(gdb) info registers rsp rbp

rsp 0x7ffc59e797b0 0x7ffc59e797b0

rbp 0x7ffc59e797d0 0x7ffc59e797d0

We’ve now added another 48 bytes (0x7ffc59e797e0-0x7ffc59e797b0) to
the stack, and the current base pointer is 0x7ffc59e797d0. We can examine
the frame, as well:

1.6. THE STACK AND FUNCTION CALLINGS 11

(gdb) info frame

Stack level 0, frame at 0x7ffc59e797e0:

rip = 0x555f3085f158 in g (bar.c:4); saved rip = 0x555f3085f1a2

called by frame at 0x7ffc59e79810

source language c.

Arglist at 0x7ffc59e797a8, args: a=9

Locals at 0x7ffc59e797a8, Previous frame's sp is 0x7ffc59e797e0

Saved registers:

rbp at 0x7ffc59e797d0, rip at 0x7ffc59e797d8

We know the current frame’s structure, so we know that the caller’s frame starts
at address 0x7ffc59e797e0, as we saw before. It’s also telling us that it’s
saved the caller’s base pointer at 0x7ffc59e797d0, which we just saw is the
current base pointer, and the instruction pointer is saved at 0x7ffc59e797d8,
which is 8 bytes (or 64 bits) above the base pointer.

We can verify that the current base pointer’s address holds the previous base
pointer by examining the memory directly:

(gdb) x/a 0x7ffc59e797d0

0x7ffc59e797d0: 0x7ffc59e79800

If we compare this with the base pointer in f before calling g, we see that they
are identical.

12 CHAPTER 1. SOME ARCHITECTURE BASICS

Chapter 2

Numeric Representations

2.1 Integer Type Sizes

We are used to thinking of a byte as 8 bits (which isn’t strictly true, but is almost
always the case), but larger sizes become more ambiguous.

It used to be the case (when 32-bit processors were dominant) that an int in C
would be 4 bytes (32 bits), a short int would be 2 bytes, and a long int

would be 8 bytes. All of these are signed quantities. unsigned int is the
corresponding non-negative 4-byte integer value.

With most processors now being 64-bit, these have shifted somewhat. Now an
intmight be 8 bytes, though short and longmay ormay not be twice as long.
In many programs, we don’t really care, but when we’re encoding numbers, this
becomes very important.

The header file stdint.h contains the following types, which you should use
when you want to ensure the size of the value in bytes:

Type Size (bytes) Signed/Unsigned
int8_t 1 signed

13

14 CHAPTER 2. NUMERIC REPRESENTATIONS

int16_t 2 signed
int32_t 4 signed
int64_t 8 signed
uint8_t 1 unsigned
uint16_t 2 unsigned
uint32_t 4 unsigned
uint64_t 8 unsigned

2.2 Byte Encoding

Numbers have to be stored in memory on a host. They also have to be saved in
files and sent over the network. This seems simple, but how a number is stored
is more complicated than you might expect.

While a single-byte integer value is easy (“10” is “0A” in hex), once you have
more than one byte, you have to consider the specific architecture. There are
two main architectures commonly used: big endian (BE) and little endian (LE).
In big endian encoding, the most significant byte of the number comes first in
memory. In little endian encoding, the least significant byte come first.

Some examples might help:

Number Size (bytes) BE LE
12 2 00 0C 0C 00

3072 2 0C 00 00 0C

4660 2 12 34 34 12

13330 2 34 12 12 34

12 4 00 00 00 0C 0C 00 00 00

201326592 4 0C 00 00 00 00 00 00 0C

2.3. HOST AND NETWORK BYTE ORDER 15

2.3 Host and Network Byte Order

The host’s architecture specifies the host byte order, but when exchanging val-
ues over the network, we can’t have architecture-dependent ambiguity. Con-
sequently, the networking community decided on big endian as the standard
network byte order.

Because of this, if we receive a 4-byte integer value 0000000C, we can safely
assume these bytes represent the number 12, not 201326592, regardless of how
our host interprets this sequence of bytes.

2.4 Converting Between Encodings

The C standard library has a number of functions to handle conversions between
BE and LE encoding. Other languages have their own mechanisms, which you
can look up if you need them. Here is a summary (header files might vary from
system to system, such as):

Function Size (bytes) Input Encoding Output Encoding Header
htons 2 host network arpa/inet.h

ntohs 2 network host arpa/inet.h

htonl 4 host network arpa/inet.h

ntohl 4 network host arpa/inet.h

htobe16 2 host big endian sys/types.h

htole16 2 host little endian sys/types.h

be16toh 2 big endian host sys/types.h

le16toh 2 little endian host sys/types.h

htobe32 4 host big endian sys/types.h

htole32 4 host little endian sys/types.h

be32toh 4 big endian host sys/types.h

le32toh 4 little endian host sys/types.h

htobe64 8 host big endian sys/types.h

16 CHAPTER 2. NUMERIC REPRESENTATIONS

htole64 8 host little endian sys/types.h

be64toh 8 big endian host sys/types.h

le64toh 8 little endian host sys/types.h

Chapter 3

Git

Git has become the de-facto standard revision control system, so it’s worth tak-
ing some time to familiarize ourselves with some basic, and not-so-basic, con-
cepts. Most git commands can be done without Internet access, since they’re
purely local. We’ll label the commands that potentially require network access,
though the commands in this chapter can be run completely self-contained on
any Posix-compatible host with git installed.

3.1 Installation

If you already have git installed, you can skip the rest of this section. We rec-
ommend installing git on any machine (laptop or desktop) on which you expect
to work.

If you’re on a Linux system, then it’s somewhat likely that git is already in-
stalled; if not, you can use your favorite package manager to install it. Don’t
forget to install the documentation, if it’s in a separate package!

If you’re using MacOS, you have some options:

17

18 CHAPTER 3. GIT

1. Download and install git from https://git-scm.com/download/mac

2. If you’re using Homebrew, brew install git git-sh (search for
“git” to see other potentially useful packages)

3. MacPorts also has a git package

If you’re using Windows, you can download the git installer from

• https://git-scm.com/download/win

This includes both a GUI and a git bash shell.

3.2 Basic Git Operations

Here we have the basic commands that you’ll use on a regular basis. You should
become familiar with all of these. Before we start, we have to introduce the
concept of a repository. This is a directory hierarchy that’s managed as a single
unit under source control. Generally, this is some software project, possibly the
entire thing or a component (for very large projects). It can be anything that’s
predominantly text files, though. Many people keep documents that they’re
writing in git (or some other source control), especially when using LaTeX,
HTML, docbook, or any other non-graphical text preparation systems.

3.2.1 init

This creates a repository, either in an empty directory, or one already containing
code. Create a new directory, let’s call it “testing”:

3.2. BASIC GIT OPERATIONS 19

mkdir ~/testing

Now, let’s go into this directory and create a file:

cd ~/testing

date > created_on

So far, all we have is a directory with a single file in it, nothing special:

find .

The find command is an incredibly useful utility, and you’ll learn new features
of it for years to come, even when using it heavily. Run man find to read the
documentation.

Now let’s make this a git repository:

git init .

If we run our find command again, we see that there’s now a directory called
.git with lots of stuff in it. You can also run

ls -A

if you don’t want to see the whole recursive list of files. There’s one file in
particular that we’re going to look at later: .git/config

20 CHAPTER 3. GIT

3.2.2 status

As you might guess from the name, this is going to tell you things about your
repository and working directory. At this point, we need to go into terminology
a little bit.

The repository is the collection of data currently under git’s revision control.
It’s generally kept in a compressed format, for efficient storage.

The working directory, in contrast, is the set of “normal” files that you’re work-
ing with. Some of these will be in the repository, and some won’t be. Let’s go
back to our example repository and see how these relate.

Start by running

git status

You should see something like the following:

On branch main

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

created_on

nothing added to commit but untracked files present (use "git add" to track)

This is telling us that the repository is empty (no commits – more on that later!),
but the working directory contains files that aren’t in the repository (Untracked
files).

3.2. BASIC GIT OPERATIONS 21

3.2.3 add

OK, so let’s add something to the repository! We’re going to shorten “reposi-
tory” to “repo”, because that’s the term people most commonly use. The add
command is what will tell git that you want to include a file in a commit:

git add created_on

You can specify a directory, or a wildcard, in your add command. The risk with
these is that you end up with derived binary files (or log files) in your repo.
These aren’t useful, and binary generally can’t be compressed by git, so it’s
wasteful of space. Try to avoid adding directories or using wildcards unless
you really know what you’re doing.

Now run git status again. You should see something like:

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: created_on

Note the little comment on unstaging files. If you add more than you’d intended
to, this can save your bacon.

This is also how you “stage” modified files for a commit. That is, if a file is
under revision control (it’s in the repo), but the working directory has a newer
version, you would use git add to include it in a commit.

22 CHAPTER 3. GIT

3.2.4 commit

So far, we still don’t have anything in our repo. That’s what commit is for. Why
are these separate? Let’s say we have some new files to add, some to rename,
and a few to delete (we’ll talk about these last two later). We can run several git
commands to stage the commit, without writing them to the repo yet. This gives
us the chance to review what we’re planning to do, and fix things as necessary.
The commit is then an atomic unit of change to the repo. Consequently, we
generally want to group closely related changes in a single commit. Don’t be
afraid to do multiple commits in a row – they’re cheap!

So, what does a commit look like? There are a couple of common ways to do
this (there are actually many options you can use):

git commit -m 'Committing my first file!'

or

git commit

The difference between these is this: Every commit must include a logmessage.
This is how you know, at a high level, what the purpose of this commit is.
By specifying the -m flag and a string, we’re passing the log message on the
command line. If we omit this, we’re put into an editor, where we can add our
message interactively. The first line is going to be a short summary, but the log
entry itself can be as long as you need it to be. I often use the log message to
keep track of things that still need to be done, or some additional information
about the commit that’s useful to know.

If you’re using the interactive editor, just save the file and exit, and git will take
care of the rest. Let’s say we used the command-line message flag. Let’s run
git status again:

3.2. BASIC GIT OPERATIONS 23

On branch master

nothing to commit, working tree clean

Ta-da!

3.2.5 log

So, we now have a repo with something in it. How do we know what the state
of the repo is? The easiest way is with the log command:

git log

When I run this, I see the following:

commit 702223c70752248a5d54f16586f6501a47fd2e52 (HEAD -> master)

Author: Michael Marsh <mmarsh@cs.umd.edu>

Date: Tue Jan 16 16:01:48 2018 -0500

Committing my first file!

We can get more information with

git log -p

This gives you the log with “patches” that modify the repo from the previous
commit to the one listed.

One thing you might have noticed is that the commit is a long hexadecimal
number. This is a SHA-1 hash, which is what git uses to identify absolutely
everything: files, directories, commits, etc.

24 CHAPTER 3. GIT

3.2.6 clone [may require Internet access]

git lets you share a repo between users and machines. It does this very well,
which is why it’s so popular. The way you get a repo from elsewhere is by
cloning it. Let’s see this in action:

cd ~

mkdir another

cd another

git clone ~/testing

Take a look at ∼/another/testing, using the commands we’ve been using
so far. Let’s do even more! From ∼/another:

git clone ~/testing more_testing

Compare∼/another/testing and∼/another/more_testing. They should
be identical! Here we’ve illustrated the ability to specify a destination directory
for clone. If unspecified, the repo name of our source will be the name of the
destination. This is especially useful when youwant tomake sure that the repos-
itory you just pushed to actually contains what you think, since you can have a
second (clean) copy in another directory (see “pull”, below).

Here, we’ve cloned a repo in a local directory. This is of limited usefulness,
since generally you’re going to want to clone repos stored on other machines.
We’ll deal with this later, but the general thing we’ll see is a command like one
of the following:

git clone https://example.com/repo_name

git clone user@example.com:repo_name

The latter is what we’ll mostly use for repos that we’re editing.

3.2. BASIC GIT OPERATIONS 25

3.2.7 init –bare

We’re now going to create another repo, this time slightly differently:

mkdir ~/testing2

cd ~/testing2

git init --bare .

What we’ve now done is create a bare repository. This is a repo without a corre-
spondingworking directory. Delete∼/another/testing and∼/another/more_testing,
and re-clone them from ∼/testing2 instead of ∼/testing.

3.2.8 push [may require Internet access]

Go into ∼/another/testing (or testing2, depending on whether you pro-
vided a destination directory), and create a file. It doesn’t matter what you call
it, or what’s in it. Add and commit it to the repo. Now run

git push

You should see something like:

Counting objects: 3, done.

Writing objects: 100% (3/3), 205 bytes | 205.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To /Users/mmarsh/classes/another/../testing2

* [new branch] master -> master

What we’ve just done is to send our commit to the repo that we cloned. In fact,
this will send all local commits we may have that the cloned repo (called the
“remote”) does not yet have. The default remote is named “origin”.

26 CHAPTER 3. GIT

3.2.9 pull [may require Internet access]

Now go to ∼/another/more_testing, and run

git pull

Take a look at the working directory and the git log. They should be identical
to the repo and working directory from which we just pushed.

As with push, this will synchronize our local repo and working directory with
whatever was newer at the remote.

You can also specify a source from which to pull, generally a remote. We’ll talk
about remotes later.

3.2.10 config

You may have noticed that your log messages have a rather generic-looking
committer name and email address. You were probably also warned about this.
The log message I showed you above, however, had a real name and email
address. This seems like it would be really useful!

There are a couple of ways to set these. One of which is to edit the user’s
configuration file by hand. The other way is to run the config command:

git config --global user.name "Your Name"

git config --global user.email "your_email@example.com"

Any subsequent commits will now have more useful attribution. Make sure you
do this anywhere you use git!

3.3. MORE ADVANCED GIT OPERATIONS 27

3.3 More Advanced Git Operations

You can get pretty far with the previous commands, but there’s a lot you’ll need
to do beyond what these cover.

3.3.1 rm

Projects accumulate garbage. It happens. That means sometimes we need to
get rid of a file. That’s where rm comes in. Let’s go back to ∼/testing. Now
run

git rm created_on

What does git status tell us? Let’s commit it now:

git commit -m "removed created_on"

The file is now gone from your working directory, and the repo! But only sort-
of…

A key feature of git (or any revision control) is the ability to revert to previous
versions of the repo. Run git log, and you’ll see something like:

commit eef4f0ba06411f678bb741aaf6d06d580d82011a (HEAD -> master)

Author: Michael Marsh <mmarsh@cs.umd.edu>

Date: Tue Jan 16 16:32:25 2018 -0500

removed created_on

commit 702223c70752248a5d54f16586f6501a47fd2e52

Author: Michael Marsh <mmarsh@cs.umd.edu>

Date: Tue Jan 16 16:01:48 2018 -0500

Committing my first file!

28 CHAPTER 3. GIT

The earlier commit is still there! Let’s not worry about this just yet.

3.3.2 mv

Sometimes you need to rename a file. Let’s do the following (in ∼/testing):

touch foobar

git add foobar

git commit -m "adding foobar"

Now we have a file named foobar. Let’s say we really wanted to just call it
foo. There are two ways we can do this. The hard way:

mv foobar foo

git add foo

git rm foobar

If you run git status, you’ll see:

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

renamed: foobar -> foo

git is smart enough to see that there used to be a file that looks extremely close
(or identical) to the new file, so it was probably just renamed! We can tell git
this explicitly with a single command:

git mv foo bar

3.3. MORE ADVANCED GIT OPERATIONS 29

Now we see essentially the same result. The file has both been renamed in the
working directory, and a commit staged renaming it in the repo.

Commit this to update the repo. Don’t forget to push your commit if you’re
working with a remote!

3.3.3 .git/config

There’s a lot we can configure about a repo. All of this can be done with
command-line utilities, but it’s often easier to go right to the configuration file.
This is often the only file in the .git directory you’ll have to worry about.
Here’s what my version of ∼/testing/.git/config looks like:

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

ignorecase = true

precomposeunicode = true

This isn’t very interesting. Let’s look at∼/another/more_testing/.git/config

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

ignorecase = true

precomposeunicode = true

[remote "origin"]

url = /home/vmuser/testing2

fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]

remote = origin

merge = refs/heads/master

30 CHAPTER 3. GIT

There’s a lot more going on here! In particular, we’ve defined a remote and a
branch. We already saw that a remote is another repo with which we’re going
to synchronize. Let’s look at this a bit more.

3.3.4 remote

You can have many remotes for a local repo. In most cases, you only have one.
In this course, because we’re Computer Scientists, we’re going to usually have
two, and sometimes three!

The git remote command tells you the names of your defined remote repos.
More useful is to add the -v flag:

git remote -v

should produce something like

origin /home/vmuser/testing2 (fetch)

origin /home/vmuser/testing2 (push)

You can add another remote to your .git/config by copying an existing
block. Let’s look at the remote defined in the config file in more_testing

again:

[remote "origin"]

url = /home/vmuser/testing2

fetch = +refs/heads/*:refs/remotes/origin/*

Now, let’s create another bare repo:

3.3. MORE ADVANCED GIT OPERATIONS 31

mkdir ~/testing3

cd ~/testing3

git init --bare .

cd ~/another/more_testing

We can define this as another remote, by copying and modifying the block
above. Our .git/config file will now look like:

[core]

repositoryformatversion = 0

filemode = true

bare = false

logallrefupdates = true

ignorecase = true

precomposeunicode = true

[remote "origin"]

url = /home/vmuser/testing2

fetch = +refs/heads/*:refs/remotes/origin/*

[remote "other"]

url = /home/vmuser/testing3

fetch = +refs/heads/*:refs/remotes/other/*

[branch "master"]

remote = origin

merge = refs/heads/master

Note the changes we made: the remote name in the block definition, the url,
and the refs in the fetch parameter. Don’t worry about what these mean,
just make sure that the remote name on the fetch line matches the name of the
remote.

Now, run

git push other master

Congratulations! You’ve just created a fork!

32 CHAPTER 3. GIT

3.3.5 branch

You may have noticed that git frequently refers to master (sometimes main),
and sometimes refers to it as a “branch”. Branches are another fundamental con-
cept in git. It’s like forking, but it’s completely internal to your repo (branches
can be pushed or pulled independently). Branches are also very lightweight –
it’s another SHA-1 hash stored somewhere that says, “this commit is the head
of another branch.” We haven’t talked about heads yet, but they’re essentially
just the latest commit on a branch, whether local or remote. That is, until you
push, your local head is newer than the remote’s head. Once you push, they’re
identical (until someone else pushes or you make another commit).

When working on your own, you’ll often only have one branch, by default
named either master or main. Sometimes you want to create new branches,
though. This can be very useful if you’re experimenting with some changes,
and you don’t want to mess up your master branch. If the changes don’t work
out, you can just abandon or delete that branch, and no harm done. We’ll get to
merging branches in a bit.

When working with others, it’s often helpful to use separate branches, either
per-developer or per-feature under development. That way, you’re less likely
to step on each other’s toes. There’s also a model of development, called Git-
Flow, where you have a master branch as your “production” version, a branch
for each feature under development, short-term branches for bugfixes, and a
“development” or “dev” branch to merge features and bugfixes back together
before merging them into master. The reason for the dev branch is so that you
can test the changes to make sure that nothing else broke in the process. Very
occasionally, you might have “hotfix” branches that get merged directly into
master; those are for critical bugs in production.

So, now that we’ve got the motivation behind branches, how do we create one?
It’s really pretty easy:

3.3. MORE ADVANCED GIT OPERATIONS 33

cd ~/another/more_testing

git branch test_branch

You’ve now created a new branch, named test_branch, which is currently
the same as the master branch. You can verify the existence of this branch:

git branch

Note that there’s an asterisk beside master – that means we’re still on the
master branch, not our new branch. We’ll get to that soon.

You can also delete a branch:

git branch -d test_branch

git branch

See? The branch is now gone!

You can also specify a different starting point for a branch, whether a branch, a
commit ID, or a tag (which we’ll see later).

I rarely create branches this way, because there’s a neat one-step way to create
a new branch and make it active. That’s our next command.

3.3.6 tag

Sometimes you don’t need to create a new branch, but you do want to keep
track of a particular commit. This commonly happens when you make a public
release of your code, so that you know exactly what code was in that release.
For this, we often use tags.

34 CHAPTER 3. GIT

Where a branch is an alias for the head of a chain of commits, a tag is an alias
for a particular commit. We can create tags easily with

git tag v1_0

This creates a git object named v1_0 (for our 1.0 release) that is an alias to the
current commit. You can specify a different commit after the tag name, if you
like.

Once you have created the tag, you can treat it in much the same way as a
branch. That is, it is something you can refer to by name, rather than having to
use an explicit commit identifier. You can see all of the available tags with

git tag -l

You can update an existing tag with

git tag -f v1_0

Otherwise, creating a new tag with an existing name will fail. To delete a tag,
you would run

git tag -d v1_0

Tags are not pushed to remote repositories by default. If you want your tags to
be pushed, you need to run

3.3. MORE ADVANCED GIT OPERATIONS 35

git push --tags

What we have described so far are lightweight tags, which might be enough
for your needs. You can also create an annotated tag, which looks more like
a commit, in that it has an author, date, and commit message. To create an
annotated tag:

git tag -a -m "release version 1.0" v1_0

As with commit, if you omit the -m option, you will be presented with an editor
to enter the message.

3.3.7 checkout

This is how you control what version of the repo your working directory is
configured to. Let’s create test_branch again, and then use checkout to
make it active:

git branch test_branch

git checkout test_branch

git branch

The asterisk should now be beside test_branch, indicating that we’re cur-
rently working on that branch. Do the following:

touch bar

git add bar

git commit -m "adding bar"

git log

36 CHAPTER 3. GIT

You should see your latest commit has been applied to test_branch, not mas-
ter. Further, you should see that the previous commit is labelled with master,
origin/master, and other/master. These last two indicate branches on
your configured remotes.

Now run:

git push origin test_branch

git log

See? The remote origin now has your branch on it! Now, let’s do the follow-
ing:

ls

git checkout master

ls

git checkout test_branch

ls

What do you see? If we had different versions of any files in the two branches,
we’d see those changes appear and disappear as we checkout one branch or the
other.

I mentioned the one-liner to create and switch to another branch. We do this
with checkout:

git checkout -b another_branch

You’re now working on another_branch, and it’s identical to the branch you
were just on. This is probably the most likely way you’ll create a branch, when
you use them.

3.3. MORE ADVANCED GIT OPERATIONS 37

3.3.8 update-index and ls-files

These are two very useful commands when you’re writing scripts and storing
them in git. I have often seen students commit a script to git, and then ask why
it’s not running when I am doing a grading pass. The reason is that they haven’t
told git that the script file should be executable. If you set the execute bit before
adding the file to a commit for the first time, git will pick this up automatically.
If, however, you add and commit it before making it executable, you have to
go back and tell git to record the executable bit for the file.

Fortunately, this is easy to do using git update-index. This command tells
git that you want to change some of the metadata about one or more files, as
opposed to modifying the contents of the file. Let’s say we have foo.sh, but
git doesn’t (yet) know that it should be an executable bash script. We can fix
this by running

git update-index --chmod=+x foo.sh

This behaves like the standard Posix chmod (change mode) command, which
is used to change permissions on a file or directory. In particular, we’re telling
it to add the executable (x) bit. This also adds the file to a commit, so you’ll
then just need to do the actual commit (and push, if necessary.

Let’s say you’re not sure if the executable bit is set. That’s where git ls-

files comes in. If you run

git ls-files --stage foo.sh

it will show you the index entry for the file. The first column will be an octal
number like 100644 or 100755. The last three digits tell you (respectively) the
owner, group, and other permissions. The first bit is whether the file is readable,
the second writable, and the third exectuable. That means 100644 means the

38 CHAPTER 3. GIT

owner can read and write the file, and everyone else can only read it. 100755
means the executable bit is set for everyone.

3.3.9 tag

Sometimes you want to mark a particular commit for later reference, and you
don’t want to change this reference as development continues. You can do this
with a tag, which is just a name attached to a commit. You can use these tags
any time you would use a commit or other reference. You can even create a
branch off of a tag.

We’re not going to go into detail about this command, but it’s useful to know
about. Run man git-tag for more information, if you’re curious.

3.3.10 merge

Say we’re developing on branches. Eventually, we’re going to want to com-
bine at least some of those branches back together. We do that with the merge
command. If you’re on one branch, you can easily merge in the commits from
another. We’re currently on another_branch, so let’s switch to master, and
merge another_branch into it.

git checkout master

git merge another_branch

Use git status, git log, and ls to see what’s changed in the repo now.
You can merge a branch, commit, tag, or any other kind of reference. See the
man pages for lots of detail.

Occasionally, if two people have modified the same file, you’ll have problems
when trying to merge. This may happen when you pull from a remote, as well.

3.3. MORE ADVANCED GIT OPERATIONS 39

We’ll discuss merge conflicts later.

3.3.11 fetch [may require Internet access]

This is a basic command to get the changes to the repo from your remotes,
without merging them in. To fetch a single remote:

git fetch other

To fetch all remotes:

git fetch --all

The pull command is actually a fetch and merge rolled into one, so (on the
branch master)

git pull other

is equivalent to

git fetch other

git merge other/master

The fetch command is useful if you just want tomake sure you have the remote
repos downloaded to your local machine. This can be important if you’re going
to be working without an Internet connection.

40 CHAPTER 3. GIT

3.3.12 Dealing with conflicts

Let’s make some simultaneous edits on separate branches, and then try to merge
them together. When you’re working on a group project, this is likely to occur
at some point, unless you’re extremely careful.

git checkout master

echo "This is a file" > file1

git add file1

git commit -m "adding file1"

git checkout test_branch

echo "This is my file" > file1

git checkout master

git merge test_branch

You should see a message like:

Auto-merging file1

CONFLICT (add/add): Merge conflict in file1

Automatic merge failed; fix conflicts and then commit the result.

So, how do we deal with this? First:

cat file1

It should look like:

<<<<<<< HEAD

This is a file

=======

This is my file

>>>>>>> test_branch

3.3. MORE ADVANCED GIT OPERATIONS 41

This tells you that the current branch HEAD has one version of the file contents,
and test_branch has another. You may see several of these in each file with
a conflict.

The important thing you need to do is to manually resolve all of the conflicts.
You can search a document for “««” as an easy way to find them. Everything
from the “«««<” line to the “»»»>” line must be replaced with whatever you de-
termine is correct. Often, this will be removing one of the conflicting changes,
leaving the other intact. Sometimes you will have to do something more com-
plicated. Let’s say the version on test_branch is the one we really wanted. We’d
then replace that entire block above with

This is my file

Save that, and run git status. You’ll see that we’re in a merge conflict, with
both branches having added file1. Helpfully, git tells us what to do:

(fix conflicts and run "git commit")

or, if we decide this was a bad idea:

(use "git merge --abort" to abort the merge)

In this case, we’ve already examined and resolved the conflict, so we follow
the instruction:

(use "git add <file>..." to mark resolution)

and run:

42 CHAPTER 3. GIT

git add file1

git commit

Save the log message file, and exit. We now have completed our merge! See
what the log shows.

3.3.13 reset

When things stop working, sometimes starting over is easier than trying to find
and fix the error. One of the nice features of git is that you can “go back” to any
of your commits. For example, if you want to reset your repository to the state
it was in when you last committed, run:

git reset --hard HEAD

More generally, you can restore your local repository to any previous commit.
To do this, find the commit hash of the commit you want to restore (e.g. via
git log) and run:

git reset --hard <hash>

However, since this discards changes to all files in the repository, it’s not ideal
if only one or two files are broken, and the rest have changes you want to keep.
Fortunately, git has a way to restore individual files. To reset file1, run:

git checkout [<commit hash>] -- file1

(Note: the ‘commit hash’ argument is optional. If you omit it, git will default
to using the previous commit)

3.3. MORE ADVANCED GIT OPERATIONS 43

IMPORTANT: The ability to restore old versions can be incredibly useful, but
only if you make regular commits. There will be a time when you’ll need to
reset your repository – if your last working commit was five minutes ago, this
will be a minor setback; if it was five hours ago, you’ll be much less happy.
Remember: commit early, commit often!

3.3.14 gitk

This is not a core git command, but it’s often installed alongside with git. gitk
is a Tk-based graphical display for git. It can be extremely useful for exploring
your repo, including remotes. The basic invocation is

gitk

Thiswill show the entire history of your current branch, including other branches
that were merged into it, any tags, and any relevant remotes. Play around with
this for a more complex repo, say one you’ve cloned from github.

Often, it’s useful to see more information than this provides. Try running

gitk --all

This will not only show the current branch’s history, but all branches in your
repo.

That should be enough to get you started with git. In fact, most of your tasks will
use the commands we’ve gone through here, with few if no options provided.
The man pages have a lot more information, starting with man git. For a
command git foo, the manpage would be man git-foo.

44 CHAPTER 3. GIT

Chapter 4

Linux System
Administration

If you’re just getting started with administrative commands, tread carefully!
There’s a lot you can screw up accidentally. If you’re reading this to fix the
problem of not being able to access a shared folder, go ahead and skip to the
very end, but then come back and read the rest later.

4.1 Root

This is the normal administrative account; it has privileges which allow it to
do nearly anything on the host. As such, when running as the root user, you
need to be very careful about what you do. It is also called the “supervisor” or
“superuser” account.

On older systems, there was typically a password for the root account, and you
would open a shell as the root user (or login to the system) using this password.
The su command is what you would use if you were already logged into the

45

46 CHAPTER 4. LINUX SYSTEM ADMINISTRATION

system as a normal user, and wanted to “become root”. We still use su occa-
sionally, but we use it slightly differently, as we’ll see later.

Now, it’s more common for root not to have a password, so we have to have
another way to become root. For this, we have the sudo command. Here’s how
it works (the $ indicates a normal user command prompt):

$ wc -c /var/log/tallylog

wc: /var/log/tallylog: Permission denied

$ sudo wc -c /var/log/tallylog

64128 /var/log/tallylog

If you haven’t run sudo recently, it will prompt you for your password. This is
because you’ve been granted special permission to call sudo in the file/etc/sudoers

$ groups

vmuser adm cdrom sudo dip plugdev lpadmin sambashare wireshark docker vboxsf

$ grep %sudo /etc/sudoers

/etc/sudoers: Permission denied

$ sudo grep %sudo /etc/sudoers

%sudo ALL=(ALL:ALL) ALL

Let’s unpack this. First we list all of the permissions groups to which we be-
long. One of these is named sudo. If we look for this group (which is what
prepending % denotes) in the file /etc/sudoers, we see that there’s a match-
ing line. However, along the way we discover that /etc/sudoers is itself
only readable by root, so we have to use sudo to run grep over the file!

What does the line in /etc/sudoers mean? Here it is again:

%sudo ALL=(ALL:ALL) ALL

If we run man sudoers, we can see all of the documentation, but we’ll cut to
the chase. First, %sudo means this is a rule for the permission group sudo, of

4.2. RUNNING AS ANOTHER USER 47

which we happen to be a member. If you leave off the %, then this would match
on username instead.

Next, we have the hosts on which this is valid, since this file might be shared be-
tween a number of similarly configured hosts. In this case, we use the wildcard
ALL. So far we have

%sudo ALL

to indicate that on all hosts, the group sudowill have the specified permissions.
After the =, we see (ALL:ALL). This says that we’re allowed to run as any user
or group. We could have restricted this to (man:tape) if we wanted to grant
this user or group permission to run as the man user (which can install or rebuild
the database of manual pages) or the tape group (for access to a tape drive).

Finally, the last ALL says that when running as the provided user or group, we’re
allowed to run any command.

4.2 Running as Another User

The easiest way to run as another user is to use the -u option to sudo:

$ whoami

vmuser

$ sudo -u man whoami

man

Since you can run any command you like, you could also use this to start a shell:

48 CHAPTER 4. LINUX SYSTEM ADMINISTRATION

$ sudo -u man /bin/bash

$ whoami

man

$ exit

exit

$

One thing that’s important to note, however, is that each shell has an environ-
ment, which defines things like the directory path to search for executables,
special options to pass certain programs, etc. Sometimes you don’t want to
carry the environment over to the new shell, but rather have the shell initial-
ized as if the target user had just logged in. For this, we can use the -i flag.
Compare the output of the following:

$ sudo /usr/bin/env

$ sudo -i /usr/bin/env

This can be very important in some circumstances, and often when starting a
root shell, you’ll want to include the -i flag. The following two commands end
up being equivalent:

$ sudo -i /bin/bash

$ sudo su -

Here, the - option to su says to treat this as a login shell, just like sudo -i.

4.3 Managing Users and Groups

We’re going to consider just a couple of things here: changing passwords and
assigning users to groups. These should be the bulk of what you need to do.

To change your own password, run:

4.3. MANAGING USERS AND GROUPS 49

$ passwd

Changing password for vmuser.

(current) UNIX password:

You are prompted for your current password, then for the new password, and
finally for the new password again, just to make sure you typed it correctly.

When run as root, you can change another user’s password:

$ sudo passwd man

Enter new UNIX password:

Now you’re only prompted for the new password, not the current one. This is
because you’re running it as the superuser.

We saw the groups command earlier, which lists your current groups. You can
switch your currently active group (which on our VM defaults to vmuser) by
running newgrp:

$ echo $GROUPS

1000

$ newgrp docker

$ echo $GROUPS

124

It is important to note that when you run newgrp, you open a new shell. That
means your shell history will be gone, until you exit from that shell and return
to your previous shell (and group).

Most of the time, you will not need to change your active group, but you might
need to change the list of groups to which you belong. For this, you run the
vigr command (as root):

50 CHAPTER 4. LINUX SYSTEM ADMINISTRATION

$ sudo vigr

In particular, let’s say we’re on a VirtualBox VM with user vmuser, and con-
sider the following line at the bottom of the file:

vboxsf:x:999:

If you see this line, it means the vmuser account will not be able to access
shared folders. We can fix this by changing the line to:

vboxsf:x:999:vmuser

Now, when we save and quit, we’ll see a message telling us to run vigr -s,
which edits the shadow copy of the file. This is a security feature that hides
some of the group details from the /etc/group file. Run:

$ sudo vigr -s

and make the same change:

vboxsf:!::vmuser

At this point, you will have to log out of your VM and back in (you don’t need
to restart it, though that will also work), and you’ll now have access to shared
folders!

Chapter 5

Network Commands

Most Posix systems will have the same set of commands you can call from the
shell. Linux added the iproute2 suite of tools, which provide the same func-
tionality with some additional bells and whistles.

Classic Posix Command iproute2 Equivalent
ifconfig ip link, ip address

route, netstat -r ip route, ip route get

Most iproute2 subcommands can be abbreviated, such as ip addr instead of
ip address. You will need to install the iproute2 package to have access
to these.

5.1 ifconfig

This command gives you information about all of the network devices on the
host, whether configured or not. For example, on a VirtualBox VM:

51

52 CHAPTER 5. NETWORK COMMANDS

$ ifconfig

enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255

inet6 fe80::a00:27ff:fe9c:c99f prefixlen 64 scopeid 0x20<link>

ether 08:00:27:9c:c9:9f txqueuelen 1000 (Ethernet)

RX packets 319 bytes 195592 (195.5 KB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 258 bytes 41861 (41.8 KB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txqueuelen 1000 (Local Loopback)

RX packets 46 bytes 3982 (3.9 KB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 46 bytes 3982 (3.9 KB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The first entry shows the enp0s2 device. The e typically indicates that this is
an ethernet device. The second entry shows the lo device, which is “loopback”
or “local” (they’re different names for the same thing).

Each one has a set of flags, in this case both devices are UP and RUNNING, which
means they are ready to handle packets. The mtu is the maximum transmission
unit for the connection to the next-hop through that device, which is the number
of bytes a single packet can contain. 65536 is the largest size that an IP packet
can be.

The address for the device is given by inet (or inet6 for IPv6). The netmask
defines the subnet size.

A device with a hardware address also has ether followed by that address.

The rest is mostly statistics for the device. RX means received data, and TX

means transmitted data.

5.2. IP LINK 53

5.2 ip link

The iproute2 suite separates link (device) information from address informa-
tion. For the former, you use the ip link command (in the PDF version this
will be cut off, as it will for some of the later commands):

$ ip link

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

mode DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel

state UP mode DEFAULT group default qlen 1000

link/ether 08:00:27:9c:c9:9f brd ff:ff:ff:ff:ff:ff

Compare these with the information from ifconfig. The format is slightly
different, and there’s a little information that ifconfig didn’t provide, like
qdisc. This is a Linux-specific feature that the Posix command doesn’t know
about.

5.3 ip address

We can get the address information, as well. In fact, this provides us with essen-
tially everything that ifconfig provides, just formatted differently (and with
the Linux additions):

$ ip address

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel

state UP group default qlen 1000

54 CHAPTER 5. NETWORK COMMANDS

link/ether 08:00:27:9c:c9:9f brd ff:ff:ff:ff:ff:ff

inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

valid_lft 72430sec preferred_lft 72430sec

inet6 fe80::a00:27ff:fe9c:c99f/64 scope link

valid_lft forever preferred_lft forever

Now we have the hardware type and address first, followed by the IP and IPv6
addresses. Note that the addresses are given in CIDR notation. The only thing
we don’t have here are the RX and TX statistics.

5.4 Routing Tables

The route command prints out the routing table for the host. Note that some
systems, like MacOS (which is otherwise Posix), have a route command that
behaves a bit differently. Again, from a VM:

$ route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default _gateway 0.0.0.0 UG 100 0 0 enp0s3

10.0.2.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s3

You can also use netstat -r, which should provide identical output.

The iproute2 suite has ip route instead:

$ ip route

default via 10.0.2.2 dev enp0s3 proto dhcp metric 100

10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100

You can see that the information is all there, in different format, with the notable
addition of the source address the host will usewhen sending a new packet based
on that forwarding rule.

5.5. CONNECTING LAYERS 2 AND 3 55

You can also ask what rule a particular address will use:

$ ip route get 10.0.2.10

10.0.2.10 dev enp0s3 src 10.0.2.15 uid 1000

cache

5.5 Connecting Layers 2 and 3

We can examine the ARP cache with either of the following:

$ arp

Address HWtype HWaddress Flags Mask Iface

_gateway ether 52:54:00:12:35:02 C enp0s3

This is the standard Posix command. The fields should be fairly self-explanatory.

$ ip neighbor

10.0.2.2 dev enp0s3 lladdr 52:54:00:12:35:02 DELAY

This is the iproute2 command (which can be abbreviated as short as ip n).

Obviously, on a VM there isn’t much going on. Here’s what we might see on a
laptop:

$ arp -an

? (10.104.80.1) at 0:0:c:7:ac:0 on en0 ifscope [ethernet]

? (172.26.4.1) at 2:e0:52:40:3f:40 on en8 ifscope [ethernet]

? (172.26.5.254) at cc:4e:24:d1:b0:0 on en8 ifscope [ethernet]

? (224.0.0.251) at 1:0:5e:0:0:fb on en8 ifscope permanent [ethernet]

This is on MacOS, so we have to provide -a. The -n prevents addresses from
being converted to hostnames, as with other network commands. The format is
also slightly different, as you can see.

56 CHAPTER 5. NETWORK COMMANDS

5.6 Existing Network Connections

The existence of netstat -rmight provide a hint that netstat can do other
things, as well. Here’s a particularly useful command:

$ netstat -taun

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

tcp6 0 0 ::1:631 :::* LISTEN

udp 0 0 0.0.0.0:42966 0.0.0.0:*

udp 0 0 127.0.0.53:53 0.0.0.0:*

udp 0 0 0.0.0.0:68 0.0.0.0:*

udp 0 0 0.0.0.0:5353 0.0.0.0:*

udp6 0 0 :::50307 :::*

udp6 0 0 :::5353 :::*

Here are what these flags mean:

Flag Meaning
-t match TCP sockets
-u match UDP sockets
-a show all, not just active, sockets
-n just show numeric addresses/ports
-p (not shown) the PID and process name (if permitted)

Note that on MacOS (and some other Posix platforms), -u tells netstat to
display Unix sockets, which are for interprocess communication on the host.

5.7 Examining Connectivity

Our two workhorses here are ping and traceroute. Both take a number of
options, but generally are called as

5.7. EXAMINING CONNECTIVITY 57

ping <destination>

Here’s an example of ping:

$ ping -c 3 gizmonic.cs.umd.edu

PING gizmonic.cs.umd.edu (128.8.130.3) 56(84) bytes of data.

64 bytes from gizmonic.cs.umd.edu (128.8.130.3): icmp_seq=1 ttl=63 time=0.928 ms

64 bytes from gizmonic.cs.umd.edu (128.8.130.3): icmp_seq=2 ttl=63 time=1.57 ms

64 bytes from gizmonic.cs.umd.edu (128.8.130.3): icmp_seq=3 ttl=63 time=1.33 ms

--- gizmonic.cs.umd.edu ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2005ms

rtt min/avg/max/mdev = 0.928/1.280/1.575/0.268 ms

This shows you we have a working network path to gizmonic, as well as the
round-trip times. We lost no packets, and also get to see the statistics for the
round-trip times.

traceroute lets us examine the path between us and a destination:

$ traceroute www.google.com

traceroute to www.google.com (216.58.217.100), 30 hops max, 60 byte packets

1 _gateway (10.0.2.2) 0.240 ms 0.152 ms 0.084 ms

2 router-604.cs.umd.edu (172.26.4.1) 2.840 ms 4.756 ms 6.638 ms

3 csnat03.priv.cs.umd.edu (172.26.127.103) 0.791 ms 0.851 ms 1.129 ms

4 128.8.127.190 (128.8.127.190) 9.209 ms 12.075 ms 15.525 ms

5 * * *

6 129.2.0.178 (129.2.0.178) 2.105 ms 1.412 ms 1.492 ms

7 128.8.0.160 (128.8.0.160) 1.617 ms 1.676 ms 1.676 ms

8 128.8.0.13 (128.8.0.13) 2.628 ms 2.510 ms 2.507 ms

9 206.196.177.200 (206.196.177.200) 2.887 ms 2.982 ms 3.128 ms

10 mbp-t1-1720.maxgigapop.net (206.196.177.109) 4.431 ms 4.330 ms 4.147 ms

11 * * *

12 216.239.54.106 (216.239.54.106) 4.098 ms 4.033 ms 72.14.235.32 (72.14.235.32) 5.498 ms

13 iad23s42-in-f4.1e100.net (216.58.217.100) 4.172 ms 108.170.246.3 (108.170.246.3) 4.860 ms 108.170.246.2 (108.170.246.2) 3.960 ms

You can suppress the conversion of IP addresses to names with the -n flag. The
way traceroute works is that it sends a small packet with a very small TTL

58 CHAPTER 5. NETWORK COMMANDS

flag, and waits to see the ICMP Time Exceeded message, the sender of which
is TTL hops away. Note that this is not reliable, as paths can vary from packet
to packet.

5.8 Finding Other Hosts

Your simplest go-to for looking up a host’s IP address given its name is to use
the host command:

$ host gizmonic.cs.umd.edu

On older systems, you would use

$ nslookup gizmonic.cs.umd.edu

This has been deprecated on newer systems, so you should always use host
when available. If you want more detail about the query and response, you can
use dig instead:

$ dig gizmonic.cs.umd.edu

All of these have a number of options available to you to control what kinds of
queries you perform. They are also able to perform reverse lookups. That is,
given an IP address, they will tell you the (canonical) hostname:

$ host 128.8.130.3

$ dig -x 128.8.130.3

5.8. FINDING OTHER HOSTS 59

You can also find out who registered a domain with whois:

$ whois umd.edu

You can even find out who owns the subnet an address is in:

$ whois 128.8.130.3

60 CHAPTER 5. NETWORK COMMANDS

Chapter 6

Docker

What is docker? You can think of it like a lightweight VM. It’s really consider-
ably different, because it uses the host processor, memory, network stack, etc.,
without creating virtual hardware. We can throw around terms like user-level
filesystems, process groups, and network namespaces, but the important part
is that you can run a self-contained guest Linux OS within another host Linux
OS, with applications and all of their dependencies. The guest can only see the
resources given to it by the host, so it provides some (minimal) level of secu-
rity. It also means we can start a process from a known-clean state, so we have
repeatability.

6.1 Installation

The first thing we need to do is install docker. If you’re running Linux, there’s
a good chance that your package manager already has docker available (don’t
confuse it with a KDE package of the same name!), but for the most up-to-date
version, you can download it from https://docker.com. One slight complication
is if you’re running Red Hat Enterprise Linux; Fedora and CentOS are just fine.
There’s a special version of docker that works with RHEL, but it doesn’t work

61

62 CHAPTER 6. DOCKER

as easily. At this point, you can ignore the rest of this section.

If you’re runningMacOS, then there’s a download available from https://docker.com
called Docker Desktop. It installs and runs easily. At this point, you can ignore
the rest of this section.

If you’re runningWindows, life becomes more complicated. We’re going to re-
strict ourselves to Docker Desktop underWindows 10. The next thing you need
to do is ensure you’re running at least version 2004, which supports Windows
Subsystem for Linux version 2 (WSL 2).

• Go to https://aka.ms/wslstore and get a WSL Linux distribution. Ubuntu
is a good choice.

• Install https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

• In an Admin PowerShell, run the following:

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

– You might need to restart at this point.
– wsl --set-default-version 2

– wsl --set-version Ubuntu 2

• There’s a docker service icon at the bottom right (it’s a whale) – right-
click on it and select “Settings:

– EnableWSL 2 as the engine, instead of Hyper-V. This allows docker
to take advantage of the Windows/Linux integration in the OS.

– Expose the TCP daemon on localhost without TLS.

• For convenience, I suggest doing the following in the Ubuntu shell:

6.2. DOCKER IMAGES 63

ln -s "/mnt/c/Users/<your username>" winhome

That will allow you to access yourWindows home directory fromUbuntu
as ∼/winhome/.

You should now be able to run all docker commands from either PowerShell or
the WSL Ubuntu (or other distribution) shell.

6.2 Docker Images

Let’s start with the concept of an image. This is the self-contained guest Linux
OS, which is configured to automatically run some process when it starts. Noth-
ing is running in it – you can think of it like a hard drive.

The easiest way to get an image is to pull it from a registry. Docker has a default
registry built in. We have, at times, used a course VM that is running Ubuntu
16.04 for a common baseline, and it turns out there’s an image available with
this OS on it! Here’s the command to run:

docker pull ubuntu:16.04

Let’s go through this command. docker is, of course, the utility we’re using.
The pull command tells us that we want to get something from a registry. In
this case, we’re getting the ubuntu image from the default registry. If we just
left it at this, we’d get all of the ubuntu variants. Instead, we add :16.04. That
tells docker we only want one image, and it’s the one with the tag “16.04”.

When the command completes, try running

64 CHAPTER 6. DOCKER

docker images

You should see something like:

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 16.04 2a4cca5ac898 28 hours ago 111MB

Most of this should be fairly self-explanatory. The image ID is another hexadec-
imal number, like with git, but it’s clearly not a SHA-1 hash. It really doesn’t
matter what it is, other than a unique identifier for this image.

We can do a few thingswith this image, aside from running it. Try the following:

docker tag ubuntu:16.04 my_ubuntu

docker images

Note that we now see the same image ID twice, but with different names. By
default, a repository (the tagless part of an image name) is tagged as latest if
you don’t specify one. Let’s try specifying a tag, though:

docker tag ubuntu:16.04 foo:bar

docker images

The results should not be surprising.

We can quickly build up a lot of images we don’t want anymore, so it’s good to
know how to clean these up. Let’s get rid of our new tagged images:

6.3. RUNNING AN IMAGE IN A CONTAINER 65

docker rmi my_ubuntu:latest foo:bar

docker images

A common problem is that we’ll end up reusing an old tag, leaving an image
with no repository:tag name. These show up as <none>:<none>. We can get
rid of all of these with the following bash one-liner:

docker images -a | grep none | awk '{print $3}' | xargs docker rmi

For the curious, feel free to read the man pages for awk and xargs.

The commands here are largely from an older version of docker. Now they’re
aliases to new-style commands. Here’s the mapping:

Old Command New Command
docker images docker image list

docker pull docker image pull

docker rmi docker image rm

docker tag docker image tag

6.3 Running an Image in a Container

Images are all fine and good, but we actually want to use docker to do some-
thing, which means we have to run these images. An image runs in a container.
The container has system resources allocated to it, and runs a program or pro-
grams that exist in the image. A container runs a single image, but an image
may be running in multiple containers.

Containers can also be started with various options, such as elevated privileges,
mounted volumes, environment variables, and so on. Themost basic invocation

66 CHAPTER 6. DOCKER

is

docker run ubuntu:16.04

If you run this, you’ll find that it pauses for a second or so, and then returns to
the command line. If you want to see running containers, run

docker ps

You see headings, but probably no actual containers. Now, try

docker ps -a

Now we have something! Here’s an example of what you might see:

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

1b937126d5bc ubuntu:16.04 "/bin/bash" About a minute ago

Exited (0) About a minute ago upbeat_archimedes

Let’s parse this out:

• The container ID is a unique ID, like the image ID we saw before

• The image should be self-explanatory

• The command is what the container ran. In this case, it’s just bash

• The created time is when the container was started

• The status tells us that this container exited, and is no longer running

6.3. RUNNING AN IMAGE IN A CONTAINER 67

• We have no ports bound, but if we did these would map from local net-
work ports to network ports on the container

• The names are symbolic names used to refer to this container, and are
synonyms for the container ID

By default, names are assigned randomly according to the pattern <adjec-

tive>_<scientist>

We can assign a name to the container, which is often useful:

docker run --name=bash_test ubuntu:16.04

This will behave similarly to the previous command, but if we run

docker ps -a

We’ll now see our container named bash_test along with whatever random
name our first container was assigned.

Usually, an image is defined to do something useful when run non-interactively.
We can get interactive access to the container, though, as follows:

docker run -ti ubuntu:16.04

We’ve passed two new options to docker run. The -t option allocates a pseudo-
TTY, and the -i option makes the container interactive. You should now have
a shell on the container running as root! If you run docker ps in another
terminal, you will see that the container status is “Up

When you’re done playing around in this shell, exit to stop the container.

68 CHAPTER 6. DOCKER

You will often want to have access to your computer’s files in a container. You
can do this with the volumemount option, -v. It takes two directories, separated
by a colon. The first directory is an absolute path to a host directory, while
the second is where this directory should be “mounted” in the container. For
example,

docker run -ti -v "$(pwd):/mnt" ubuntu:16.04

will run the same interactive container as before, but now the /mnt directory
in the container contains the directory in which you ran the docker command
(it is the exact directory, so changes in the container appear on the host, and
vice-versa). It is worth dissecting the argument a bit more. The double quotes
are in case the host directory contains any spaces in it, which has become very
common. The other thing that double quotes do, in contrast to single quotes,
is process any shell expansions. Here, $(pwd) runs the command pwd (print
working directory) and substitutes it into the string. Most Posix systems (such
as Linux) define an empty /mnt directory so that you can mount remote direc-
tories or temporarily connected devices (though these often now appear under
/media).

At this point, you probably want to get rid of these stopped containers. Run:

docker rm bash_test

docker ps -a

You’ll still have the two randomly-named containers, but the one namedbash_test
should no longer be present. Remove the other two, as well.

We don’t have to run the configured program in a container; we can run any
command that’s present on the image. Let’s see this in action:

6.4. STOPPING A RUNNING CONTAINER 69

docker run ubuntu:16.04 /bin/date

That should print the date in the container. It’s probably in UTC, while running
/bin/date (or the equivalent) on your computer should print the date in your
local time zone. You can also specify options:

docker run ubuntu:16.04 ls /var

Another very useful option is --rm, which will get rid of the container once it
stops:

docker run --rm --name="rm_test" ubuntu:16.04 ls /var

We’ve once again been using old-style commands, which are aliases:

Old Command New Command
docker run docker container run

docker ps docker container ls

6.4 Stopping a Running Container

A container might become unresponsive, or it might be a long-running service
that you want to terminate. You can do this with either of the following:

docker kill <container>

docker stop <container>

70 CHAPTER 6. DOCKER

stop is more graceful, trying SIGTERM first, and then SIGKILL. kill sends
SIGKILL by default, but this can be overridden on the command line.

Old Command New Command
docker kill docker container kill

docker stop docker container stop

6.5 Removing Stopped Containers

As with images, you’ll tend to accumulate lots of stopped containers, unless
you’ve run them all with the --rm option. Fortunately, we can get rid of these
with

docker rm <container>

which is now an alias for

docker container rm <container>

6.6 Other Options for Running Containers

Here are some useful options you might want to use:

Option Argument Effect
--rm removes container after exit
-ti run interactively with a pTTY
-e <vars> set environment variables
-h <hostname> set the container’s hostname

6.7. EXECUTING COMMANDS IN A RUNNING CONTAINER 71

-p <hport>:<cport> map host’s <hport> to container’s <cport>
-v <hdir>:<cdir> mount host’s <hdir> on <cdir>

6.7 Executing Commands in a Running Container

Sometimes you need to examine what’s going on inside a container. That’s
where the exec command can come in handy. It’s a lot like run but for a
container, rather than an image. Here’s a common thing you might want to do:

docker run --name=svc_instance my_service:latest

docker exec -ti svc_instance /bin/bash

What this does is to first start a container using the latest version of the image
my_service, and name the container svc_instance, and then to execute an
interactive bash shell on that container. You don’t have to exec an interactive
command, though. There may be times when you want to run something like:

docker exec svc_instance touch /var/cache/magic_file

in order to change the behavior of a running process. As with the other com-
mandswe’ve looked at, docker exec is now an alias for docker container

exec.

6.8 Getting Process Output

Many processes send their output to STDOUT or STDERR. Since there’s no
TTY available to the process in a container, this output would generally be

72 CHAPTER 6. DOCKER

lost. Docker saves this output for you, however, and you can retrieve these by
running

docker logs <container>

docker container logs <container>

The first command is now an alias for the second command. There are a number
of options, such as --since to limit the timeframe of the logs returned, -f to
continue to follow the logs rather than just dumping their current contents and
exiting, and -t to show timestamps at the beginnings of lines.

Chapter 7

Python

Python has twomajor version in current use: 2.7 and 3. In many cases, these be-
have identially, but there are some differences. Try things out in the interactive
interpreter, which you can start by typing python with no arguments.

For functions, classes, and modules, there’s a built-in help system. Simply type
help(item) for the documentation on item.

An important note about python: scope is indentation-based! A change of
indentation is a change of scope, and you cannot mix spaces and tabs. You
should probably ensure that your editor uses spaces for indentation in python,
and be careful of reflexively using the tab key for indentation unless you’re sure
your editor will replace tabs with spaces. You can break up long statements
on multiple lines, but only if it’s unambiguous that you’re in the middle of a
statement (such as within parenetheses or braces) or you use a line continuation
character. I’m not going to tell you what the continuation character is, since it
makes code ugly.

73

74 CHAPTER 7. PYTHON

7.1 Terminal Output

print is a statement in python2.7, and a function in python3. You can treat it
like a function in both, and it will generally do what you expect:

print('Hello world')

This will print a string to STDOUT.

Printing to STDERR, which is what you should do for debug messages, is more
complex. There are two portable ways to do this:

import sys

sys.stderr.write('Hello world\n')

This uses the filehandle directly.

import sys

from __future__ import print_function

print('Hello world', file=sys.stderr)

Thiswill ensure that the python3-style print function is present, even in python2.7.

7.2 Terminal Input

A simple way to read from STDIN is

7.2. TERMINAL INPUT 75

import sys

while True:

line = sys.stdin.readline()

if '' == line:

break

print(line)

You can also use the raw_input or input functions, but this is where things
get messy. In python2.7, raw_input reads a line from STDIN, while in-
put calls raw_input and then evaluates the result as a python expression. In
python3, input behaves like python2.7’s raw_input, and there is no raw_input
function. We can hack our way around this, though:

if 'raw_input' not in dir(__builtins__):

raw_input = input

try:

while True:

line = raw_input()

print(line)

except:

pass

Note that both of these require some special way to handle the end of file: either
testing against an empty string or handling an exception. A third way is:

import sys

for line in sys.stdin:

print(line)

Note how much simpler this is! This is, in general, how we would read from
any file.

76 CHAPTER 7. PYTHON

7.3 Files

Python has an open function, that opens files for reading or writing, potentially
in binary mode, and possibly (for writing) in append mode. See help(open)
for details. We generally want to use these with the with keyword, which
provides automatic file closing and other cleanup:

with open('input_file.txt') as in_file:

for line in in_file:

pass # This is a no-op

with open('output_file.txt', 'w') as out_file:

out_file.write('Hello world!\n')

with open('output_file.txt', 'w') as out_file:

print('Hello world!', file=out_file)

7.4 Scalar Types

Python has integers and floating-point numbers. Unlike many languages, all
integers are arbitrary-length, as long as you have enough memory to represent
them.

Python2.7 has strings, which do double-duty as byte arrays. In python3, there
is a separate bytes type, and strings are utf-8 encoded by default. Most of the
time, you can ignore these differences. Strings can be single-quoted or double-
quoted. There isn’t much reason to prefer one over the other, though if you
want to use the quote character in the string, you’ll have to escape it:

s1 = "How's it goin'?"

s2 = 'How\'s it goin\'?'

7.5. ITERABLE TYPES 77

7.5 Iterable Types

Python also has lists and tuples. The difference is that a list can be modified, a
tuple cannot:

list1 = [1, 2, 3, 4] # Initialize a list with elements

list2 = [] # Create an empty list

list2.append(1) # Append an item to the list

list3 = list() # Another way to create an empty list

list3.extend([1,2,3]) # Add multiple items to the list

tuple1 = (1, 2, 3, 4) # Create a tuple with explicit entries

tuple2 = tuple(list1) # Create a tuple from another iterable

There are other iterable types, defined by particular methods they have.

Lists and tuples can be accessed by indexes:

list1[0] # first element

list1[-1] # last element

They also support slicing:

list1[1:3] # returns [list1[1], list1[2]]

list1[2:] # returns [list1[2], ..., list1[-1]]

list1[:3] # returns [list1[0], list1[1], list1[2]]

list1[0:3:2] # returns [list1[0], list1[2]]

list1[0::2] # returns all even-indexed entries

list1[::2] # same

You can iterate over the elements of a list or tuple:

for v in list1:

print(v)

78 CHAPTER 7. PYTHON

Note that a string (or byte string) can also be indexed like a list and iterated
over.

If you want to create an iterable of integers, you can use the range function:

stop_val = 10

start_val = 1

step_val = 2

range(stop_val) # range of ints from 0 through 9

range(start_val,stop_val) # range of ints from 1 through 9

range(start_val,stop_val,step_val) # odd ints from 1 through 9

7.6 Dictionaries

A python dictionary, or dict, is a map type.

d = {} # Create an empty dict

d = dict() # Create an empty dict

d = { 'a': 1, 'b': 2 } # Create a dict with initial values

Keys and values can be of any type, and python does not require keys or values
to be uniform in type:

d = dict()

d[1] = 'a'

d['a'] = 2

Dictionaries are also iterable, though the iterator will be the keys, in some order:

for k in d:

print(d[k])

dict has a number of useful methods (see help(dict) for more):

7.7. NONE 79

Method Returns
keys() an iterable containing the keys
values() an iterable containing the values
items() an iterable containing (key,value) tuples
get(k) value for key k, or None if not present
get(k,x) value for key k, or x if not present
pop(k) value for key k, removing entry from dict

7.7 None

Python has a special type called NoneType, which has a single instance, named
None. This is roughly python’s equivalent of null.

7.8 List Comprehensions

Python has some functional programming elements, one of which is list com-
prehensions. Here’s a simple example:

[x**2 for x in xs]

This takes a list of values named xs and returns a list of the values squared.
These can be combined extensively:

[x*y for x in xs for y in ys]

The order can matter:

80 CHAPTER 7. PYTHON

d = dict()

d['a'] = [1,2,3]

d['b'] = [4,5,6]

d['c'] = [7,8,9]

print([x for k in d for x in d[k]])

7.9 Formatted Strings

The simple way to construct a formatted string is to use the string class’s format
function:

s1 = 'This is {} test'.format('a')

s2 = 'The square of {} is {}'.format(2,4)

s3 = '{1} is the square of {0}'.format(2,4)

s4 = 'The first 5 powers of {x} are {pows}'.format(

x=2,

pows=[2**e for e in range(1,6)]

)

7.10 Control Flow

Like any good language, python has a number of control flow expressions. Here
are a few:

if boolean_expression:

do_something

elif boolean_expression_2:

do_something_else

else:

do_default_thing

Both elif and else are optional.

7.11. COMBINING LISTS 81

for x in xs:

do_something

We’ve seen this before; it’s a simple for loop

while boolean_expression:

do_something

In all of these, boolean_expression is just something that evaluates to True
or False (python’s boolean constants). Python will coerce things:

• 0 is False

• any other number is True

• '' (empty string) is False

• any other string is True

• None is False

• [] (empty list) is False

• any other list is True

7.11 Combining Lists

We’ve already seen list.extend() as a way to append an entire list to an-
other. Sometimes we want to do other things, though. Say we have a list of
items, and we’d like to do something that involves their list index. We could do
this:

82 CHAPTER 7. PYTHON

for i in len(xs):

print('item {} of xs is {}'.format(i,xs[i]))

There’s another way we can do this, though:

for (i,v) in zip(range(len(xs)), xs):

print('item {} of xs is {}'.format(i,v))

In this case, it doesn’t seem to buy us much, but if we’ve read in two sequences
from two different sources, but we know they should correlated, then we could
use:

for (a,b) in zip(a_list, b_list):

do_something

The zip function can take multiple sequences, and will truncate the resulting
tuple to the length of the shortest sequence.

7.12 Functions

Python has functions. It even has anonymous functions. Let’s start with normal
functions:

def my_func():

pass

This defines a function named my_func that takes no arguments and does noth-
ing, returning None.

7.12. FUNCTIONS 83

def my_func(a):

pass

Nowwe’ve added an argument to our function. Arguments can be passed based
on position or name:

my_func(1)

my_func(a=1)

The latter is nice, because you don’t have to worry about argument order:

def my_func(a,b):

pass

my_func(b=1,a=2)

A common python idiom is to define very flexible functions like:

def my_func(a,b, *args, **kwargs):

pass

This means we can provide additional positional parameters, which are then
captured by *args, as well as named (keyword) arguments, which are captured
by **kwargs. In this case, args is a tuple, and kwargs is a dict.

A function can return a value. If there is no return statement, the return value
is None:

def my_func():

return 'a'

What about anonymous functions? We define these with the lambda keyword:

84 CHAPTER 7. PYTHON

f = lambda x: x**2

f(2)

This doesn’t look like it gives us a lot of advantages over named functions, but
it can be extremely handy:

num_output = map(lambda x: int(x,16), output)

def my_func(a,b):

return a*b

f = lambda a: my_func(a,2)

7.13 Classes

Without going into a lot of detail, python has a rich type system. Here’s a simple
class:

class Foo(object):

def __init__(self,a):

self.a = a

This defines a type Foo and a constructor that takes two values. Here’s how we
create an instance:

foo = Foo(1)

By calling the class name as a function, python automaticallymakes this a call to
the __init__ method, with the newly allocated instance as the first argument,
named self by convention.

7.14. MODULES 85

Other methods can be defined similarly. Any instance method should have
self as the first argument. Methods are otherwise almost identical to normal
functions.

Python is duck-typed. That is, if it looks like a duck and acts like a duck, it’s
a duck. When you use a value, if it conforms to the expected interface, you’re
good.

You can query an object for its methods and data elements:

dir(foo)

foo.__dict__

7.14 Modules

A module is a python library. We’ve already used the sys and __future__
modules. To use a module foo, you need to import it:

import foo

Now anything defined in foo, say amethod bar, can be accessed through foo’s
namespace:

foo.bar

We can also import things into the current namespace:

from foo import bar

from foo import *

86 CHAPTER 7. PYTHON

The first line means we can reference bar without foo., but the second means
we can reference everything in foo without the namespace. This is gener-
ally a bad idea, because it makes it less clear where a function or class comes
from. Some packages work much better with this type of import, however, like
scapy:

from scapy.all import *

How do we create a module? We’ll keep it easy, and only consider single-file
modules. Feel free to look up more complex modules. If you want to create a
module named foo, you would simply create a file named foo.py, and define
functions, classes, and variables in it as normal. Now, when you import foo,
all of those will exist within foo’s namespace.

foo.py:

def bar(a):

print('foo: {}'.format(a))

top-level script:

import foo

foo.bar(3)

7.15 Useful Modules

The sysmodule is the one you’re most likely to import. It has a lot of functions,
but one of its most useful elements is the sys.argv list. This contains the
positional parameters to the script, in the order provided on the command line.
The first element is the script name.

7.15. USEFUL MODULES 87

import sys

for arg in sys.argv:

print('We were called with argument {}'.format(arg))

The random module is also very useful; it provides random numbers:

import random

r = random.Random()

r.choice(['a','b','c']) # choose a random element from the list

r.sample(range(100),5) # choose 5 unique elements from [0,100)

r.randint(5,10) # choose an integer in the range [5,10]

r.uniform(5,10) # choose a float in the range [5,10)

r.gauss(75,10) # choose a gaussian-distributed float with mean

75 and standard deviation 10

The subprocess module lets you call other processes, potentially capturing
their output. We won’t go into how to use it here. See

• https://docs.python.org/2/library/subprocess.html or

• https://docs.python.org/3/library/subprocess.html,

depending on which version of python you’re using.

Finally, the argparse module is a great way to process command-line argu-
ments, if you need something fancier than just sys.argv. Here’s an example
to illustrate:

from argparse import ArgumentParser

parser = ArgumentParser()

parser.add_argument('-s', '--students',

dest='students',

default='enrollments.json',

help='JSON file containing the student enrollments'

)

88 CHAPTER 7. PYTHON

parser.add_argument('-g', '--groups',

dest='groups',

default='teams.json',

help='JSON file containing the student groups'

)

args = parser.parse_args()

students = list()

with open(args.students) as f:

students = json.load(f)

See the documentation for details; there’s a lot to see here.

7.16 A Complete Script

This doesn’t do much useful, but it should work, when saved to a file and made
executable:

#! /usr/bin/env python

import random

import sys

count = int(sys.argv[1])

min = int(sys.argv[2])

max = int(sys.argv[3])

r = random.Random()

nums = [r.uniform(min,max) for _ in range(count)]

print('Generated {n} random numbers between {a} and {b}'.format(

n=count,

a=min,

b=max))

print('Values: {}'.format(nums))

Chapter 8

Python Scapy

The scapy module is extremely useful, but the documentation is somewhat
lacking. Consequently, here is a simple cookbook of handy scapy recipes.
Note that this chapter assumes you are familiar with networking, the OSImodel,
and packet formats.

8.1 Importing Scapy

Unlike most modules, scapy requires a global import to be useful:

from scapy.all import *

This imports all exported symbols from the scapy.all submodule into the
global namespace. The rest of our examples assume your program has done
this.

89

90 CHAPTER 8. PYTHON SCAPY

8.2 Reading and Writing Packet Capture Files

Your life will be easiest if all of your captures are in pure pcap format, not a
format like pcap-ng. Wireshark, tshark, and dumpcap will generally produce
pcap, unless you capture on all interfaces, in which case you will get pcap-ng
files. That is, unless you override the default behavior. For dumpcap, which is
our recommended way to capture packets (when feasible), the -P option will
force normal pcap output.

Having said all that:

frames = rdpcap('file.cap')

This opens a pcap file named file.cap for reading, and returns an iterable,
which we’ve called frames, because it potentially contains layer-2 frames,
rather than layer-3 packets. That will depend on the capture file, however.

We can iterate over these as follows:

for f in frames:

pass

This loop does noting (pass is a nop in python).

To write packets to a file, we would call:

wrpcap('outfile.pcap', pkts)

pkts may be packets or frames, and should be an iterable, such as a list.

8.3. DISSECTING PACKETS AND FRAMES 91

8.3 Dissecting Packets and Frames

Scapy stores everything in dict-like objects, which is handy. The objects are
actually built as a series of layers. Consider:

for f in frames:

if IP not in f:

continue

pkt = f[IP]

First, we verify that there’s an IP layer in this object, and if not we skip to the
next one. Then we get the IP layer of f, which may be identically f or it may
be a layer (at any depth).

We can also do more complex things, skipping over layers we don’t care about:

for f in frames:

if DNS not in f:

continue

d = f[DNS]

This might be a DNS layer within a UDP layer within an IP layer within an
Ether layer. The nice thing is that we don’t have to care.

At a given layer, there are a number of fields that we can access:

for f in frames:

if DNS not in f:

continue

d = f[DNS]

d.opcode

The easiest way to get a feel for what’s in a scapy object is to call the display
method:

92 CHAPTER 8. PYTHON SCAPY

for f in frames:

f.display()

if DNS in f:

f[DNS].display()

The first call will print (to stdout) all of the layers, including their fields, while
the second will only print information about the DNS layer.

8.4 Creating Scapy Objects

Scapy has fairly normal constructors:

pkt = IP(dst='1.2.3.4')

It also has a layering operator:

pkt = IP(dst='1.2.3.4')

udp = UDP(dport=123)

p = pkt/udp

pkt.display()

udp.display()

p.display()

We can simplify this:

pkt = IP(dst='1.2.3.4')

udp = UDP(dport=123)

pkt /= udp

pkt.display()

We can even simplify it further:

8.4. CREATING SCAPY OBJECTS 93

pkt = IP(dst='1.2.3.4')/UDP(dport=123)

pkt.display()

Here are some layers that might interest you:

• Ether

• IP

• ICMP

• UDP

• TCP

• DNS

• DNSQR

• DNSRR

• Raw

What’s this Raw layer? It’s literally a raw sequence of bytes:

pkt = IP(dst='1.2.3.4')/UDP(dport=123)/Raw('This is a test')

pkt.display()

This just wraps the bytes in an appropriate scapy layer object, and we can
shorten this:

94 CHAPTER 8. PYTHON SCAPY

pkt = IP(dst='1.2.3.4')/UDP(dport=123)/'This is a test'

pkt.display()

We can also nest things further:

pkt = IP(dst='1.2.3.4')/UDP(dport=123)/IP(

src='2.3.4.5',dst='3.4.5.6')/ICMP()/'This is a test'

pkt.display()

8.5 Sending and Receiving Packets

Finally, how do we connect to the actual network, rather than just working with
files?

If you’re creating packets at layer 3 (that is, starting from the IP layer), you can
just call:

send(pkt)

You can send and then wait for a response, as well:

new_pkt = sr1(pkt)

Here, new_pkt is the response received.

To just receive packets from an interface:

8.5. SENDING AND RECEIVING PACKETS 95

def my_callback(pkt):

pass

sniff(iface=None, count=0, prn=my_callback)

Specifying None for iface (the default) captures on all interfaces. A count of
0 (the default) captures forever; nonzero will stop after that number of packets
have been received. See help(sniff) for more parameters, including filters.

96 CHAPTER 8. PYTHON SCAPY

	Preface
	Some Architecture Basics
	Process Memory Layout
	Types of Memory
	Segmented Virtual Memory
	Loading a Binary
	Processing Instructions
	The Stack and Function Callings

	Numeric Representations
	Integer Type Sizes
	Byte Encoding
	Host and Network Byte Order
	Converting Between Encodings

	Git
	Installation
	Basic Git Operations
	init
	status
	add
	commit
	log
	clone [may require Internet access]
	init –bare
	push [may require Internet access]
	pull [may require Internet access]
	config

	More Advanced Git Operations
	rm
	mv
	.git/config
	remote
	branch
	tag
	checkout
	update-index and ls-files
	tag
	merge
	fetch [may require Internet access]
	Dealing with conflicts
	reset
	gitk

	Linux System Administration
	Root
	Running as Another User
	Managing Users and Groups

	Network Commands
	[0.75]ifconfig
	[0.75]ip link
	[0.75]ip address
	Routing Tables
	Connecting Layers 2 and 3
	Existing Network Connections
	Examining Connectivity
	Finding Other Hosts

	Docker
	Installation
	Docker Images
	Running an Image in a Container
	Stopping a Running Container
	Removing Stopped Containers
	Other Options for Running Containers
	Executing Commands in a Running Container
	Getting Process Output

	Python
	Terminal Output
	Terminal Input
	Files
	Scalar Types
	Iterable Types
	Dictionaries
	None
	List Comprehensions
	Formatted Strings
	Control Flow
	Combining Lists
	Functions
	Classes
	Modules
	Useful Modules
	A Complete Script

	Python Scapy
	Importing Scapy
	Reading and Writing Packet Capture Files
	Dissecting Packets and Frames
	Creating Scapy Objects
	Sending and Receiving Packets

