
ABSTRACT

Title of Dissertation: PHYSICAL PROGRAMMING: TOOLS

FOR KINDERGARTEN CHILDREN TO AUTHOR

PHYSICAL INTERACTIVE ENVIRONMENTS

Jaime Montemayor, Doctor of Philosophy, 2003

Dissertation directed by: Assistant Professor Allison Druin
Professor James A. Hendler
Department of Computer Science

StoryRooms is a child-centered ubiquitous computing environment (ubicomp) devel-

oped for young children to expresses stories. Physical programming is a set of tangible

tools and user interaction metaphors for children to control the behaviors of embed-

ded objects in StoryRooms. In this dissertation I describe StoryRooms and physical

programming, along with the two studies which showed that kindergarten students had

the capacity to understand and use the physical programming approach to control the

specialized StoryRooms.

PHYSICAL PROGRAMMING: TOOLS

FOR KINDERGARTEN CHILDREN TO AUTHOR

PHYSICAL INTERACTIVE ENVIRONMENTS

by

Jaime Montemayor

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2003

Advisory Committee:

Assistant Professor Allison Druin, Chair
Professor James A. Hendler, Co-Chair
Assistant Professor Benjamin B. Bederson
Associate Professor Clyde Kruskal
Professor Emeritus Stanley Bennett

c
�

Copyright by

Jaime Montemayor

2003

DEDICATION

To my wife Heather and my son Kyle

My best friends

ii

ACKNOWLEDGEMENTS

I would like to thank my advisors, Allison Druin and James Hendler, for guiding me

throughout these years at Maryland. One cannot hope for better mentors. Without the

tremendous intellectual freedom that they gave me and the faith they have in my work,

I would not be here today. I would also like to thank Ben Bederson, Clyde Kruskal, and

Stan Bennett for being on my defense committee.

I have had the unbelievable good fortune of working with brilliant people at the Univer-

sity of Maryland. I would like to thank Sean Luke and Jeff Heflin from the old PLUS

group for being sounding boards of my too often crazy ideas. I would like to thank Brian

Postow for helping me juggle theoretical problems. Houman Alborzi had, from the very

beginning, kept me honest in my thinking.

I must give credit to everyone at HCIL, in particular, those that worked closest with me at

HCIL-2. My work would not exist were it not for their collaborations and contributions.

I need to thank two of the lab’s artists-in-residence, Allison Farber and Lisa Sherman,

who transformed my ideas into beautiful objects to play with. Sante Simms, who never

gave up on a problem, lent me engineering support. Gene Chipman, an old salt at

iii

electrical engineering, developed the critical hardware for my projects. My discussions

with Harry Hochheiser and Juan Pablo Hourcade helped center my work around human

factors issues. Over these past six years, the dozens of bright young children that I have

worked with inspired me and helped me to many fruitful insights.

Finally, I have to thank my family, the most important people of my life. It would

be an understatement to say that my wife Heather and my son Kyle have had to make

tremendous sacrifices to accomodate my dream of attaining a Ph. D. Despite many ups

and downs in my personal life, they stood with me and guided me to this moment. For

their love and compassion, I can only say, thank you.

iv

TABLE OF CONTENTS

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 The Rise of Ubiquitous Computing . 1

1.2 Don’t Forget the Children . 2

1.3 Ubiquitous Computing, Children, and Control 4

1.4 Stories and Children . 5

1.5 Stories and Ubiquitous Computing . 5

1.6 Why Technology for Children . 8

1.7 A Conceptual Programming Tool . 9

1.8 Contributions . 10

1.9 Organization . 11

1.10 Definitions and Abbreviations . 12

v

2 Related Work 14

2.1 Technologies that Interact with Physical Environments 15

2.1.1 Ubiquitous Computing . 16

2.1.2 Augmented Reality, Tangible and Graspable User Interfaces . . 19

2.2 Programming Systems for Novice Users 22

2.2.1 Non-textual language . 23

2.2.2 Visual Programming Models 24

2.2.3 Novice User Programming Systems 28

2.2.4 Programming with Example and Programming by Example . . 29

2.2.5 Programming by Tangible Interactions 30

2.2.6 The Scaling Up Problem . 31

2.3 Technology for Learners . 33

2.4 Participatory Design, Methods and Processes 35

3 Cooperative Inquiry 37

3.1 An Intergenerational Design Team . 38

3.2 My Role in the Intergenerational Design Team 39

3.3 Working with Children . 40

3.4 How to Work with Children . 41

3.4.1 Won’t They Slow Down the Design Process? 42

3.5 Working with Children: Standard Operating

Procedures . 44

vi

3.5.1 Activities for the Setting Expectations Phase 45

3.5.2 Brainstorming . 52

3.5.3 Reflections . 58

3.6 Working with Kindergarten Aged Children 61

3.6.1 Use Their Words . 61

3.6.2 Level of Concreteness . 62

4 PETS: My First Physical Interactive Storytelling Construction Kit 63

4.1 PETS Tells a Story . 64

4.2 A Description of PETS . 65

4.3 PETS � . 67

4.3.1 The Robot Skeleton . 70

4.3.2 The Robot Skin . 70

4.3.3 The Software . 73

4.4 PETS � . 74

4.4.1 Limitations . 74

4.5 Robots, Children, and Learning About

the Design Process . 76

4.6 Lessons Learned from PETS . 77

5 Stories within a Physical Interactive Environment 78

5.1 The Red Balloon . 79

5.2 Hickory Dickory Dock . 80

vii

5.2.1 Setup . 80

5.2.2 Direct Recitation . 82

5.2.3 Recitation with Choices . 82

5.2.4 Full Interactivity . 83

5.2.5 Lessons Learned from Low-Tech Scenarios 83

5.3 The Sneetches . 83

5.3.1 The Story . 84

5.3.2 The Interactive Version . 84

5.3.3 The Technology . 88

5.3.4 Lessons Learned from the Sneetches StoryRoom 90

5.4 StoryKit . 92

5.4.1 An Early Design for Defining Device Interactions 94

5.5 It Is Not Always About Sophisticated Technology 97

5.6 A Programming System for Physical Interactive Environments 98

5.6.1 Arrow-Notes . 98

5.6.2 Comic-Strips . 98

5.6.3 Take Away the Screen . 100

6 Physical Programming 104

6.1 Physical Interaction Environments and Automata 105

6.1.1 Deterministic Finite Machine 106

6.1.2 Transformation of DFA to a PIE 110

viii

6.1.3 A More General Definition of the PIE Deterministic Machine . 112

6.1.4 Automata With Memory . 113

6.2 A Refined Physical Programming Definition 115

6.3 Implementation . 116

6.4 The Enabling Technology to Support Physical Programming 124

6.4.1 Embedded Devices . 124

6.4.2 Communication Protocol . 126

6.4.3 Icon Controller Hardware and Software 130

6.5 Limitations of the Implemented Language 132

7 An Exploratory Study of Physical Programming 135

7.1 Participants . 136

7.2 Session Structures . 137

7.3 Wizard-of-Oz Prototype . 140

7.4 Story for the Research Sessions . 141

7.5 Default Interaction Rules . 143

7.6 Data . 144

7.7 Analysis . 144

7.7.1 Children as Audience . 145

7.7.2 Children Join Adults as Storytellers 145

7.7.3 Children as Physical Programmers 146

7.8 Lessons Learned from this Exploratory Study 149

ix

8 A Usability Study of Physical Programming

and Kindergarten Students 151

8.1 The Study Setting . 151

8.1.1 The Irene Story . 152

8.1.2 Session Structure . 154

8.2 Data . 156

8.2.1 Can Children Participate in an Already Created StoryRoom? . . 157

8.2.2 Can Children Program Using Physical Programming? 161

8.2.3 Can the Children Use Physical Programming to Create an Orig-

inal StoryRoom? . 165

8.2.4 Case Study One: Bobby and Dennis 166

8.2.5 Case Study Two: Mary and Shelly 168

8.3 Analysis . 171

8.4 Lessons Learned from this Usability Study 171

9 Final Words 174

9.1 Revisit the Questions on Control and Tools 175

9.2 Limitations of the Research . 176

9.3 The Lab’s On-going Work: HazardRoom 177

9.4 My Future Work . 178

9.4.1 Additional Physical Programming Interfaces 178

9.4.2 Collaboration Potentials . 183

9.4.3 Connection to Universal Accessibility and Universal Control . . 183

x

Bibliography 183

xi

LIST OF TABLES

3.1 Phenomenon of Two Monologues . 43

3.2 Standard Questions During Adult Debriefing Sessions 46

3.3 Pre-Design Session Checklist and Questions 48

3.4 Snack Time Discussion Topics . 50

3.5 Common Brainstorming Events and Responses 54

3.6 Activities During Reflection . 59

7.1 Group Composition of the Exploratory Study 140

7.2 Sample Data from the Contextual Inquiry Chart 144

8.1 Group Composition of the Usability Study 152

8.2 Usability Study Scoring System . 156

8.3 Physical Programming Scores . 162

9.1 Answers to Control and Tools . 175

xii

LIST OF FIGURES

1.1 Same Components from the X10 System 2

1.2 Sensors Trigger Automatic Toilet Flushing 3

3.1 Three Iterative Activities of the Cooperative Inquiry Design Methodology 45

3.2 Adult Debriefing and Snack Time Are Time to Set Expectations 46

3.3 Adults and Children Looking for Patterns During a Stickies Session. . . 52

3.4 Issues and Solutions During Brainstorming Sessions 53

3.5 Artifacts Help Define Future Goals . 59

4.1 The PETS Storytelling Construction Kit 66

4.2 Children Typed Their Stories and Insert “Emotions” with the Story Screen 68

4.3 PETS � , with a Furry Body, Dog Paw, Duck Foot, and Cow Face 69

4.4 The PETS � Skeleton . 71

4.5 The PETS � Skeletal Head with Padding 72

4.6 The MyPETS Software, the Transmitter Box, and the Skeletal Compo-

nents of PETS � . 75

4.7 Main Screens of the MyPETS Application 75

xiii

5.1 The Phone Object in Hickory Dickory Dock 81

5.2 A Child as a Low-Tech Wizard-of-Oz 82

5.3 Children Visit the Sneetches StoryRoom 85

5.4 The Projected Image of Mr. McBean, the Sneetches, and a Pile of Money 86

5.5 A Child with a Star on His Belly “Plays” with the Toy 87

5.6 A Diagrammatic Overview of the Technology Underlying the Sneetches

StoryRoom . 89

5.7 A Wall Sketch Result of a Sneetches Room Design Session 90

5.8 Two Child Designers Working on the Star-On Box 91

5.9 Some Early Paper Sketches of Sensors 92

5.10 Idea Cards Help Propel Children into Developing Structured Stories . . 93

5.11 Low Tech Materials Are Easy for Children to Construct Play Things . . 93

5.12 High-tech Devices Embedded within Physical Icons Project Magical

Qualities to a Child . 94

5.13 A Child-Unfriendly Control Panel to Define Interaction Rules for Sto-

ryRoom . 95

5.14 An Idea Card and Prop . 95

5.15 An Example Arrow-Note Styled Program 99

5.16 An Example Comic-Strip Styled Program 100

5.17 A Conceptual Storybox . 101

5.18 Some Conceptual Iconic Sentences . 102

xiv

6.1 The State Diagram for the Home Example 109

6.2 A Child Creating Interaction Rules . 118

6.3 A Close-Up of the Magic Wand Programming Tool 120

6.4 The First Step to Creating a Physical Programming Rule is to Press the

New-Spell Button . 120

6.5 The Second Step to Creating a Physical Programming Rule 120

6.6 The Third Step to Creating a Physical Programming Rule 121

6.7 The Fourth Step to Creating a Physical Programming Rule. 121

6.8 The Fifth Step to Creating a Physical Programming Rule. 121

6.9 Another Physical Programming Example 122

6.10 Wave the Wand over Sensor A . 122

6.11 Wave the Wand Over Actuator X . 123

6.12 Push New-Spell for a New Rule . 123

6.13 Wave the Wand over Sensor B . 123

6.14 Wave the Wand over Actuator X . 123

6.15 The Components to a StoryRoom Icon Controller 125

6.16 The StoryRoom Network Model . 127

6.17 Application Originated Packet Format 127

6.18 Icon Originated Packet Format . 128

6.19 The Magic Wand and an Underlying RFID Reader 132

7.1 Early Observations to Fine-Tune Interaction Techniques 138

xv

7.2 Early Low-tech Design Session on Physical Programming Tools 139

7.3 Interactive Icons and the Magic Wand Programming Tool 141

7.4 Frequency of Children’s Roles for the Final Part of the Session 147

7.5 Frequency of Children’s Activity Patterns for the Final Part of the Session148

8.1 The Completed Irene Story Setup . 153

8.2 Children Were Able to Retell the Story with Varying Degrees of Adult

Support . 158

8.3 Frequency of Retelling by Props . 159

8.4 Frequency of Retelling by Icons . 160

8.5 Percentage of Possible Points that Each Child Scored on Physical Pro-

gramming Tasks . 163

8.6 Frequency of Programming Activities 164

8.7 Example Props in Bobby and Dennis’ Story 167

8.8 Bobby and Dennis Share Their Story with Classmates 168

9.1 A Conceptual Sound Board . 179

9.2 A Conceptual Magic Lens . 180

9.3 Another Conceptual Magic Lens . 181

9.4 Open View of this Conceptual Magic Lens 182

xvi

Chapter 1

Introduction

1.1 The Rise of Ubiquitous Computing

Computers are everywhere. They are no longer confined to laboratories or business

offices. In 1991, Mark Weiser described a future in which computers would not be con-

fined to the desktop, limited to the interface metaphors of display, mouse, and keyboard

[112]. Today, his vision, ubiquitous computing (ubicomp), has become a reality in

many of our daily lives. Computers take on all shapes and sizes. Cellular telephones

allow us to communicate with almost everyone on earth, from almost anywhere. GPS

technology in your car provides driving directions and can even plan alternative routes.

Thanks to sensors attached to windshields, as we drive along highways, tolls are auto-

matically deducted from our accounts. Public restrooms automatically clean themselves

(figure 1.2). Water fountains automatically squirt. Home appliances automatically per-

form their duties under the X10 protocol (figure 1.1). In business, information seam-

lessly follows its intended human recipient as she moves about the building [110, 108].

At the Baltimore/Washington International Airport, an experimental SmartPark system,

equipped with simple sensors and overhead displays, directs drivers to available slots

1

Figure 1.1: The X10 system allows the user to customize the behavior of home appli-
ances.

in the parking structure. Computers have moved beyond the business office. They are

rapidly becoming embedded into our environment, intricately intertwined into our daily

lives.

1.2 Don’t Forget the Children

Despite these and many other successes in the development of ubiquitous computing,

researchers haven’t fared quite as well with respect to children. Take the automatic

toilet (figure 1.2) as an example, while mistakes such as premature flushes might irritate

adults, the surprise could be terrifying to children [25]. Automatic sinks can be puzzling

as well! Where do we place our hands to activate the sensor?

As computers become pervasive in our surroundings, the user base of ubicomp environ-

ments naturally will expand to include young children. Systems that interact with this

population need to be concerned with their special needs. For example, the very young

do not have well developed motor skills in their hands [45], thus are unable to control

machines that require finesse. Or, because of their height, children may not be able to

reach sensors and activate embedded devices [64].

One way to alleviate the frustrations, uncertainties, and confusions that the ubiquity of

2

Figure 1.2: Sensors trigger automatic toilet flushing.

computers can trigger is to give the user control over environmental behaviors. But even

in the rare instances when users can control an environment, for example, X10-savvy

appliances, they are inevitably meant only for adults.

This omission is unnecessary. Children should and can be in control of their interactive

environments. One can imagine that the sink sensor is a tangible device and that children

can place it exactly where they know it will respond correctly. Here is a more fanciful

scenario: A child wants to wake up to music at 8AM, so she takes out two blocks from

her “bag-of-tricks.” The faces on one block have numbers on them. She arranges it so

that the number 8 faces toward her. The faces of another block depict various kinds

of alarms: music, buzzer, light, etc. She places this block so that the music faces her.

These two blocks are sufficient to empower the child to set her own wake up time. In

both examples, the environment conforms to children’s needs and allows them to control

technology in their own ways.

3

1.3 Ubiquitous Computing, Children, and Control

From this interplay between technology, children, and control, comes a wealth of re-

search questions. How does a child’s physical size affect the accuracy of the system?

How do imprecisions in sensors affect a child’s expectations of technology? Can tools

be created for children to customize the behaviors of their physical environments? And,

what are design guidelines for pervasive computing environments, when children are

intended (or more seriously, unintended) users?

Among these topics, I focus the work of my dissertation on the tools for children to

control the ubicomp environment. This includes the following questions:

1. What kind of tools are needed?

2. What do the tools look like?

3. How are they used?

4. Do the tools require new interaction models?

5. Can children in fact use the tools?

6. Implicitly, the ability to control may require a programming model. What is that

model?

Beyond tools, we also need to consider to what extent young children can understand

the concept of a computationally enhanced interactive environment.

In order to understand the issues I just raised, I developed a research ubicomp environ-

ment, StoryRooms [2], from combining storytelling with ubiquitous computing tech-

nology.

4

Definition 1 A StoryRoom is a room-sized ubiquitous environment that, through inter-

actions between the computational devices and the people within the environment, ex-

presses and provokes a storytelling experience.

The choice of storytelling was deliberate: It is a compelling topic and enjoyable activity

for children. And it was by studying the behaviors and interactions of children within

the StoryRoom context that I was able to gain insights into children, control, and the

ubicomp environment.

1.4 Stories and Children

Storytelling is pervasive in childrens lives. From their earliest memories, they are lis-

teners, writers, drawers, and performers. More than just being the recipient of stories,

children have also been given the tools to author, or construct, their own. With crayon

and paper, they can draw and write. They can wear costumes and act on the stage.

They can even build cardboard fortresses and become knights in make-believe king-

doms. Storytelling can even involve non-traditional elements. For example, children

used a physical robot (PETS [28, 66, 67]) to move around and express “emotions” as

part of the storytelling experience.

1.5 Stories and Ubiquitous Computing

We can move beyond the single computational device (the robot) to express stories.

Physical Interactive Environments 1 (PIE) with interactive objects can also convey sto-

1Throughout this dissertation, I will be using four terms to describe physical environments with em-

bedded computational devices. The term ubiquitous computing environment follows Mark Weiser’s def-

5

ries (e.g., [80]). Although you many not have noticed them, PIEs are not new, nor are

they uncommon. Over the past two decades there has been an explosion of new kinds

of interactive experiences (in storytelling [80], education [92, 30], kids’ play museum

[82], and entertainment [90]). Below is a well known story converted into a suggested

StoryRoom to give the reader a better understanding:

You enter a room with two friends. Inside, you find three houses built with

cardboard box, colored paper, and paper glue. One house is made to look

like it is made out of straw; another, sticks; and the third, bricks. You also

notice colorful and squeezable physical icons that look like hands, mouths,

and sun rays connected to these houses.

A loudspeaker, embedded inside a mouth icon, utters the voice of a wolf;

“I am hungry! I am hungry!” Thinking that you might become the wolf’s

dinner, you each scamper into separate houses. By turn, from a speaker, just

outside each house, you hear “Little pig, little pig, let me come in!” In turn,

you say, “No, no, no. Not by the hair on my chiny chin chin!” From the

loudspeaker: “Then I will huff, and I will puff, and I will blow your house

down!”

You may recognize this as an adaptation of the classic story, The Three Little Pigs. Your

parents may have read it to you; you may have read it to your children; you may have

inition. A physical interactive environment can be a ubicomp environment. Or, it can be more conven-

tional, where the devices are not embedded into the environment and still follow the forms and functional-

ities of the display, screen, and mouse. A story-room is any PIE that expresses a story. And a StoryRoom

is a ubiquitous computing environment that I developed specifically to study the relationships between

children and ubicomp.

6

performed it on stage; you may have even seen it as a cartoon show. As this example

demonstrates, stories can also be experienced through physical interactive environments.

Story-rooms provide a setting that can be educational, experimental, collaborative and

fun; and, they offer a new medium for telling stories, in addition to the traditional ex-

pressive forms of writing, drawing, or discourse. StoryRooms encourage children to

participate in physical interactive stories. Moreover, these special ubicomp environ-

ments encourage children to construct things, to turn abstract concepts into concrete

objects, and to collaborate. This constructive process is how children make sense of and

refine their mental models of the world [75]; it is one way children learn. With new

tools such as sensors and effectors, child authors can add magic to their make-believe

stories. It is as if next to the crayons and papers, they suddenly find a magic wand that

really works.

Unfortunately, unlike the more traditional storytelling approaches (writing, drawing,

acting), there are few, if any, constructive tools for children to create their own sto-

ries inside a PIE. Just as adults encourage children to write on paper, draw on canvas,

and mold lumps of clay, we should also provide a setting for them to create their own

interactive environments.

This presents an opportunity for us to design tools for children to control the interactive

behaviors within StoryRooms as part of the storytelling/story-building process. More-

over, the successful tools for the StoryRoom may also lead us to insights into tools for

children to control more generalized ubicomp environments.

7

1.6 Why Technology for Children

Children already create their make-believe worlds out of everyday things such as boxes,

blocks, and stuffed animals. Why then should this creative process be interfered with

technology? After all, compared to traditional manipulatives, technology can be expen-

sive, fragile, difficult to use, and environmentally unfriendly. But, despite its detractors

[3], computational technology does not have to be a detriment [45]. Its repeatability

and shareability features imply that these ephemeral worlds can be saved and replayed;

shared and constructed across geographically distant locations. Undeniably, any new

technology introduced into children’s world must not get in their way, must not harm

them, or detract from their interactions with others. So computers, like wooden blocks

and crayons, are all just tools that can support positive learning experiences. Seymour

Papert, in a 2002 talk at the University of Maryland, offered this insight.

“. . . well, they [non-technical objects] obviously work well, since we all use

them even now. You can have entire projects, theories, models, etc. that can

be spelled out on paper. But it seems to me that a dimension is lacking—

That with technology, things can work, break, and can be fixed.”

Papert was alluding to the idea that as children break and fix things, they become de-

buggers, problem-solvers, and understand more about the world around them. Let us

return to the Three Little Pigs StoryRoom example: We can imagine that elementary

school aged children could have created the props (the three houses); they could have

recorded the sound effects and speeches; but how did they program the room to interact

with the visitors? That is, what tools did they use, and what steps did they take, to create

the interaction rules for the story? It turns out that programming systems are excellent

candidates for this task.

8

1.7 A Conceptual Programming Tool

I believe that a toolkit for children to construct a PIE would 1) be minimally abstract;

2) possibly non-textual; 3) operate within the constraints of young children’s physical

dimensions; and 4) address the technical challenges of ubiquitous computing environ-

ments, such as scale, context awareness, gesture recognition, networking, and location

tracking [1]. Until recently, the few systems that generate interaction rules in physical

interactive environments have been screen-based text or graphics [29, 66]. They were

designed to be tools for adults and not for children.

Therefore, one of my research questions became: Can pre-literate children define states

and transitions for computational objects in a ubicomp environment? And, perhaps even

more appropriate for children, would the programming activities be more natural, con-

crete, and direct, if the interaction instructions were created from physical manipulation

of real objects in the environment. In later chapters I will show that this is indeed pos-

sible with a programming-with-example approach [69]. Here is an example task: Every

time I step on this rug in my bedroom, I want that desk lamp in the room to turn on. A

possible sequence of physical activities might be 1) invoke a programming recorder, 2)

step on the rug, 3) turn on the light, and 4) turn off the recorder. By touching objects

in the room, I am creating an instruction that relates the rug to the state of the light.

Furthermore, to find out if the instruction is correct, all that I need to do is to be inside

the room and step on the rug. I call this technique of using physical gestures to indicate

programming intentions physical programming [65]. This idea will be developed more

fully in Chapter 6. For now, I will use the following definition.

Working Definition 1 Physical programming is the generation of computer programs

by the physical manipulation of computationally augmented (or aware) objects in a

9

ubiquitous computing environment.

The introduction of the physical programming technique into the StoryRooms environ-

ment enables children to create their own interactive stories without any adult help.

1.8 Contributions

In this dissertation I describe a children-centered framework (StoryRooms) to study the

relationships among children, ubicomp system, and user control. I further suggest that

a well-designed programming metaphor could be a solution.

This dissertation presents the results of my research on providing tools for young chil-

dren to control ubiquitous computing environments. My contributions can benefit ubiq-

uitous computing, tangible interfaces, and programming systems for novice users. More

importantly, through this work, I demonstrate that it is possible for ubiquitous computing

environments to conform to children’s needs and desires. In order to accomplish this,

and with the assistance of an intergenerational design team at the Human-Computer

Interaction Lab:

� I significantly fine-tuned the collaborative design practice with children, cooper-

ative inquiry;

� I developed a ubiquitous computing framework, StoryRooms, to study children’s

interactions with interactive environments;

� I developed a set of tangible tools for children to control device interactions in

ubicomp environments;

10

� I developed a new programming metaphor, physical programming, and demon-

strated that this approach is simple for children to understand and to program

StoryRooms.

1.9 Organization

I begin this dissertation with a survey of the four research areas that have given me

the most insights: end-user programming, ubiquitous computing, participatory design

practices, and technology for learners. Next, I devote a chapter on the cooperative

inquiry design framework. I discuss the need for a children-inclusive methodology, and

I also discuss my own contributions to the design process. In chapter four, I present

the inspiration and precursor to my work on interactive storytelling environments, a

physical and constructive storytelling robot called PETS. In chapter five, I describe the

conception, evolution, and development of the StoryRoom concept. I will describe the

early prototypes and the lessons I learned along the way. In chapter six, I describe

a conceptual toolkit that is required to construct StoryRooms. Having identified the

elements of the toolkit, in chapter seven, I describe and discuss the first usability study,

with a semi-wizard-of-oz StoryRoom programming prototype, to observe kindergarten

children within a StoryRoom environment. In chapter eight, I describe a second study, in

which I observed that kindergarten aged children can, independent from adults, create

their own fully interactive physical storytelling experiences. In chapter nine, I take a

step back and consider the relationship between StoryRooms and automata. In chapter

ten, I describe some user interface designs that, while not implemented as part of my

dissertation, reveal intriguing possibilities for the future. I conclude with some final

words on my contributions, applications, and potential future directions for this research.

11

1.10 Definitions and Abbreviations

In this dissertation, I will use the terms and abbreviations listed below.

AT Adult Team. This group, of which I was the leader, was comprised of all the adult

members of the intergenerational design team (see below).

ATM Adult Team Member(s).

ATT Adult Technical Team. This was the team of adult members with technical skills

such as computer science and engineering. Again, I was the primary leader.

ATTM Adult Technical Team Member(s).

HCIL The Human-Computer Interaction Lab at University of Maryland. This is the

research hub for the intergenerational design team.

IDT Intergenerational Design Team [28]. The research team of interdisciplinary adults

and elementary school aged children in the HCIL. This team is directed by Allison

Druin. I led research sessions related to PETS and the StoryRooms2.

PETS Personal Electronic Teller of Stories [66].

Physical Programming The generation of computer programs by the physical manipu-

lation of computationally augmented (or aware) objects in a ubiquitous computing

environment [65].

2The composition of the research group varies widely depending on the tasks at hand. To be clear, I

have tried to indicate the primary responsible group of researchers when I can. For instance, when I write

IDT, I mean that the entire intergenerational team was involved. When I write AT, I mean that all the

adults contributed.

12

PIE Physical Interactive Environment.

Entities Computational objects and human users within a ubiquitous computing sys-

tem.

StoryKit A construction kit of low-tech and high-tech elements for children to build

StoryRooms [2].

StoryRoom A room-sized ubiquitous environment that, through interactions between

the computational devices and the people within the environment, expresses and

provokes a storytelling experience to the user [2].

Ubicomp Ubiquitous Computing [112].

13

Chapter 2

Related Work

As I stated in the Introduction, my research goal is to develop a child usable program-

ming tool to construct interaction rules in StoryRooms. Four research areas heavily

influenced my work:

1. Technologies that interact with physical environments;

2. Programming environments for novice users;

3. Technology for learners;

4. Participatory design practices.

Each field is important relative to my work. I am developing a programming tool for

young children (2) to control interactions in physical interactive environments (1) called

StoryRooms (3), using participatory design techniques (4). Below, I will describe each

area in more detail and discuss their relationships to my research.

14

2.1 Technologies that Interact with Physical Environ-

ments

Physical interactive environments (PIEs), enhanced with computational devices, are all

around us. They can be museum installations, petting zoos, and amusement parks. From

as early as the 1960s, institutions such as the Exploratorium in San Francisco have been

exploring ways for visitors to learn about scientific and mathematical concepts through

physically interactive experiences [92]. Many others enable children to explore such

varied subjects such as music, at the Eloise W. Martin Center in Chicago, Illinois, and

animals, at a working farm, the Macomber Farm in Framingham, Massachusetts [30].

Projects such as NYU’s Immersive Environments [29], MIT’s KidsRoom [13, 80], and

University of Maryland’s StoryRooms project [2, 65], explore the expressiveness of

PIES for storytelling.

The enabling technology of many recent PIES have come from ubiquitous computing

[112], augmented reality [56], tangible bits [50] and graspable user interfaces [33]. The

development of direct interactions with real objects comes from a shared belief among

these researchers that people are more adept at, and comfortable with, manipulating

everyday objects in their natural settings. These technologies also share difficult tech-

nical challenges, such as scale, context awareness, gesture recognition, networking, and

location tracking, and software infrastructure [87, 1].

Until only a few years ago, little research has focused on user interfaces to control PIEs.

The field has a promising future. My work on StoryRooms and physical programming

[2, 65] directly addresses this area, by enabling novices users an approach to physically

and directly manipulate objects to create their personal settings. In addition, Phidgets

[42] and iStuff [7] are both physical interface constructors; currently these two systems

15

still require the user to revert to the computer screen for programming activities. XWand

[114] is functionally similar to the magic wand in the physical programming user inter-

face. An X10 [118] enabled system allows the user to control home appliances. A user

can directly control appliances by manipulating dials on custom X10 devices attached

to the appliances. For more complex tasks, the user often must refer to computer-based

programs.

2.1.1 Ubiquitous Computing

Until the late 1980’s, human-computer interaction (HCI) researchers have been pre-

dominantly concerned with issues surrounding the desktop computer. The possibility

that computers would eventually become embedded into our physical surroundings and

support our activities was first outlined by Mark Weiser. In ubiquitous computing envi-

ronments, computers surround, but do not intrude on us. Seamlessly integrated into our

lives, they become effectively invisible:

“. . . such a disappearance is a fundamental consequence not of technology,

but of human psychology. Whenever people learn something sufficiently

well, they cease to be aware of it.” [112]

Ubiquitous computing systems share at least three attributes: a) a set of computing de-

vices (possibly heterogenous), b) a set of supported tasks, and c) an infrastructure such

as network and location service [87, 118]. They also share two fundamental technolog-

ical issues that remain difficult to solve: scale and location. Computational devices in

ubicomp systems can number in the hundreds or even thousands, and can vary in size

from as small as a post-it note to as large as a large wall-sized display. The problem of

16

scale requires infrastructure such as networking protocols to manage the large numbers

of wireless and mobile devices as well as software to support new interaction models

[1, 8, 109, 112, 113]. Examples of software needs include self-describing data structures

and robust behavior under questionable connectivity conditions. The location problem

is due primarily to the device and user movements. To date, but for a few demonstration

systems (e. g., [108, 111]), there are still no commercially available local area position

tracking systems that can track entities at a resolution on the order of a few centimeters.

A large subfield, context-aware computing, addresses problems related to the frequent

contextual changes in a highly mobile and unpredictable environment [1, 91, 110]; these

include error-prone recognition, context fusion (how to decipher context events such as

who,what,when, where, and why) [1].

Contextual problems have since been broadened to include social aspects of human-

computer interaction [9]. Ubiquitous computing environments’ inherent physicality,

sensor and actuator imprecisions, bring forth new sets of problems that are different from

the traditional (and highly controlled) desktop computing environment. Some questions

concerning these issues include [9]:

1. How does a system know when I am addressing it?

2. How do I know a system is doing what I commanded it to do?

3. How does a system know the parameters of my command?

4. How do I know the system correctly understands my command, and is correctly

executing it?

5. How do I recover from mistakes?

17

Shafer et al. further identified several important distinctions between desktop and ubiq-

uitous computing systems [93]:

1. Multimodal interaction;

2. Physically embodied interaction;

3. Dynamic set of devices;

4. Lack of a single focal point;

5. Multiple simultaneous users.

While these issues have been well studied (or are not relevant, for example, physical

embodied interaction) in the GUI environment, research targeted to ubicomp is just

emerging. An example is input devices designed for physical spaces. The Pebbles

project [70] shows how multiple users employing multiple interaction modes, can con-

trol multiple available devices. iStuff [7] allows users to easily connect physical user

interface input/output elements to applications in the environment. Phidgets [42], like

iStuff, is a physical interface construction kit. X10 [118] is a home automation protocol

for the user to control appliances, where signals travel through the AC power lines or

RF channels. As far as I know, all of the above currently rely on the WIMP interface

to establish sensor/actuator relationships, and have not expanded to using the physical

objects themselves to help create the relationships.

Because StoryRooms is a ubiquitous computing system, it faces the same general tech-

nical issues as other ubicomp environments. But some problems directly impact the

StoryRoom functionality. For example, although this was not an issue for our usability

studies with young children, the lack of a high-precision local positioning system pre-

vents the StoryRoom from allowing more sophisticated physical gestures, which might

18

be useful in enhancing the physical programming language. On the other hand, the ad-

vent of many new physical input devices, when combined with careful children-centered

design, could further enable them to control the environments. Another limit in the cur-

rent StoryRoom is the dimensions of physical icons, which are currently still too large.

On-going efforts in this field to miniaturize complex sensors and actuators will directly

benefit my work.

2.1.2 Augmented Reality, Tangible and Graspable User Interfaces

Researchers of augmented reality append digital and communication abilities onto ev-

eryday objects. (A common approach is visual overlay of digital information onto real-

world objects.) Users take advantage of their familiarity with the natural affordances

of physical things, such as paper and eraser, to accomplish everyday tasks as well as

digital operations. There are three ways to augment real objects: 1) augment the users

(wearable computing), 2) augment the physical object, and 3) augment the environment

surrounding the user and the objects. Many augmented reality and ubicomp systems

employ a combination of these three approaches [57].

Augment the Users

The user wears or carries devices to sense virtual information about artificial or real

objects. For example, when a user reads a MagicBook through special stereoscopic

glasses, drawings on the pages rise into 3-dimensional shapes and invite further ex-

ploration [11]. Because of the large physical space, many children, and unpredictable

movements within a StoryRoom, this approach would not be appropriate. The eye-wear

would be difficult for children to wear and to traverse through the room.

19

On the other hand, a hand-held “magical lens,” made from a small LCD screen and a

camera, could reveal the identity of an embedded device, whether for debugging pur-

poses during programming, or for revealing mystery notes during play mode. Some

museum self-guided devices show this to be a promising approach (e. g. [115]).

Augment the Physical Object

In this approach, physical objects are modified by the embedding of input, output and

computational devices on or within it. In StoryRooms [2], children append sensors and

actuators (embedded within physical icons) onto low-tech props. The icons concretely

indicate the props’ augmented features, and allow children to quickly create interactive

environments by combining simple materials with high-tech devices. The DataTiles sys-

tem [84] uses physical see-through tiles, embedded with RFID tags, to store virtual data

such as baseball card collection and weather maps. This is an excellent interface, but un-

realistic for the StoryRoom application, as each physical object must contain a display

screen. The Listen Reader [6] augments a real children’s storybook with ambient music

and sound effects, so that children can enjoy the physicality of the book as well as ma-

nipulate music by moving their hands over the surface of the pages. StoryRoom can be

thought of as a room-sized version of the Listen Reader, but with the additional power of

allowing the user to create new “storybooks.” TICLE, a vision based system encourages

learning about geometry from playing with physical Tangram puzzles [89]. Because it

requires computer vision and a stationary desktop, its interfaces are inappropriate for

StoryRooms.

20

Augment the Environment

In the final approach, neither the user nor the object is affected directly. Instead, in-

dependent devices provide and collect information from the surrounding environment,

displaying information onto objects and capturing information about the user’s interac-

tions with them. The KidsRoom [13] relies on a vision-based tracking system to mon-

itor children’s locations and their body gestures, while sensory outputs, in the forms of

sounds and projected images, provide feedback. Hand gestures remain a popular input

approach (e. g., [72, 86]).

This is a difficult model for the StoryRoom. First, it is difficult to interpret imprecise

sensor data and correctly infer user intentions. Second, the underlying technology can

be expensive, difficult to set up, or sensitive to environmental conditions (such as light,

line-of-sight, sound).

Tangible and Graspable Interfaces

Physical objects can be closely coupled with digital data structures. This connection is

either called tangible bits [50] or graspable user interfaces [33]; and it extends direct

manipulation [94] to real objects, such that operations on physical things modify digital

data. Environments that support tangible user interfaces generally require three com-

ponents: 1) interactive surfaces, 2) coupling of virtual data bits with graspable physical

objects, and 3) background awareness [50].

The usefulness of this interface technique suggests the viability of a physical approach

to programming. For example, The AutoHan project and its MediaCubes tangible pro-

gramming approach demonstrate an intriguing system for controlling the home environ-

ment [12]. Although not strictly a ubicomp system, TellTale, a physical worm whose

21

body segments can record and play back children’s oral stories [5], demonstrates a phys-

ical approach to storytelling. Physically connectable blocks are popular interfaces for

systems that teach programming concepts to children (e.g., [103, 116, 61]). But while

the physical connections represent programs, these systems generally support scientific

discovery, and not storytelling. A useful tool to program StoryRooms would be a com-

bination of the programming strengths of the blocks with the storytelling focus of the

worm.

2.2 Programming Systems for Novice Users

Programming is an act of communication. When we express ourselves, whether to a

machine or to a human, our language can range from the concrete, such as pictorial rep-

resentations of real objects, to the abstract, such as the English language. The language

may even involve gesture, such as in American Sign Language. It should be apparent

that not one single communication channel is appropriate for everyone and for all occa-

sions. Because I am interested in a language that is suitable for young children (early

elementary school and kindergarten students) to control devices within ubicomp envi-

ronments, the communication model needs to be non-textual, minimally abstract, and

needs to support physical activity. The language needs to be non-textual because many

kindergarteners are pre-literate. It should not require abstract ideas, since that ability

appears to arrive later in a child’s cognitive development [78]. Finally, the language

should support physical activity due to young children’s need for physical movement.

22

2.2.1 Non-textual language

Visual communication is basic.

However, without well-defined interpretive procedures,

they are usually ambiguous [105].

Pictures (without text) can serve in a wide variety of applications. Symbols on highway

signs, Olympic sport figurines and more are socially accepted and can invoke universally

agreed upon interpretations in the reader. For example, icons in the WIMP user interface

signify the underlying data structures stored inside a computer. An icon of a folder on

the computer screen could evoke the functionality of a real folder inside your office

drawer: to hold things.

Pictures can be easy to understand, but a language of pictures1 is limited. First, these

languages do not scale up, because they do not include syntactic rules. Second, images

cannot represent everything. Some ideas are inherently abstract, and it is difficult to

(without meta-reasoning rules) convey them adequately. Here is an example: What is a

picture that communicates “yesterday?”

By combining pictures and rules for drawing them, a pictorial language becomes far

more expressive. The Elephant’s Memory [49] is one notable example. It has only a

small set of about one-hundred combinable “signs, or logograms.” Despite the small

number of primitives, it can generate more than just concrete ideas. By various com-

binations and relative positions of the symbols, the resultant pictures can represent and

convey highly abstract ideas.

1Here I mean the pictures and images such as those in Modley’s Handbook of Pictorial Symbols [63].

I do not include “squiggles” that are strictly included as syntax to affect the interpretations of the pictures.

23

Language does not have to involve imprints on two dimensional surfaces. Physical

gestures have been a form of human communication in many cultures (for example,

American Sign Language [ASL]). Sign language can be as rich as any written natural

languages. Signing is fascinating to watch. At once, you might observe a gesture that

immediately reminds you of a notion (for the idea “monster,” you raise your arms and

act like a monster); then you are seeing the “spelling” of a word (if the language has an

underlying textual language); or you see a motion that is purely symbolic (e.g., “family,”

“father,” and “grandfather” in ASL). Physical gestures can be highly expressive, visually

understandable, and easy to perform.

These observations suggest the following. First, a small set of pictures, combined with

learnable syntactic rules, can be highly expressive. Second, the pictures can be phys-

ical, as in physical icons. Third, physical gestures can be the syntactic operators to

the physical icons. Interestingly, the physical programming approach in StoryRooms

[65], a result of several years of development with young children, share many of these

qualities.

2.2.2 Visual Programming Models

I have just suggested that physical icons and physical syntax can be a language. Now

let me take a step back and look at the relationship between pictures and programming.

This is generally referred to as visual programming.

No uniform definition exists for the term “Visual Programming.” Myers describes it as

“. . . any system that allows the user to specify a program in a two- (or more)

-dimensional fashion. . . conventional textual languages are not considered

24

two-dimensional since the compilers or interpreters process them as long,

one-dimensional streams.” [69]

Shu defines visual programming languages (VPL) as languages that use

“some visual representations (in addition to or in place of words and num-

bers) to accomplish what would otherwise have to be written in a traditional

one-dimensional programming language... the language itself must employ

some meaningful... visual expressions as a means of programming.” [95]

Burnett and others wrote,

“Visual programming languages let the programmer sketch, point at, or

demonstrate data relationships or transformations, rather than translate them

into sequences of commands, pointers, and abstract symbols.” [19]

These definitions have two ideas in common: 1) the syntax of a VPL should contain

elements that can only be expressed through multiple dimensions, and 2) the program is

expressed in a visual way, and not only as text.

Similarly, a physical programming language should contain elements that can only be

expressed through gestures (analogous to actions such as sketching and pointing on

a desktop computer) in the physical space, and that the program can be created and

experienced in a physical way.

Green’s classification [38] of visual programming languages is succinct and often cited2.

They are: 1) flowcharts, 2) data-flow, 3) visual production, 4) logic-based, and 5) spread-

sheet. In the next section is a summary of the different programming models.

2There are many taxonomies for visual programming languages and environments. A recent survey

on programming environments and languages for novice programmers is by Kelleher and Pausch [52].

25

Control-flow, or Flowcharts

Visual programming began with attempts to make flowcharts executable, this was led by

the belief that flowcharts are useful teaching tools for training novice programmers [38].

But, the introduction of new classes of users, such as workers, tinkers and programmers

[71], requires different levels of programming skills, and flowcharting, a conceptual ab-

straction became inappropriate for some. Furthermore, this model declined in popular-

ity, especially when a controlled experiment showed that graphical representations were

not better than text [20]. One of the earliest and most enduring criticism of visual pro-

gramming languages, which stems from the flowchart based systems, is the scaling-up

problem [19]. That is, for small problems, flow charts adequately represented programs,

but they quickly become a jumbled mess with an increase in the program size. An in-

teresting example is the “static representation” problem [19]. The extra dimensions in

visual languages can support dynamic activities (e.g., programming-by-demonstration).

But as the visual program grows, the activities could overlap and cause confusions.

Data-flow

In this model, data travels from input nodes, to operators, and leave from output nodes.

An operator executes as soon as all its input nodes have been filled. Graphical repre-

sentation of flow of control, such as iteration, is difficult. Commercial products such

as LabVIEW and Prograph both offer different graphical syntaxes to address this is-

sue. Some research have shown that data-flow based languages are better for novice

programmers [4, 44], But others doubt this claim [73].

26

Visual Production Systems

These are similar to textual production systems. The productions are rules with a left

side “picture” and a right side “picture.” When a situation occurs in the visual world,

and the situation matches the left side, then the rule fires and the world is redrawn and

transforms into the scenario dictated by the right side. KidSim3 is one example [21].

Constraint, or Logic-Based

One common constraint operation in text-based editors is search-and-replace. That is,

find all occurrences of “bat” and replace them with “cat.” CHIMERA [53], a 2D object-

based illustration system, shows how this feature can be implemented in a higher dimen-

sion environment. So, one example may be, “find all squares that are blue, and replace

their color to bright red.” The query constraints can be on a similarity metric based on

location, shape, and graphical properties such as line width, and color. ToonTalk [51],

shows a solution to the related problem of generalization. In this system, generalization

is accomplished by the removal of constraints in default computations.

Spreadsheet

The common spreadsheet supports many of the qualities of an ideal visual program-

ming language. For example, activities within its cells are based on data-flow, and, the

worksheet supports direct manipulation.

3This product is now called StageCast Creator.

27

2.2.3 Novice User Programming Systems

Most prior work on novice user programming systems have been focused on the tradi-

tional desktop computer model (see [52] for a survey of novice programming environ-

ments). Papert’s mechanical turtle [75], the Curlybot [35], AlgoBlock [103], Electronic

Blocks [117], and Tim McNerney’s Tangible Computation Bricks [61] , are few rare

examples of programming systems that incorporate tangible manipulation of real physi-

cal objects. Despite the difference (2 dimensional screen versus 3 dimensional physical

space), research in visual programming languages, in particular, programming-with-

example systems, can offer useful insights into physical programming issues.

If traditional text based programming languages have been powerful and useful for creat-

ing technology, why tinker with a good thing, and devise new programming metaphors?

The motivations for the research behind VPLs is the belief that “a picture is worth a

thousand words,” or that extra dimensions can express more clearly, concisely, and eas-

ily the semantics of a program [19]. Data can be represented in two ways, analogical

and Fregean (symbolic). For example, a picture of a bicycle is an analogical representa-

tion of the bicycle object. Whereas the word bicycle is its Fregean representation [96].

Concepts such as yesterday, or hungry, have no analogical representation, and must be

represented by symbols.

Researchers have also known for a long time that programming is not an intuitive skill,

and that a good visual programming language can be an effective pedagogical tool, so

that computer science students can learn the art of computing more easily. A good VPL

should be easy to write, easy to understand, easy to debug, easy to learn, and easy to

maintain. Programming languages can be difficult also because of the blank-canvas

syndrome. Textual programming languages are abstract, non-interactive, and Fregean.

28

“What is needed is a lightweight, non-threatening medium like the back of a napkin,

wherein one can sketch and play with ideas” [97].

These are ambitious goals. Indeed, VPL is not without its detractors (e.g., [15]). More-

over, even within the VPL community, there is as yet no definitive empirical research

that shows that VPL is better than text based programming languages. (A programming

tool that is more closely constructed to solve problems within a domain space is just

more likely to perform better than that tool which is not [39]). However, it is clear that

programming systems for pre-literate children: 1) require non-text based interactions,

and 2) need to minimize abstractions by providing concrete and direct manipulation

of program elements. Physical programming is not necessarily better than other ap-

proaches, but it may be more appropriate for the younger population.

2.2.4 Programming with Example and Programming by Example

The concept of example based programming, or programming by example (PBE), was

first introduced in Pygmalion [97]. A subset of visual languages, these systems have

the clearly defined goal of providing end user programming. Allen Cypher explains,

“...these techniques need not be programming per se: rather they need to achieve ef-

fects that can currently only be achieved through programming.” In his view, end user

programming can be: preference, scripting languages, macro recorder, and program-

ming by demonstration. Myers makes a distinction between programming-by-example

(PBE) and programming-with-example (PWE) [69]. In the former case, the challenge

is for the system to infer the user’s intent, by observing her activities. For example, the

programmer might want to demonstrate a concrete example in order for the system to

create abstractions [53]. This is called the generalization problem. In the second case,

29

the programmer specifically dictates to the system her intents for future reuse. This may

also be thought of as programming within the user interface.

Two well known PWE systems for children are KidSim/StageCast Creator and

ToonTalk. KidSim allows the programmer to define visual production rules, through

comic strip like picture frames [21]. In ToonTalk [51], computational abstractions are

replaced by concrete and familiar objects. A ToonTalk program is a city that contains

houses. Birds fly between houses to transport messages. Houses contain robots that

can be trained to accomplish small tasks. To program a robot, the programmer enters

into its thought bubble to show it what to do. These two languages fill a void in the

programming languages spectrum. They offer children ways to explore in microworlds.

The StoryRoom language is a programming-with-example system. There is clear advan-

tage to defining interaction rules of objects in a 3-dimensional space while being inside

the same dimension. For example, it is clearer that physical actions in the room can have

direct physical implications. Contrast this with keyboard actions having a symbolic link

into 3-dimensional objects residing in 3-dimensional space. This abstraction may be

difficult for children.

2.2.5 Programming by Tangible Interactions

Little prior work exists on physical programming. Papert’s mechanical turtle [75] helped

children learn programming in LOGO. More recently, Curlybot [35] is another robot that

encourages learning mathematical concepts from physical play. In a modified version of

PETS [28], children with physical disabilities generate physical movements for the robot

to remember and reenact [81]. Physical blocks are popular tangible interface elements.

McNerney’s Tangible Computation Bricks [61] allow programmers to manipulate and

30

connect physical action blocks that can react to sensor inputs. AlgoBlock [103], an

educational tool for older elementary to junior high school students, is a collection of

physical blocks, each of which represents a command in a LOGO-like language. The

output of the program is still revealed on a display screen. Eletronic Blocks’ [117] are

special purpose sensor, action, and logic stackable blocks for preschool children. These

systems control the behavior of the tangible devices in their environment. A shortcom-

ing of these blocks-based systems is that they are all about the blocks themselves. In

contrast, StoryRoom objects bridge the interactions between the human and the physical

environment [2, 65].

2.2.6 The Scaling Up Problem

Visual languages are not immune to the scaling up problem [19]. This discipline suffers

in two ways. Ideal visual languages allow programmers to point at, sketch, or demon-

strate data relationships or transformations, rather than translate them into sequences of

commands. These different ways of expressing program syntax and semantics lie at the

heart of the fundamental problem of visual programming languages: attempts to make

them usable for large scale problems often require the reintroduction of the complexi-

ties that they were supposed to simplify. This is the scaling up problem. The second

scaling-up problem is the limited domain in which current visual languages have been

successfully applied. Researchers are looking for ways to make VPL general purpose

(e.g., [51]).

At this time, physical programming appears to suffer from the scaling up problem as

well. As I will show in 6.1, physical programming is used to create transition rules of

a state machine. The complexity of the state machine grows rapidly with the size of

31

its alphabet and set of states. This means that the number of transition rules cam grow

rapidly too.

32

2.3 Technology for Learners

I hear, and I forget.

I see, and I remember.

I do, and I understand.

—Confucius

Children learn by playing with blocks, drawing on paper, and building make-believe

worlds. When Friedrich Froebel developed the kindergarten in the 1830s, he began a

tradition of teaching that encourages self-learning, discovery, and personal expression

[16]. Froebel’s teaching material (gifts), objects such as wooden blocks of crystalline

structures, balls, strings, and sticks, were play things for children to explore shapes,

symmetries, and other mathematical concepts. This learning philosophy is also sup-

ported by the constructivist theories of Jean Piaget and Papert’s theory of “Construction-

ism.” Papert asserts that learning is an active process, in which people actively construct

knowledge from their experiences in the world [76]. This process of constructing one’s

personal mental structure is called “Piagetian learning” [75]. People don’t get ideas;

they make them. Furthermore, the most effective learning occurs when they construct

objects that help make sense of their internal mental models of the world. Jerome Bruner

offers a similar perspective, that people think in three ways: 1) enactive, doing things to

think; 2) iconic, thinking with pictures; and 3) symbolic, thinking with abstract symbols

[18].

With few exceptions, computational technology introduced into classrooms, particu-

larly in kindergartens and elementary schools, have not been completely successful in

encouraging this type of active exploration, self-learning, and collaboration [106]. In

33

large part, due to the constraints of their mice and keyboards, when coupled with poorly

designed software, can actually inhibit Piagetian learning.

Recognizing both children’s innate abilities and the potential afforded by new tech-

nology, researchers began looking for ways to develop new computationally enhanced

environments to encourage self-learning. In particular, Seymour Papert and Mitchell

Resnick, at MIT, influenced by Jean Piaget, became proponents of “computational ob-

jects to think with” [75, 85]. Learners rely on personally identifiable objects to generates

ideas, and make sense of them, in their minds. A system that can be individually molded

into meaningful objects enables children to learn from the construction of their personal

objects-to-think-with. Some of the more successful systems include the Logo program-

ming language [75] and LEGO’s Mindstorms Robotic Invention System [59]. These are

programming systems that encourage children to learn scientific concepts.

Next to these systems that support scientific inquiry are storytelling technology. Stories

preserve our cultures and histories, enable us to communicate our ideas and feelings, and

educate learners of all ages [17, 37, 74]. With this understanding, many researchers have

been developing systems for children to explore novel storytelling approaches. These

include SAGE (Storyteller Agent Generation Environment [107], PETS (Personal Elec-

tronic Teller of Stories) [28], and Microsoft’s Actimate Barney [100]. At the University

of Maryland, I developed the StoryRoom and physical programming systems for chil-

dren to construct room-sized physical storytelling environments [2, 65]. Unlike other

storytelling systems, StoryRoom explicitly encourages children to construct their per-

sonal physical objects, using common materials such as paper, crayon, box, and tape, as

part of the storytelling experience.

Most construction kits are virtual programming environments for children to construct

microworlds [21, 75]. These virtual worlds have also been used as testbeds for re-

34

searchers to probe the extent to which six to eight year old children understand pro-

gramming and rules (e.g., [48]). PETS [28], StoryRooms [2], and TellTale [5] are a

few systems that encourage children to manipulate or use physical objects as part of the

storytelling experience.

2.4 Participatory Design, Methods and Processes

The design process is inherently fluid and dynamic, and since no formal methods exist

that guarantee insights or breakthroughs, a practice that encourages collaboration and

the spontaneous outbursts of creativity can affect the quality of the work place. This

design practice is called cooperative design in Scandinavia (e.g., [101]), participatory

design in the United States (e.g., [40]), and consensus participation in England [68].

They share the common belief that user participation is necessary to create technology

that attends to the idiosyncrasies of different work environments. Furthermore, whereas

in the past there was a gulf between the “know” and the “know-nots,” or, technologists

versus users, these researchers believed that users needed to fully and actively engaged

in the process, and not be regarded as token participants [41].

Research on the relationship between children and technology had been sporadic and ap-

peared in related but distinct disciplines. Educators and child psychologists discuss the

learning impacts from interactions between children and technology (e.g., [75, 102]). In

the HCI community, the first publication related to children’s issues was Tom Malone’s

study of games for children [58]. Children and technology became a significant research

topic in the early 1990s (e.g., [77, 99]). At the same time, children’s roles in the design

process were identified as user, informant [88], and design partner [23, 24]. Elementary-

school-aged students have been the subject of many of these studies. Researchers at the

35

University of Maryland have also worked with kindergarteners as designers and as in-

formants [32, 64]. In the chapter that follows I will discuss these methods and their

context.

36

Chapter 3

Cooperative Inquiry: A Participatory Design

Framework for Collaborating with Children

When people discuss the design processes, they often refer solely to the end product

of that process, the technology. For me, my design goal was a new kind of educational

technology, one that incorporated many different constructive and collaborative learning

experiences. I am also interested in the development process and the learning experience

that came from building and studying technology. Many researchers have referred to this

type of learning as the outcomes of cooperative or participatory design process [31, 40,

68]. Educators [55] have also call it a community of practice. Druin described this as “...

a community of people with different skills that learn as they work toward shared goals

[23].” At the University of Maryland, we developed a methodology that embraces this

close collaboration between children and adults, cooperative inquiry [23, 24]. To best

understand how my dissertation research evolved, one must understand my experiences

in the design team of children and adults.

I worked with two groups of children: elementary school aged students from seven to

eleven years old, and kindergarten students (4-6 years old). Although they were close

37

in age, my approach to working with the two groups was quite different. There were

many differences between the two age groups. Some were obvious, such as the fact that

most kindergarten children were pre-literate. Other differences were more subtle. For

example, if a kindergartener proposes a good idea, then magically every student also

would have the same one too. This was not true for the older children, who took pride

in creating novel ideas. In the sections that follow, I will describe the composition of

the intergenerational team I worked with. Then, I will describe my roles in the group. I

will also present some common questions about the IDT and its design approach. Then

I will describe specific activities that I have found to be effective for working with the

primary school and the kindergarten children.

3.1 The Collaboration Between Children

and Researchers: An Intergenerational

Design Team

Our research team, the intergenerational design team (IDT), has always had at least

twelve members. Between six to eight members were between seven and eleven years

of age, and came from local (public and private) elementary schools. These children

stayed with the team for an extended term, for an average of 2 years to as much as 5

years. The adults were undergraduate students, graduate students, and faculty, from di-

verse disciplines such as art, education, engineering, and computer science. We shared

a common goal: to understand why children were interested in and wished to play with

new and existing technologies. This investigation led us to develop a variety of proto-

types (e.g., [28, 2, 46, 47]) and to the development of the principles behind cooperative

38

inquiry.

3.2 My Role in the Intergenerational Design Team

I was a member of the intergenerational design team ever since its inception at the

Human-Computer Interaction Lab, in 1998. My role of being a design partner has

been the one consistent activity throughout my projects: PETS, StoryRooms, and phys-

ical programming. I have taken on other roles too. I evolved from being a student of the

cooperative inquiry design framework to one of its main contributors. Throughout the

many design sessions, I observed and analyzed the many specific and practical activi-

ties. These became a foundation set of standard operating procedures for our research

sessions (section 3.5).

As a computer scientist, I have always contributed my technical abilities to the team. In

particular, my strength in rapidly creating working prototypes for the team allowed us

to have concrete objects-to-talk-with.

I was also a mentor to many undergraduate students who came through the IDT program.

Whether they came from mechanical engineering, computer science, or children’s tech-

nology, I challenged them to perform to the best of their abilities and at the same time

learn the nuances of having children as partners.

In the beginning, because PETS was primarily an experimental project to understand

and solidify the cooperative inquiry methodology, I found myself in several roles at

once. I was a student of the technique. I learned to be with children. I facilitated design

sessions. I learned to ask the right questions. And, I designed the enabling technology

for the robot. Having many roles at once has been the normal mode throughout my six

39

year tenure. The first year was my transformation from a computer science specialist to

a human-centered generalist.

When I began my dissertation work on StoryRooms and physical programming, I was

already much more comfortable as an adult design partner. So I devoted much more

time to observing the sessions, thinking about what happened, what went wrong, and

what was brilliant. It was during this time that Druin and I discovered that one of the

strengths of our methodology was that it created an atmosphere where the elaboration

of brainstorming ideas occur with remarkable frequency [24].

I think it is safe to say that I have made many contributions to the IDT over the years.

With certainty, I know this would not have happened had I not learned from the individ-

uals in the group as well.

3.3 Working with Children

It is clear to many people that a successful design team should include people with many

different specialties. For example, a mechanical engineer could design and build the

physical structure of a tangible plaything. Of course, given enough time, anyone might

be able to do this. And he (the non-engineer) would surely gain a valuable learning

experience. While this may be an enlightening learning process, it would probably not

be a very efficient way to develop products. Similarly, we can see how other experts

would be integral to the design team. The educator would guide us and shows us ways

to collaborate with children. The participatory design practitioner would offer a design

framework. And, the artist would transform “hard,” “cold,” and “ugly” machines into

beautiful functional friendly objects. It might even be acceptable to include children in

the limited capacities of testers or users.

40

But it was not obvious to observers of the IDT research why children had “so much

control” on our team. After all, many would suggest that it is difficult enough to have a

good working team of adults; there would be no advantages to making the development

process more complicated by including young people who (presumably) don’t know as

much as grown-ups. Visitors to HCIL have often asked the following questions: “How

do you work with children?” “How do you select the ‘right’ child for the group?”

“Won’t they slow down the development process?” “Why do we need them? After

all, we were all young once, so we should know what and how children think.” The

common underlying thread seemed to be this: Can children be effective partners, and,

are they qualified? Having spent these past six years with the young designers, I believe

the answer is decidedly affirmative.

3.4 How to Work with Children

Without a doubt, it is difficult to work with children to design technology. There are

many reasons why this is the case. For instance, young children have more difficulties

verbalizing their thoughts than adults. This is particularly true when they want to convey

abstract ideas [78, 79]. So unless adults acquire the skills to properly communicate

with them, it would be difficult to involve them in development efforts. In addition,

while there has been immense amount of research into communication among adults

of varying skills, it has only been in the past decade that researchers have come to

understand how to work with children. Also, traditional types of relationships between

adult and child, such as speaker-listener, parent-child, or instructor-follower, are not

always useful in collaborative settings. Finally, misconceptions about the proper roles

of adults and children can often lead to frustration. For example, children are not “just

41

short adults,” implying they are equally capable of any task that an adult can handle. A

seven-year old child should never operate heavy machinery. Alternatively, just because

a child utters a statement does not necessarily mean that it must be followed. The child

may be an expert on being a child, but she would not always know what is in the best

interest of young people in certain situations. In short, children are an entirely different

user population with their own culture, norms, and complexities [10], and they should

be treated as people with special knowledge about the subject of “being child;” just as

engineers are people who know a great deal about building things.

3.4.1 Won’t They Slow Down the Design Process?

Yes, children can slow down the design process. Products can take longer to build. This

is especially true for a new team. My experience has been that it takes about six months

before an intergenerational team becomes productive [2]. Also, since there are differ-

ent forms (i. e. verbal, drawing, writing, building) of communication preferred by each

child, the adults need to recognize that the same conversation might be repeated several

times, using these different channels. This extra effort translates to more time. Alter-

natively, the design process can slow down just because children can offer insights for

better technology, resulting in new features and ideas that were not part of the original

design goals.

But consider what might happen if adults try to build technology without incorporating

children’s insights. Here is a hypothetical scenario:

1. An adult has a “great” idea for new technology for children.

2. The adult builds it.

42

3. The adult shows the gadget to kids and asks, “What do you think?” And, “What

should I do to make it better for you?”

4. The kids look at the adult and mumbles “I dunno,” or “I don’t understand,” or “I

don’t like it.”

5. The adult tries to rephrase “What do you think?”

6. Kids mumble and walk away.

Does this sound familiar? What happened? I believe this gulf in communication is the

phenomenon of two monologues. What appears to be an interaction, or dialog, is really

just the two sides trying to guess at what the other is really saying. There is no transfer,

or flow, of information. Let us look at steps 3) through 6) again in table 3.1.

Table 3.1: Phenomenon of two monologues

Adult’s Perspective Child’s Perspective
Adult shows the gadget to kids and
asks, “What do you think?” And,
“What should I do to make it better
for you?”

Information overload! What’s
all that stuff? What’s going
on? Why are these things pur-
ple? Why is that thing round?

Kids look at grown-up and mumbles
“I dunno,” or “I don’t understand,” or
“I don’t like it.”

Just say anything.

Adult tries to rephrase “What do you
think?”

Child thinks, “Hmm. I don’t
like purple. Therefore, I don’t
like this thing.” Child says “I
dunno?”

Kids mumble and walk away. Who was that?

The problem is that children have no context in which to understand the object pre-

sented before them, and, grown-ups have no context in understanding how children

comprehend their environment. Consequently, when all a child sees is the technology,

43

she cannot understand the rationale behind its features. Now, the adult might try to de-

cipher the ever so deep “I don’t like it.” But, he may very easily misinterpret the child,

because that is just not enough information to work with. And if the adult does misin-

terpret his observations, and if he then tries to create a new iteration based on this false

interpretation, then the technology may stray from its intended objective.

3.5 Working with Children: Standard Operating

Procedures

Druin describes cooperative inquiry as a “philosophy and approach to research that can

be used to gather data, develop prototypes, and forge new research directions [24].” It is

composed of three types of activities [24]:

Contextual Inquiry Observe what children do with what technologies they currently

have.

Participatory Design Hear what children have to say directly by collaborating on the

development of “low tech” prototypes.

Technology Immersion Observe what children do with extraordinary amounts of tech-

nology (similar to what they might have in the future).

Within this framework are three iterative events: 1) setting expectations, 2) brainstorm-

ing, and 3) reflecting on the session (figure 3.1). In this section I present a classification

of the types of activities that I have found to be effective for many frequently occur-

ring situations in the IDT research lab. Consider this the adult team members’ list of

standard operating procedures. Different activity patterns dominate each event phase.

44

Figure 3.1: The three iterative activities of the cooperative inquiry design methodology.

The expectations and reflection phases are unlike the brainstorming phase in that the

research team adheres to a standard set of questions and activities for every session. On

the other hand, the brainstorming phase is intrinsically very different because the dy-

namics of each session can vary so much that there is really no fixed recipe. Instead, I

offer a “trouble-shooting” chart that contains a list of common issues and some exercises

to address these situations. Since the primary brainstorming goal of cooperative inquiry

is to foster elaboration [2], many of these exercises can make elaboration happen more

frequently, easier, and faster.

3.5.1 Activities for the Setting Expectations Phase

Adult team members set expectations during two distinct activities: adult debriefing

and snack time. This order is important. Adult debriefing occurs after every research

session, and includes only adults. They review and analyze the session, and agree on

a goal for the next session. Then, during the snack time of the new session, the adults

introduce the day’s design goal to the children (figure 3.2), whether it be brainstorming

or reflection events. It is important to note that by snack time the goal has already been

45

Figure 3.2: Adult debriefing and snack time are critical moments for setting expecta-
tions. A typical chain of events is 1) adults reflect and evaluate on the current session,
2) adults set new goals for future sessions, and 3) adults present the goals to children
during snack time.

altered from the technical and abstract into a form that children can comprehend.

For brainstorming events, although adults define a list of expectations, they do not en-

force the outcome of the session. Indeed, they may find that children take the design

team in completely different directions, or that their ideas undergo an extensive elabo-

ration process. An expectation is just a working topic and not set in stone.

Adult debriefing and analysis

The ATM debrief after every research session. More than just a way to set future goals,

these review sessions also help the adults refine the cooperative inquiry methodology.

Perhaps the most important lesson that I have learned is that debriefing can help a design

group identify and tailor the specific techniques that work best for its members. Table

3.2 contains the standard questions for debriefing.

Table 3.2: Standard questions during adult debriefing ses-
sions.

Question Reason
Were the ATM’s expecta-
tions met?

This is always the first question. It sets the
tone for the review session.

46

Table 3.2: Standard questions during adult debriefing ses-
sions, continued

Question Reason
What techniques did not
work? Why? Did the
ATM make any obvious
mistakes?

This helps the adults distinguish mistakes
that were due to deficiencies in the design
process or from lapses in adhering to the co-
operative inquiry framework.

Were there any elabora-
tions? What were they?
What were the sequence
of events?

Since elaboration is the main brainstorming
goal, the ATM analyze the events that led to
the elaborations and identify their triggers.

Did any critical ideas oc-
cur?

Conceptual breakthroughs are often impor-
tant cornerstones in the resulting technol-
ogy.

What did the children and
adults write in their jour-
nals1?

During brainstorming, it is not always pos-
sible to hear every person’s contribution.
Journals offer another democratic way for
all members to voice their opinions.

What did the children
videotape, write, or draw?

It is very easy for adults to focus on top-
ics that they think are important for every-
one. By reviewing children’s reflections of
brainstorming sessions, adults can uncover
issues that are important from the children’s
perspectives.

Are more sessions needed
to achieve the current
goal? Should the goal be
refined or changed to new
set of expectations

The ATM may have underestimated the ef-
fort required to attain a goal. Or, the IDT
may have made a breakthrough that enables
the team to move to the next problem.

1With the start of every year, the adults and children received a journal to enter their observations,
ideas, and reflections. For pre-literate children, it was common for them to express their ideas through
drawing. Often, the children would also verbalize their thoughts for the adults to transcribe into the
journal.

47

Setting New Expectations

Adult debriefing gives the ATM information needed for the analysis phase, where the

adults refine or re-define an expectation, choose supporting design activities, allocate

human resources, prepare prototyping materials, and develop one simple expectation

statement so that both adults and children can understand the goal. Table 3.3 contains a

pre-session checklist and questionnaire the ATM use before each design team meeting.

Table 3.3: Pre-design session checklist and questions.

Question and Checklist Reason
What is the type of the
next session (contextual
inquiry, low-tech proto-
typing, sticky session,
etc.)?

This is a useful first question since con-
textual inquiry, participatory design, exhibi-
tions, etc., require different preparations.

Can the goal be reason-
ably attained within the
session?

The ATM define goals that are small enough
so that the IDT can accomplish something
for each meeting.

Choose appropriate brain-
storming activities.

For example, if the ATM plan a contextual
inquiry session, then the adults need to de-
fine the context and prepare the lab for this
activity. Or, if the plan is to sketch new de-
sign ideas, the IDT would use low-fidelity
prototyping methods.

Allocate team members to
work on appropriate activ-
ities.

Just as adults have specialties, children also
have strengths and weaknesses as designers.
After the ATM have decided on the brain-
storming activities, the adults select the best
people to handle the subtasks within those
activities.

48

Table 3.3: Pre-design session checklist and questions, con-
tinued.

Question and Checklist Reason
Prepare, collect, or pur-
chase prototyping mate-
rial.

Different kinds of sketches (prototype) re-
quire different material. For example, a
storyboard session may only need markers,
crayons, and lots of paper. But a project
such as a robot might require clay, popsicle
sticks, glue, scissors, LEGO pieces, motors,
etc.

Develop a simple state-
ment of the new session
goal.

All members should easily understand the
expectation. Thus, “We are going to de-
sign an ad-hoc distributed networking pro-
tocol.” would not be appropriate, since chil-
dren may not have the background to under-
stand this statement. Alternatively, “Let us
invent toy animals that play with each other
when you put them all in a room.” might be
a more concrete goal statement.

49

Setting Expectations During Snack Time

Because the IDT uses snack time as a transition for both adults and children to become

design partners, the ATM present the expectation for the session in incremental steps,

from general bantering about fun topics to more closely related ideas and finally to the

explicit expectation statement that the adults prepared during adult debriefing. Table

(table 3.4) contains the list of discussion topics.

Table 3.4: Snack time discussion topics the adults use to
transition from general banter into presentation of session
goal.

Things to Say Reason
Share some fun stories
and jokes.

To prepare the group for a brainstorming
session, adults and children share fun stories
to break down the age and authority barriers
between them. The topics are often silly,
such as knock-knock jokes, favorite junk-
foods, and most disgusting ice cream fla-
vors.

Ask a round-table ques-
tion of general interest
that is related to the re-
search agenda of the day

This is a transitional statement. These ques-
tions move the children from their regular
role as student and child to the role of de-
signer. For example, if the ATM goal for
the day were about building an interface to
query a digital library for 5 year old chil-
dren, then the adults may ask, “Do you ever
look things up on the web?” Or, “Have you
gone to the library to look for books about
vegetables?”

50

Table 3.4: Snack time discussion topics, continued.

Things to Say Reason
Ask a question that ties
the previous brainstorm-
ing session to the day’s
goal

The child designers move closer to under-
standing the context of the day’s session.
Here is an example, taken from a design
session on StoryRooms: “Do you remem-
ber last time when we went around the table
making up a story? Well, today, we are go-
ing to do that again, just to warm up. After
that, we are going to think about what kind
of computer we can make that lets us turn
this room into that story.”

State the expectation for a
contextual inquiry session

Begin the session by talking about related
subjects that the children are already fa-
miliar with. Then, narrow to the specific
subject. For example, when the IDT be-
gan the StoryRooms project, the ATM asked
the children to think about how many ways
they know to tell a story (i.e., reading,
movie, music) and what elements good sto-
ries share. The adults asked such questions
as, “What was your favorite movie of this
month?” Then, after everyone has given
his opinion, the adults follow up with, “To-
day, we are going to figure out why you like
these movies.”

State the expectation for
a contextual inquiry field
trip

The ATM explain why the group is going,
and what the team should think about while
there. For example, the IDT visited Port
Discovery in Baltimore to learn about story
spaces. The ATM might say, “We are going
to Port Discovery today because they have a
mystery story-room. Think about what you
like and do not like about the way they built
it. Also think about whether it is exciting,
boring, fun, or frustrating.”

51

Figure 3.3: Adults and children looking for patterns during a stickies session.

Table 3.4: Snack time discussion topics, continued.

Things to Say Reason
State the expectation for
analyzing a problem

Usually after a contextual inquiry session,
the IDT has identified issues to investigate.
But we don’t necessarily understand why
these problems exist. To prepare the IDT for
sessions to understand the nature of a prob-
lem, the ATM would say, “Last time, we
looked at Gadget X. Today, we are going to
start with a stickies session2 and figure out
what we liked and what needs work.” (fig-
ure 3.3)

3.5.2 Brainstorming

Five issues occur frequently during brainstorming sessions: 1) understanding technol-

ogy, 2) evaluating technology, 3) designing technology, 4) stagnating design session, and

5) uncooperative children. The following lists these situations (figure 3.4) and describes

some practical responses (table 3.5).

2A stickies session is an analytic activity. Both adults and children contribute several sticky notes that
contain likes, dislikes, and suggestions for improvements to the technology under review. All the notes
are posted on the wall for the team to offer comments.

52

Figure 3.4: Issues that arise during brainstorm sessions and how the IDT solves them. In
the rectangles are issues such as understanding technology to overcoming a stagnating
moment. The bubbles are the solutions that have been consistently useful.

53

Table 3.5: Common brainstorming events and useful re-
sponses.

Situation Exercise Explanation
Understanding
existing technol-
ogy

Contextual
Inquiry

A great way to understand technol-
ogy is to use it. Every new project
begins with contextual inquiry ses-
sions of relevant technologies.

Understanding
existing technol-
ogy

Evaluation
Sticky Notes

The IDT follows every contextual
inquiry session with an evaluation
stickies exercise. Evaluation sticky
notes offer a democratic way for
design team members to voice their
opinions about a technology. Each
member writes on sticky notes 3
things they “like” and 3 things that
they“don’t like.” These comments
are posted on a white board for all
to evaluate. Then, as a group, we
identify major classes of positive
and negative features, the most im-
portant issues (by frequency), and
good ideas, from all the categories,
that deserve further investigation.

54

Table 3.5: Common brainstorming events and responses,
continued.

Situation Exercise Explanation
What is good and
bad about the
technology?

Act Out Scenar-
ios

Stickies sessions identify the prob-
lems that the design team wants
to solve. The next step is to dis-
sect the problem, find out both pos-
itive and negative characteristics.
One very effective method to an-
alyze problems is to act out sce-
narios. That is, the team mem-
bers become the various parts of
the technology and act out what the
technology might do in a situation.
This gives both the adults and chil-
dren a concrete3 understanding of
what is happening. It makes ab-
stract notions concrete and physi-
cal and visual. This works well be-
cause there is no need to build pro-
totypes, which takes time and ef-
fort.

Sketch new tech-
nology solutions

Low-tech proto-
typing

Low-tech material such as paper,
glue, and cardboard boxes enable
both adults and children to visual-
ize their ideas for new technology.
It is inexpensive, quick, and fun.

Sketch new tech-
nology solutions

Idea Stickies There are times when even low-
tech prototypes requires more ef-
fort than it is worth. Use idea
stickies instead. Idea stickies are
just sticky notes of different col-
ors. Sketch pictures, icons, words,
on these papers and shuffle them
around to act out scenarios.

3Recall that young children think best in physical ways.

55

Table 3.5: Common brainstorming events and responses,
continued.

Situation Exercise Explanation
Stagnant pe-
riod, kickstart
the elaboration
process

Speed round The design group sits in a circle
and a leader begin by stating a goal.
Then, each person around the cir-
cle contributes an idea. This per-
son only gets one second to think
about it. If he cannot contribute
an idea, then you say, “Too late!”
and move to the next person. This
works wonders when the group is
not moving forward because it re-
moves inhibitions and encourages
everyone to just blurt out some-
thing. As soon as a truly great idea
comes out, the design team can
pounce on it and elaborate. When
a person is not given enough time
to think, he can be silly with his
idea. The children seem to under-
stand this and instead of worrying
about whether they appear foolish
to others, they instead enjoy trying
to outdo each other.

56

Table 3.5: Common brainstorming events and responses,
continued.

Situation Exercise Explanation
Stagnant pe-
riod, kickstart
the elaboration
process

Idea Stickies When a discussion is becoming
too abstract, children may lose fo-
cus. When this happens, make
the ideas concrete by putting them
down onto idea sticky notes. Be-
cause some children cannot read
as well as others, use pictures in-
stead of words. Idea stickies re-
generate the brainstorming process
because the children can see and
touch them. So even though they
contains the same elements as ver-
bal discussions, their physical pres-
ence remind and focus the kids on
the problem.

Stagnant pe-
riod, kickstart
the elaboration
process

Competition and
deadline

If the children become bored, split
the team into groups and make
the low-tech prototyping session a
competition. Not only do they
enjoy trying to outperform each
other, but the result of these com-
petitions can often become the first
prototypes of new technology.

Stagnant pe-
riod, kickstart
the elaboration
process

Exhibition Tell your IDT team that you will
show off the new technology and
give them a deadline. An exhibi-
tion sets a tone for the design ses-
sions and lets both the adults and
children know that what they are
making is truly important.

57

Table 3.5: Common brainstorming events and responses,
continued.

Situation Exercise Explanation
Kid having a bad
day

The ATM constantly remind our-
selves that half the IDT team is 11
years old or younger. When even
just a couple of them are having a
bad day, the meeting could easily
become unproductive. As adults,
we accept that some sessions are
just not going to be productive.

Kid having a bad
day

Videographer
and reporter

Offer the child who is having a bad
day to be a reporter and give her the
video camera. Ask her to film the
session. This removes her from di-
rect interactions with the team, but
she is still contributing by record-
ing the meeting. If a video camera
is not available, make her the jour-
nalist and ask her to write down, or
sketch, what she observes, to put
into her journal.

Kid having a bad
day

Secret message Each child team member reacts to
bad days in different ways. It can
be helpful for the adult team leader
to develop special gestures for ev-
ery child, so that when she is un-
cooperative, she can be told about
it without being publicly embar-
rassed.

3.5.3 Reflections

Four exercises capture events in our lab: 1) adult debriefing, 2) journals, 3) videotape,

and 4) team presentations. By analyzing this wealth of data, the ATM have been able to

58

Figure 3.5: Artifacts from the IDT research sessions help define future goals.

refine cooperative inquiry as well as create interesting new technologies for children. In

Table 3.6, I describe these four activities and the type of information they capture (figure

3.5).

Table 3.6: Reflection activities and the type of information
they capture.

Class Explanation Exercise
Adult debriefing This was discussed in

the expectations section
above (3.5.1).

Refer to page 46.

59

Table 3.6: Activities during reflection, continued.

Class Explanation Exercise
Journals Journals are more than

just archives. They are
also records of changes
and refinements in the
cooperative inquiry prac-
tices. For the children
team members, it is a
way for them to remember
their contributions as de-
signers in the team. It is
useful to set aside 10 min-
utes at the end of the day,
and write down reflec-
tions, contributions, and
observations.

It is useful to throw
out a few questions for
the children to answer.
This helps them write. I
have found these to be
effective questions: “My
best idea today was. . . ”
“Today I learned. . . ”
“My contribution to the
group was. . . ” “Today I
liked. . . ” “Today I did not
like. . . ” They also enjoy
sketching any prototypes
that they built into their
journals.

Videotape Footage captured by chil-
dren can reveal their per-
spectives of the design
process and what they per-
ceive to be important is-
sues.

Both adult and children
members videotape de-
sign sessions.

Team presenta-
tion

These presentations bring
closure to the day’s ac-
complishments. They also
allow the teams to review
and comment about the
work of other groups.

If the session involved
competitions or members
worked in sub-groups, the
group always reserved 10
minutes at the end of
the session for the teams
to discuss what they had
done and what was diffi-
cult.

60

3.6 Working with Kindergarten Aged Children

When the IDT expanded its research methods to include kindergarteners as designers, I

did not quite know what to expect. Were they mature enough to be productive members

of a design team? What were the best roles for them? What changes to our methodology

were needed to best accommodate their needs? During its pilot year of study, the design

team discovered many changes were needed to work with kindergarten students [32].

One modification that I learned was that word choice was incredibly important. It could

either make the abstract idea seem easy to understand, or the simplest concept impossi-

ble to grasp.

3.6.1 Use Their Words

I found that using words within the kindergarten children’s vocabular allowed the adults

to communicate our ideas more clearly to them. By close observation and review of

videotapes, I picked up on the types of words, or even exact phrases, kids used. For ex-

ample, while the adult IDT members were presenting the StoryRooms concept, a child,

trying to make sense of his observations, made the comment that there were “invisible

wires” in the room. This was a profound moment, as the adults had been up to that

moment stumped on finding a way to explain the most abstract part of the technology,

which was the wireless interactions between the physical icons. Now if one child was

able to describe what was going on, it was probably safe to use those same words on

others too. Use “kid-friendly,” or “kid-originated” language with them. They will un-

derstand concepts at their level.

61

3.6.2 Level of Concreteness

Ask simple, specific, and pointed questions to kindergarteners. At this age, they may

be less able than the older, elementary school students to produce good design ideas in

a completely open-ended forum. Here is an example from the physical programming

project [65]. Suppose I want to say, “I am connecting these two things.” I might instead

say, “I am making an invisible wire between these two things.” The word “connect” is

difficult for the child because there is no physical manifestation of connectedness. But

a wire is real. It can transfer things from one place to another. To the kindergartener, it

makes sense that a wire, even if it were invisible, can be laid between two objects.

62

Chapter 4

PETS: My First Physical Interactive Storytelling

Construction Kit

The seed for a physical interactive storytelling space came from my early work on a

special robot called PETS (a Personal Electronic Teller of Stories). The goal of this

project was not so much the creation of a new technology, but rather, it was a way

for the IDT to develop a participatory design framework that could include children as

designer partners [23, 24, 26, 27]. After the robot was completed, I not only came to

understand more deeply the roles of children in a design team, I also came to understand

that children were interested in tools for them to create their own interactive stories.

By itself, PETS was a successful demonstration of what a physical storytelling kit

might contain. But more importantly, it was my experience working on this project

that sparked the far more ambitious project of creating construction tools for interactive

spaces such as StoryRooms. Despite their apparent differences (one being a robot and

the other an environment), conceptually both systems are quite similar. First, the story

construction process requires many physical components and an element of “program-

ming” or “scripting.” Second, the child user owns the entire process. An adult does

63

not have to interject high-tech mumbo jumbo on behalf of the children for the system

to work. Finally, both systems gave children a way to explore new kinds of storytelling

experience.

This chapter on PETS is an entry into physical storytelling systems. It offers a glimpse

into the motivations behind creating a kit for children that is constructive, physical, and

that can generate stories.

4.1 PETS Tells a Story

“There once was a robot named Michelle. She was new in the

neighborhood. She was HAPPY when she first came, thinking she

would make friends. But it was the opposite. Other robots

threw rocks and sticks. She was SAD. Now no one liked her.

One day she was walking down a street, a huge busy one, when

another robot named Rob came up and ask [sic] if she wanted to

have a friend. She was SCARED at first but then realized that

she was HAPPY. The other robots were ANGRY but knew that they

had learned their lesson. Michelle and Rob lived HAPPILY ever

after. No one noticed the dents from rocks that stayed on

Michelle.” [22]

This was just one of many stories that children wrote with the help of PETS [28], my

first physical and interactive storytelling construction kit.

Because storytelling is inherently constructive, the resulting products from the IDT have

64

been kits that enable children to create their own stories. My goals too had evolved from

the PETS storytelling robot [28] to a kit that enabled children to build physical and

interactive story environments [66, 2]. By giving children the tools to build their own

interactive physical environments, they could begin to experience a level of creative

autonomy that was previously limited to adults.

4.2 A Description of PETS

PETS, first developed in 1998, was a robotic story telling environment for elementary

school age children [28]. The PETS construction kit contained a box of fuzzy stuffed

animal parts and an authoring application on a personal computer. Children could build

a robotic animal, or pet, by connecting animal parts such as torso, head, paws, ears,

and wings. Next, they wrote and told stories using the MyPETS software. Just as the

robotic animal was made from discrete components, MyPETS was also constructive.

This application enabled children to create emotions, to name their robotic companion,

and to compile a library of stories and story starters (figure 4.1).

Each emotion that the robot performs was represented by a sequence of physical move-

ments that conveyed a specific feeling to the audience. The child designers helped the

team to define six basic emotions and the movements that accompany them: happy, sad,

lonely, loving, scared, and angry. They were chosen because of their significance to chil-

dren in their everyday lives and because these actions represented emotions that were

sufficiently different from each other that the audience would not confuse one from an-

other. For example, to express loneliness, the robot drooped its arms down and looked

left and right, as if it were looking for a friend. To show happiness, PETS waved its

arms really fast, turned its head left and right, and spun the spaceship it rode on. And,

65

Figure 4.1: PETS. On the left is a computer displaying the MyPETS software. In the
middle is the PETS robot decorated with paws, a pig’s snout, horns, and flappy ears.
To the right is a flying saucer for PETS to ride on. On top of the flying saucer are an
optional pair of wings.

66

when the robot was “sad,” it droops its head and arms, and moved forward at a slow,

deliberate pace.

PETS encouraged creativity through interactive and iterative play. Children were con-

stantly writing and rewriting their stories (figure 4.2), and in the process, developed their

own writing styles. They also enjoyed building different kinds of animals. Whenever

they wanted, these children could command MyPETS (figure 4.7) to tell their story and

watched their animal act out emotions. As the robot encountered each “emotional” word

in the story, it performed that emotion by moving its body in the sequence specified by

its creators.

A critical feature of PETS was that the child user was always in control. Unlike products

such as the Actimates Barney, where the robot directed the flow of action, and the child

followed its instructions, children can decide their own activity patterns.

Three versions of PETS were designed. They were named in the order of their creation,

PETS � , PETS � , and PETS � . Each successive version was a more refined “sketch” of the

IDT’s collective vision of the robotic storytelling environment.

PETS � was a prototype that I created in early 1998 to understand the technical issues

related to interactive robots. It was in fact the result of my own technology immersion

process. The knowledge gained from building this robot became a rough technology

roadmap for future PETS.

4.3 PETS �

PETS � (figure 4.3), built during the summer of 1998, was the first “full-featured” and

demonstrable robot from the IDT. This machine had primitive reactive behaviors. For

67

Figure 4.2: Children typed their stories and insert “emotions” with The Story Screen. A
child provided the sentences in the above story.

68

Figure 4.3: PETS � , with a furry body, dog paw, duck foot, and cow face.

instance, its head followed or turned away from a beam of light, depending on its

“mood.” Also, it would move its paws toward you if it was “happy,” or pull away if

it was “scared.” Most of its skeletal structure was constructed of LEGO blocks, and

the limbs were simple plastic boxes. Various fabric materials covered the robot to hide

the mechanical components. For instance, the head was covered with a fabric with cow

hide prints; some limbs were covered in feather; and a furry skirt was draped over the

entire robot to create a rounded and soft shape. A Handy Board [60] micro-controller in

the torso controlled embedded motors and servos. In addition to on-board programs for

the robot’s primitive behaviors, the controller also received commands from MyPETS

through a connecting wire. Sensors (e. g., light and touch) throughout the body in-

formed the robot about its environment.

Conceptually, PETS � contained three major components: 1) the skeleton, 2) the skin,

69

and 3) the software.

4.3.1 The Robot Skeleton

The PETS � skeleton was primarily made from LEGO blocks since it was an easy proto-

typing tool for both adults and children. It had a modular design. For example, the eyes

(light sensors) were detachable and could be placed in different places of the robot’s

body. The limbs, made from plastic boxes and embedded with servo motors, attached to

the torso by LEGO pegs. The wheelbase was separable from the rest of the robot (figure

4.4).

The most difficult problem of the skeleton involved the joints. For example, the neck,

a 2-degrees-of-freedom joint, had to support a large head, and was the weakest point of

an inverted pendulum. Also, the limbs fell off easily, since they were connected to the

body with only several short pegs. Wiring was another issue. Although individual body

parts were detachable from the skeleton, they still had to be tethered by telephone wires

to the body. Eyes and limbs that were truly physically independent modules would have

been much nicer.

4.3.2 The Robot Skin

Typically, the design of a robot stops at the “skeleton” phase. But since one goal of this

project was to create a “fluffy” and “huggable” pet, I was concerned with the appearance

of the robot as well. The IDT created shapes by padding the skeleton with socks and

fabric sheets (figure 4.5). In addition, a skirt was draped around the body and covered

the skeleton (figure 4.3).

70

Figure 4.4: The PETS � skeleton.

71

Figure 4.5: The PETS � skeletal head with padding.

72

4.3.3 The Software

PETS � was designed to operate in two modes: 1) autonomous, and 2) remote control

by My PETS. In the autonomous mode, PETS � was a reactive robot with the following

abilities.

See The light sensor eyes.

Listen The microphone ears (hardware was not implemented at the time).

Speak The loudspeaker.

Run The wheelbase.

Arms The appendages

Feel The touch sensors on the Arms. One is in front of the arm, the other is in the back

side.

Remote control My PETS.

Each ability is a separate process. Sensor processes update data onto a global black-

board, while actuator processes refer to the blackboard and affect devices accordingly.

These abilities supported personalities. PETS � supported SHY and CURIOUS. The fol-

lowing example illustrates the relationship between personality and abilities. If the robot

were set (by software) to be SHY, then when the Left Feel is triggered, the Left Arm

would pull back in the opposite direction of the touching. If instead the robot were set

to CURIOUS, then the Arm would move into the direction of the touching. Another

words, suppose I am shy and a person touches my arm, I would pull my arm away from

73

the person. But if I were a curious person, then I would push my arm into the person’s

hand.

When PETS � was in the Remote Control mode, it was not reactive and was a slave to

the commands issued by My PETS. In this mode, My PETS sent streams of commands

to the robot that activated various movements.

4.4 PETS �

After the IDT completed PETS � , three major goals for the next version were set: im-

proved aesthetics, durability, and wireless communication. The next prototype, PETS � ,

built between September 1998 and April 1999, included many refinements over its pre-

decessors. For example, PETS � had a foam outer-shell covered with felt (figure 4.6).

It had a more graceful shape and vibrant colors. The foam shell not only provided the

shape of the robot; it was also a buffer against abusive play from children. In addition,

it had a much sturdier skeletal structure built from metal, plastic, and polycarbonate

materials. The robot also communicated with the My PETS software via wireless radio

frequency channels.

4.4.1 Limitations

PETS � had several significant differences from PETS � . First, unlike PETS � ’s LEGO

blocks, the PETS � skeleton was made from much sturdier polycarbonate sheets and

steel posts. Its “skin” was a single felt-covered foamy shell, and did not suffer from

problems such as the body skirt coming off PETS � . But, this new design still did not

adequately address the weak neck and the method for attaching limbs onto the body.

74

Figure 4.6: The MyPETS software, the transmitter box, and the skeletal components of
PETS � .

Figure 4.7: Main screens of the MyPETS application. The left image is from PETS � ,
and the right image is from PETS � .

75

The PETS � project did not suffer too much from this, as the children were focused on

the storytelling and observing the robot’s performances. These mechanical problems

could be solved by collaborating with mechanical engineers.

Unlike the PETS � software architecture, which had a reactive layer (eg. [14]), an au-

tonomous behavior was not built into the PETS � software, because I focused on the

storytelling and the sequencing of actions in My PETS. But this lack of a primitive be-

havior meant that PETS � could not protect itself from obstacles, such as a wall.

4.5 Robots, Children, and Learning About

the Design Process

Children are drawn to physical play things. They love robots! I saw this repeatedly

during the year I worked on PETS. When I demonstrated PETS to young visitors to

HCIL, inevitably, they were drawn to the robots in the lab, even though it was filled

with lots of other toys for children. I believed this was because robots are inherently

intriguing and highly interactive objects. Indeed, studies have shown that in settings

where there are both things to observe and things to play with, young children are usually

attracted to activities where they can become interactive participants. For example, in

zoos, they prefer to interact with pigeons and squirrels than the more exotic animals

behind bars [43].

Accordingly, a robot as a design goal was useful for two reasons. The first reason was

that it was much easier to get the children to be excited about inventing something they

like, rather than to create the next generation toaster oven, for example. The other was

that the process of building robots is inherently collaborative and physical. Since the

76

IDT was interested in both the process and the product, having a project that required

collaboration and lots of construction was helpful in studying and testing cooperative

inquiry (3) in action.

But, building these interactive, robust, and child-friendly robots was extremely difficult.

I believed that there were two main reasons: First, a project such as PETS required

an interdisciplinary effort, thus, a team with diverse talents. Putting together such a

group was not easy. Second, interactions between a robot and its environment were

often unpredictable. This uncertainty presented many technological and engineering

challenges.

4.6 Lessons Learned from PETS

PETS provided many insights into physical interactive storytelling. In particular, the

affinity that children have toward real objects and their strong desire to write stories

and share them with others. It also showed children’s desire for “fuzzy” and “cuddly”

robotic objects. But this project also revealed some shortcomings of storytelling using

robots. They can be fine actors, but it can be awkward to use them to express physical

storytelling experiences such as the wind blows through the plains, which can be simply

implemented using a contact sensor, a fan, and a projected image of a desolate plain.

These limits led me to my next project: StoryRooms.

77

Chapter 5

Stories within a Physical Interactive Environment

The transition from storytelling robots to storytelling environments was natural. Al-

though a physical robot can be an actor, some story elements are either inconceivable

or awkward to express through a robot. Children can easily use the robot to “express”

sadness or happiness, but might have difficulty making it project: it was a dark and

stormy night.

In the summer of 1999, I began work on a technology that would lead me to my dis-

sertation research: technology for children to construct their own storytelling physical

interactive environments. Lessons I learned from PETS, such as sequencing physical

events to express abstract ideas, and sensor-effector interactions, formed the founda-

tion of this new endeavor. I believed, along with my team, that with the right set of

tools, children could construct their own StoryRooms. And, through interactions in this

environment, children can enjoy a new storytelling experience [2].

Designing StoryRooms with children proved to be extremely difficult. Although chil-

dren are natural storytellers, and although they have encountered many forms of sto-

rytelling, that a physical space can be expressive was initially too abstract for some

78

of the child designers1. To understand the relationships among storytelling, interactive

technology, and physical environments, three StoryRoom prototypes were built with in-

creased interactive levels: The Red Balloon, Hickory Dickory Dock, and The Sneetches.

The Red Balloon and Hickory Dickory Dock were mock-up environments, in which the

children pretended to be the proximity sensors and the sound and light effectors that

were needed to emulate the interactivity in the physical story. The third prototype,

The Sneetches was the first environment that contained real computational abilities; a

software application monitored contact sensor inputs and selectively activated sounds,

lights, and images within the room. From these low-tech prototypes I learned about the

structures of physical stories and their technological requirements.

5.1 The Red Balloon

The Red Balloon is a classic movie about a boy who finds a friendly red balloon that

follows him wherever he goes. Some mean-spirited kids want to take it away from him.

When the red balloon keeps floating away from the bad kids, they pelt it with rocks, until

it bursts and falls onto the ground [54]. As the movie ends hundreds upon thousands of

balloons begin to rise from all over the village.

In the HCIL, A red lamp becomes the red balloon. One child controls it by flickering

it on and off and saying, “I’m the red balloon.” Whenever the “good boy” walks by

her, she turns the light on and utters the sentence. If the “bad kids” behave menacingly

toward her, she turns off the light and crumbles towards the ground.

In this exercise, a child takes the role of the computer that controls the interactions

between physical objects and people. These interactions added a new kind of experience

1Truth be told, the StoryRoom concept was difficult for some adults too.

79

to the original medium of the Red Balloon. The IDT began to understand that physicality

can afford a rich experience. Also, by being directly responsible for the interactions, the

child designers learned about the role of technology in these storytelling environments.

5.2 Hickory Dickory Dock

Hickory dickory dock.

The mouse ran up the clock.

The clock struck one.

The mouse fell down.

Hickory dickory dock.

The second low-tech StoryRoom was an adaptation of the classic children’s rhyme,

Hickory Dickory Dock. Once again, some children were asked to be the technology,

while others were visitors to the story.

5.2.1 Setup

Paper labels representing special effects, such as Touch, Sound, and Light, and objects,

such as Telephone (figure 5.1), Computer, and Chair were placed next to actual objects

in our lab. Three paper plates were decorated as props. On each plate was one of the the

words Hickory, Dickory, and Dock. Digitized sound effects were stored on a computer.

One child was responsible for sound effects. Another was given a flash light and was

responsible for light effects. Finally, three children were asked to be different kinds of

narrators. Each successive speaker offered an increasing level of interactivity with the

story room visitor.

80

Figure 5.1: The phone object in Hickory Dickory Dock. The paper light and sound
“buttons” represent features of the “phone” object.

81

Figure 5.2: A child as a low-tech wizard-of-oz in the Hickory Dickory Dock rhyme.

5.2.2 Direct Recitation

A visitor entered the room and selected a narrator by placing a crown on top of that

person. She then pushed a paper labelled Start on the speaker’s chest to begin the story.

When the narrator (figure 5.2) uttered the words, “hickory, dickory, dock,” the light-

effects person would shine a beam of light on the paper plate with the corresponding

word. Then, when the narrator said, “the mouse ran up the clock,” the light-effects

person aimed the light at the real clock on the wall.

5.2.3 Recitation with Choices

In this variation, the visitor chose the object that the mouse would climb. So, the narrator

said, “Hickory, dickory, dock. The mouse ran up the. . . ,” and paused for the child to

push the Touch label next to its physical counterpart. If she pushed the Telephone, the

narrator would say, “telephone,” and the sound-effects person would activate the ringing

phone sound. Finally, the narrator completed the last two lines of the story.

82

5.2.4 Full Interactivity

The visitor explored the various sensors (the paper labels) and heard the speaker utter

the corresponding words. When she was ready to experience the rhyme, she asked the

narrator to recite her version.

Dickory hickory dock dock dock.

The mouse ran up the chair.

The clock struck one.

The mouse fell down.

Dickory hickory dock dock dock.

5.2.5 Lessons Learned from Low-Tech Scenarios

I learned that the same story can offer very different experiences, based on the level

of interactivity afforded by the physical environment. Also, given the same setting,

children had a choice of storytelling experience they want, from simply listening to a

story, to creating a new story by rearranging the elements. Furthermore, I observed

that simple effects, such as light and sound, can elicit highly entertaining atmosphere.

This was a critical finding. I knew then that I was offering children the ability to add

“magical” effects onto their stories. For them, because of the sensors and actuators, their

stories really could come alive in the StoryRoom

5.3 The Sneetches

After the previous low-tech stories, a fully interactive, semi-autonomous StoryRoom,

based on the classical Dr. Seuss story “The Sneetches,” was created [36]. This story was

83

chosen2 by the child members of the IDT.

5.3.1 The Story

The Sneetches live on a beach. Some have stars on their bellies, while others do not.

The star-bellied Sneetches think they are better than the plain-bellied ones. So those with

stars alone could have fun, and they always looked down on the plain-bellied Sneetches.

One day, Mr. Sylvester McMonkey McBean shows up with his strange contraptions,

and he advertises that his machine will put on a star on any plain bellies for just three

dollars a piece. Of course the plain-bellied Sneetches jump on this opportunity. But the

original “better” Sneetches become upset because there is now no way to tell them apart!

Coincidentally, Mr. McBean has another machine that will take stars off for ten dollars.

The original star-bellied Sneetches all have theirs stars taken off. This causes a cycling

of Sneetches going into one machine and directly into another, one group wanting to be

different, the other wanting to be the same. When the Sneetches spent all their money,

there remains the original two groups. Mr. McBean leaves the island, laughing about

how the Sneetches would never learn. But miraculously, the Sneetches do learn a great

lesson, that it does not matter how they look on the outside, all Sneetches can have fun

together.

5.3.2 The Interactive Version

In this prototype StoryRoom [66], children became the Sneetches by wearing a special

box (a Handyboard [60] and light bulb embedded within a cardboard box) on their bel-

2Each child was asked to write down a list (at least ten) of his or her all time favorite books. The lists

were dominated by Dr. Seuss titles.

84

Figure 5.3: Our child designers try out the Sneetches StoryRoom. The box on the left is
the Star-Off tunnel. The box in the middle is the Toy. And the boxes on the children’s
stomachs are the Stars on the Sneetches bellies.

lies. Inside the Sneetches StoryRoom were the Star-On box, Star-Off box, Narrator,

Mr. McMonkey McBean, and Money props (figure 5.3). The Star-On and Star-Off props

were cardboard boxes with colored paper glued over it. Attached to each box were a

light bulb and a contact sensor. The Narrator and Mr. McMonkey McBean, applications

running on separate Macintosh computers, uttered digitally recorded passages from the

book. The computer running Money was connected to an LCD projector, and projected

an image of a pile of money, with the Sneetches on one side, and Mr. McBean on the

other side (figure 5.4). Finally, the special boxes on the children’s bellies were the Stars

that could be visible or not.

Because StoryRooms are interactive, one of the adaptations was the addition of a Toy

prop. The Toy helped convince the kids with stars on their bellies to believe that they

were different from those without, and that they could change their bellies by going

through Mr. McBean’s machines. In effect, interactions with the Toy made the children

feel as if they were physically on the island and that they were the Sneetches (figure

5.5).

When children initially entered the Sneetches StoryRoom, some of them started with

a Star on their bellies (i. e. the lightbulb on their bellies lit up), while others do not.

85

Figure 5.4: The projected image of Mr. McBean, the Sneetches, and a pile of money.
Whenever a child crawls through a star on/off box, some money visually gets moved
from the Sneetches’ side over to Mr. McBean’s side.

86

Figure 5.5: A child with a Star on his belly “plays” with the toy.

Next, the Narrator program introduces the story. These children explored the room and

discover the Toy. They also noticed that the Toy lit up only for those who have stars on

their bellies, but not for those who do not.

Soon, Mr. McMonkey McBean introduced himself (via the wizard), and told the children

about the Star-On machine. When a child, who had no star on her belly, crawled through

this machine, her belly lit up with a star; she heard Mr. McBean thank her for the three

dollars she “paid” him; she also heard the “ka-chink” of a cash register; she sensed the

Star-On box lit up as she crawled it; and finally, she saw that some of the Sneetches’

money had gone from their pile over to Mr. McBean’s pile (figure 5.4). And, when she

went to the toy, it lit up for her (wizard)! This story continued, as children roam through

the various props, until all the money had been spent, and concluded with some speeches

from both Mr. McMonkey McBean and the Narrator.

87

5.3.3 The Technology

The Sneetches StoryRoom was made from low-tech and high-tech components. The

Star-On and Star-Off tunnels were made from cardboard boxes, and decorated with

colored papers and ink drawings. Taped to each tunnel were a contact sensor, embed-

ded inside a thumb-shaped foam, and a light effector, embedded within a semispherical

foam. These devices were connected by telephone wire to an Environment Interface (a

Handyboard microcontroller). The Interface delivered the world data to the Monitor, via

a serial port, and triggered an input event. The monitor consulted a list of sensor-effector

trigger rules, and, if necessary, sent output signals to the Interface, which actuated the

appropriate effector (figure 5.6).

The Sound Effects, Narrator, Mr. McMonkey McBean, and Money were applications

running on different Macintosh computers on a network. They communicated with a

Monitor program, using a simple file based messaging protocol. When a StoryRoom

savvy application started, it registered its identity and list of services to the Monitor.

The (adult) programmer of the storyroom then used this information to create trigger

rules using the Monitor application. For example: if contact sensor A was on, trigger

1. Sound Effect to play the clashing-coin sound;

2. Mr. McMonkey McBean to play the digitized sound segment “three dollars, thank

you”;

3. Money to update the projected image by moving an image of a coin from the

Sneetches side over to Mr. McBean’s side;

4. Environment Interface to blink the light effector A.

88

Figure 5.6: A diagrammatic overview of the technology underlying the Sneetches Sto-
ryRoom. The various sound generating applications reside on different Macintosh com-
puters in our lab and communicate via a file-based messaging protocol with the Mon-
itor. The Money is attached to a presentation projector. The monitor is an application
that receives inputs from sensors and issues commands to actuators and the registered
applications. The Stars are turned on/off by a wizard-of-oz, using an infrared control.

89

Figure 5.7: A wall sketch result of a Sneetches Room design session.

The Star bellies were controlled via infrared signal by a person (Wizard-of-Oz), who

signaled the stars to appear or disappear as children exit the Star-On and Star-Off tun-

nels.

5.3.4 Lessons Learned from the Sneetches StoryRoom

The Sneetches StoryRoom helped identify three necessary elements of the conceptual

storytelling construction kit: props, low-tech material, and physical symbols (or icons).

A story in an interactive environment needs physical props to represent key elements of

the story. These props are necessary to concretize the story. Children experience the

enriched story from these physical interactions. For example, as children crawl through

the Star-On box and watch the stars on their bellies glow, they begin to imagine that

they were transformed into the Sneetches (figure 5.7).

One idea that surprised the IDT was that children derived at least as much fun from

building the props as they experienced the storyroom (figure 5.8). In part, this may have

been because they were already expert builders of low tech material, such as cardboard

90

Figure 5.8: Two child designers working on the Star-On box.

boxes, glue, and crayons. These activities were necessary steps toward their creative

product, the StoryRoom.

Because embedding high tech devices within objects can be difficult for young children,

and because not all objects can be modified to hold the devices, what was needed was

an alternative to augment (figure 5.9) any physical objects with computing abilities. I

learned that for children between seven and eleven years old, placing attractive physical

icons on a physical object was conceptually the same as augmenting it with computa-

tional abilities. So, when a child touched a hand (or thumb) physical icon attached to a

prop, she could make-believe that she was touching the prop. And, during construction,

when a child connected an icon to a prop, she was casting a spell, magically imbuing

the prop with the computational feature represented by the icon.

91

Figure 5.9: Some early sketches of sensors, with shapes such as thumb, finger, and hand.

5.4 StoryKit

These StoryRoom experiences helped to identify some, but not all, of the necessary

components of the conceptual construction kit (StoryKit) [2]. After the Sneetches Sto-

ryRoom, I began the next phase of my research, that of designing an authoring system

for physical environments. From many design sessions, I discovered that children had

difficulty creating stories from nothing. But when presented with a few simple ideas,

they were able to quickly weave intricate stories around them. Furthermore, story qual-

ity seemed to correlate directly with the level of intrigue of the seed ideas. Here were

some example ideas: half a pencil; a torn piece of paper; a keyboard missing the keys T,

O, and M; and a bowl of blue tomatoes. All these ideas are unusual. Each was a mystery

unto itself. What happened to the other half of the pencil? Why was the paper torn in

half? Who took out the missing keys? And how did the tomatoes turn blue?

Interestingly, it seemed that some ideas needed to be “plain,” such as a simple box, a

tennis ball. These simple ideas served to support the mysterious qualities without adding

to the complexity of the story. These seeds of idea were called, Idea Cards. They were

the next component of StoryKit.

92

Figure 5.10: Idea Cards help propel children into developing structured stories.

Figure 5.11: Low tech materials are easy for children to construct play things.

The StoryKit was missing just one more element, a programming system to define the

interactions among the computational devices.

Now, the completed StoryKit would have the following elements:

1. Mysterious and simple Idea Cards to help children create stories (figure 5.10),

2. Materials that children can use to construct props from these ideas (figure 5.11),

3. Physical icons that represent computational abilities to augment the props (figure

93

Figure 5.12: High-tech devices embedded within physical icons project magical quali-
ties to a child.

5.12),

4. Programming system to define the interactions among the devices (figure 5.13).

Here is how children might create a StoryRoom. They open the StoryKit and select

some Idea Cards; weave a story around the ideas; create physical props, using low-tech

material in the kit, to concretize the concepts; decide the interactions that should occur;

augment the props with interactive computational abilities by connecting the physical

icons onto them, and program the interaction rules.

5.4.1 An Early Design for Defining Device Interactions

My earliest design of a system to define interactions was written using RealBasic. It

had a simple text-based control panel interface, called the Monitor. The control panel

included:

1. List of props.

94

Figure 5.13: An example of a child-unfriendly control panel to define the interaction
rules for StoryRoom.

Figure 5.14: An idea card and prop.

95

2. List of actuators.

3. List of sensors.

4. List of objects.

5. List of relationships.

The actuators and sensors were hard-coded. The objects list was automatically gen-

erated, in real-time, and contained all the registered StoryRoom savvy objects in the

environment. A StoryRoom savvy object registered with the Monitor its identity (e.g.,

Imageries, Narrator) and its services. For example, a Narrator object might contain the

sound clips Detective Brown narration one, Detective Brown narration two, etc. Another

example is the Money object in the Sneetches StoryRoom (5.3.2), which responded to

two commands: spend and reset. The spend command triggered the Money object to

update the amount of money transferred to Mr. McBean’s side and redraw the projected

image. The reset command tells Money to return all the money back to the Sneetches

update the image.

The way to create relationships between sensors and actuators was by a drag-and-drop

interaction.

1. Create a new relationship by dragging a prop onto the Relationships table.

2. Drag a sensor from the sensor list over to the new relationship.

3. Type into the Trigger Value cell a value for the sensor to activate an event.

4. Select, from either the actuators list or the objects list, a desired activity and drag

into the new relationship.

96

5.5 It Is Not Always About Sophisticated Technology

From creating PETS and the various StoryRooms, these experiences suggested that per-

ception was more important than technology to create a convincing story environment.

It was not necessarily the level of sophistication in technology that fostered the creative

and imaginative thinking in our children. Instead, a technology could create attractive

and entertaining storytelling environments when it has the following:

1. Tools for children to be creative.

2. The ability for children to affect and control their space.

3. Simple interactions.

4. Ways to help children begin stories.

5. Hints to help children understand the story.

6. Technology that is physically attractive to children.

In PETS, the robot’s physical appearance drew children near it; they controlled its emo-

tions; and the spoken words helped guide them through the story. In the Sneetches

room, children actively changed their own appearance and their surroundings by using

the props; the Narrator and Mr. McBean offered both hints and explained to them how

they were involved in the story; the contact sensors were simple to detect and easy to

change; and since children built the props, they were attractive to other children.

97

5.6 A Programming System for Physical Interactive

Environments

Throughout my research, I used crude user interfaces to create the device interaction

rules for the physical environment. It was the weakest component of the StoryKit. Not

only was the application textual, it also required heavy manual editing. Clearly the

programming interfaces were inappropriate for young children. In fact, whenever the

children finished a StoryRoom prototype, they needed my help to manually create the

interaction rules for the environment. Since my goal was to provide a kit for children to

be completely autonomous in their creative activities, I began work on a new program-

ming approach for children to control StoryRoom interactions. The IDT’s brainstorming

activities led to three conceptual user interfaces: 1) arrow notes (figure 5.15), 2) comic

strip (figure 5.16), and 3) time line. Because arrow notes was similar to time line, I will

describe just the Arrow-Note and the Comic-Strip interfaces.

5.6.1 Arrow-Notes

The arrow notes user interface used colored boxes. The boxes represented objects,

events, and branching tests. Overlapping boxes created relationships. For example, in

figure 5.15, the overlapping “door,” “if”, and “button pushed” boxes mean “if the button

that is on the door is pushed.” The arrows were used to indicate concurrent events.

5.6.2 Comic-Strips

The Comic-Strip followed a programming-with-demonstration approach. Similar to

KidSim [21], it used before and after frames to indicate activation rules. In figure 5.16,

98

Figure 5.15: An example Arrow-Note styled program. These notes represent a portion
of the program, and it is interpreted as: If the button on the door is pushed, then a) turn
the light on, and b) make the speaker say “Who’s there?”

99

Figure 5.16: An example Comic-Strip styled program. This strip represents a typical
programming “statement.” The before frame shows a floor based contact sensor, a light
actuator, and a speaker, all in the off position. In addition, the leg indicates a triggering
condition. The after frame shows what happens to the room when the trigger occurs.
The light comes on and the speaker makes sounds.

the frame pair means, “When I step on the sensor that is on the floor, then the light

should come on and the loudspeaker should make a sound.” Notice that it was possible

to create complicated rules involving multiple sensors and multiple effectors.

5.6.3 Take Away the Screen

These designs represent two visual programming categories. The arrow-note is a

flowchart, and the comic-strip is a visual production system. The fact that they were the

design results of an intergenerational design team suggested that both adults and chil-

dren were able to understand these two visual languages. Given these two promising

concepts for a graphics-based programming-with-example system, the IDT developed

some scenario walkthroughs to gain insights into the programming activities within a

100

Figure 5.17: A conceptual Storybox. To the left was a StoryWorm made from individ-
ual worm segments. The head of a worm would “remember” a story. Each segment
“remembered” a line (or interaction rule) in the story. The flower was a microphone for
children to record sounds. The monitor in the center would display the different lines of
a story. Each line corresponded to a worm segment next to it.

101

Figure 5.18: Some conceptual iconic sentences. The top line means “press the flower
and the light stays on for 15 seconds.” The third line means “when the camera and the
cup are near each other, the light comes on and the ear will listen.”

physical environment. Some questions still remained: Should children use the graphical

systems as the primary input model for programming, and then debug by interacting

with the physical icons? Or, should children interact directly with the physical icons to

demonstrate programming intentions, and then use the graphics system for review and

editing?

An interesting thing occurred during these brainstorming sessions. Either the children

weren’t using the screen at all, because they preferred the tangible elements of the pro-

gramming system. Or, they kept dividing their attention between the physical interac-

tions and viewing the computer screen to see whether what they were doing was being

102

correctly monitored. In the first case, the screen became superfluous. While in the

second, the act of always going back to the visual display made for an awkward pro-

gramming process. I relied heavily on pictorial representation of programming because

it was conceptually easier to understand. The surprising observation was that children

apparently needed to make mental connection between the symbols on the screen with

their physical counterparts in their environment, and not all the children we worked with

had this ability yet.

So, could it be that for children, a programming system that relies on direct physical

manipulation of concrete objects can be more natural? Educators have for a long time

postulated that concrete learning is innate in young children, and effective even as they

progress into abstract reasoners (e.g., [85]). At this point, I suggested that young chil-

dren can and should use direct physical actions to author StoryRooms, from constructing

props to programming interaction rules.

It was time to take away the artifacts of conventional desktop computing interfaces. In

the next chapter, I will describe a completely physical programming approach that I

developed. After that, I will describe the two studies that helped convince me that 1)

a concrete and physical programming metaphor can be easy to understand, 2) kinder-

garten students can become programmers using this approach, and 3) they can create

customized device behaviors in their physical environments.

103

Chapter 6

Physical Programming

In the Introduction, I presented the idea of physical programming by way of this work-

ing definition.

Physical programming is the generation of computer programs by the phys-

ical manipulation of computationally augmented (or aware) objects in a

ubiquitous computing environment.

I also described in Chapter 5 the motivation for developing this programming approach.

But I have not specified the elements of the language, such as grammar and alphabet. In

this chapter, I will:

1. Discuss the relationship of physical interactive environment to theoretical ma-

chines.

2. Refine the definition of physical programming.

3. Describe an implementation of the physical programming language within the

StoryRoom context.

104

4. Describe the enabling technology behind StoryRoom and physical programming.

5. Discuss the limitation of the implemented language.

6.1 Physical Interaction Environments and Automata

Conceptually, a physical interactive environment (PIE) is a physical environment that

contains devices and a set of instructions. The devices are sensors and actuators. The

instructions dictate the behavior of the devices. Ubiquitous computing environment is

an instance of physical interactive environment. Since StoryRoom is a ubicomp envi-

ronment, it is also a PIE.

A physical interactive environment can be composed of a) your home, b) a central air

conditioner, and c) a thermostat. The environment is the home. The thermostat contains

a temperature sensor, an actuating mechanism, and a temperature setting interface. The

temperature that you set is an instruction. The interaction may work this way:

1. You set a temperature A for your home.

2. If the ambient temperature, detected by the thermostat, is above A, actuate the air

conditioner.

3. If the ambient temperature is at or below A, turn off the air conditioner.

The Sneetches StoryRoom (5.3) can also be described as a PIE. The physical icons such

as thumbs and lights are devices. The instructions reside as a software program in the

Monitor application. And the room is the physical environment.

105

6.1.1 Deterministic Finite Machine

The simplest automata is the deterministic finite machine. Below I will show that a PIE

and its components make a finite state machine. Then, I will show how a deterministic

finite machine can be converted to a PIE.

Elements of a physical interactive environment can be mapped to a finite state machine.

The physical elements of the home example, the air conditioner, the thermostat, the

temperature setting, and the house, make up a physical state machine. Let me now

present this more formally.

Define augmented deterministic finite state machine

PIE = (S, � , A, � , I, E, Q,
�

, � , � � , F) as

S is the set of sensors in the environment.

� is the number of sensors.

A is the set of actuators in the environment.

� is the number of actuators.

I is a set of ordered pairs. For each ordered pair, the first element is from

S, and the second element is a finite set of integers representing the

sensor‘s possible values.

E is a set of ordered pairs that represents the finite set of possible values for

each actuator.

Q is the finite set of states, each state ����� is a set of ordered pairs. In each

pair, the first element is an actuator from A and the second element is

a valid value (defined by E) of that actuator. Each state contains one

possible instantaneous concurrent values of all devices in A.

106

�
is the alphabet. Each alphabet character is a � -tuple. Each element of

the � -tuple is an ordered pair, in which the first element of the pair is

a sensor � � �
and the second element a valid value (defined by I) for

the sensor � . Thus, a � -tuple represents one unique set of concurrent

values detected by all the sensors in the physical environment.

� is the total transition function.

� � is the start state.

F is the set of accepting states.

Notice that an input string for PIE is simply a temporal sequence of � -tuples. The start

state � � is an arbitrary moment in time, immediately before all the sensors and actuators

are turned on. In my home example, the input would simply be a string of temperature

readings.

For StoryRooms, a special purpose PIE, the semantics of F is determined by the “story”

crafted by the storyteller. If a story is never ending, then, F is empty. If a story is

a mystery with a solution ending, then that end can be an accepting state. In short,

the status of a state as accepting or not is at the semantic level of the story but is not

restricted by the machine. There is another way to look at this. Consider a very simple

setup. You have a keyboard, a monitor, and a basic text editor program. The keyboard is

a sensor; the monitor is an output; and the text editor is a finite state machine. Suppose

that every time you press a key, the text editor outputs the corresponding alphabet onto

the monitor. Here, a natural accepting state would be some meta-key combination which

saves the string to disk.

The transition function describes the relationships between S and A. In the PIE, sensors

(or timers) are needed to activate a transition between two states. A side effect of this

107

transition is that the settings of the actuators (i.e., sound, light, wind, or springs) change.

Note that the alphabet
�

and Q can be extremely large. While this is not a theoreti-

cal concern, it is certainly an important practical issue for any implementations. Take

StoryRoom and its children users as an example. A light sensor may trigger any inte-

ger values between 0 and 100, where 0 is complete darkness and 100 is full brightness.

Suppose children only cared about dark and light, and they don’t care about the grada-

tions in-between. Or, they just wanted to turn a light effector on and off. In both cases,

only 2 out of 101 possible input and output values were “practical.” How to reduce the

sizes of I and E, and correspondingly, of
�

and Q, then becomes a human-computer

interface question for the design team to answer, to filter out what is meaningful, what

is necessary, what is frivolous, and what is redundant.

As an example, the air-conditioned home can be represented this way.

AC Home = (S, � , A, � , I, E, Q,
�

, � , � � , F)

S =
�
Therm � .

� = 1.

A =
������� � .

� = 1.

I =
�	��

����������� � � � ��� ����� . For simplicity, I am using a thermometer that

can report only three possible temperatures.

E =
�	��������������� ����!"! ����� .

Q =
���	�������#�$��� ��� ���	�%����������!&! ����� .

�
=
�	�'��

��������� � �'� �(�'��

�)�(����� � ��� ������

�)���*����� ���'� .

� is the total transition function (figure 6.1).

108

Figure 6.1: The state diagram for the home example.

� � is the start state.

F =
�	�%����������� � �(�������#�$��!"! �'� .

The state diagram is an encoding of the instructions of a PIE. It tells us that given an

input character (thermometer reading) and a source state, move to a new state and acti-

vate the actuators of this new state. As a short hand, I will refer to a physical interactive

environment instruction as a Physical Interaction Instruction with the following defi-

nition.

Definition 2 A Physical interaction instruction is one state transition of the determin-

istic finite machine encoding of a physical interactive environment.

Thus, a PIE’s set of physical interaction instructions (PII) describes the environment’s

interactive behavior. Using the state diagram of the home example, we can see that one

109

PII is: if the thermometer is reading a temperature of 3 and the air conditioner is off,

then transition to the “air conditioner is on” state and activate the air conditioner.

6.1.2 Transformation of DFA to a PIE

The task of transforming of a deterministic finite automaton to a Physical Interactive

Environment is to convert DFA = (Q ����� ,
� ����� , � ����� , � � ����� , F �����) into PIE = (S, � ,

A, � , I, E, Q,
�

, � , � � , F).

1. Assemble
� � ����� � binary valued sensor components, such as push-button. Let this

set of sensors be S, and � =
� � �

. I = S �
���

1, 0 ��� .
2. Assemble an actuator component, containing two sub-assemblies: 1) a binary

valued actuator, such as a fan, and 2) a light bulb. Let the sub-assembly 2 light

bulb be the acceptor light. Use this actuator component as the start state � � . If the

start state � � ����� is an accepting state, turn on the acceptor light on � � .

3. Assemble
� � � binary valued actuator components, as in step 2. Let this set of

actuators be A, and let � =
� ���

. Turn on the acceptor light for any actuator whose

corresponding state in the DFA is accepting. F is this set of actuators with the

acceptor light on. E = A �
���

1, 0 ���
4. Q is a set with � sets. Each �
	 � Q is a set containing � couples. Construct �
	 this

way:

for each ��	 � Q �����

for j = 1 to �
assign � 	 to the first element of the couple.

110

if i = j then assign 1 to the 2nd element of the couple, else assign 0.

next

next

5. To construct
�

, first enumerate the
� �

possible combination of concurrent values

of the sensors in S as an � -bit binary string. Then continue with:

for each � -bit binary string

create a � -tuple containing � -couples

for i = 1 to �

assign s 	 � S to the first element of the couple

if bit 	 � � then set 1 to the 2nd element of the couple, else set 0.

next

next

6. To convert the transition table

 ����� for � ����� into a table

for � , change each

row in

 �����

from

�����
	
� ��� 	 �	� � ����
 �

to

�'�������
�
�
� � ������� �

��� � �������$�(����� 	 �
� � � � �������(�(����� � ��� ��� �
�	� ��� �

��� � �(� ���
�
�
� � �������(�(� ��� 	 � � � �������$�(� ����� ��� �'���

�
�	� ��� �

��� � �(� ���
�
�
� � �������(�(� ����
 � � � ���������(� ����� �
� ��� .

111

6.1.3 A More General Definition of the PIE Deterministic Machine

The PIE in 6.1.1 represents a machine that only inspects the sensors in the environment

to determine transitions. A more general machine would be able to decide a transition

based on the current values of both the sensors AND the actuators. For example, a

physical interaction instruction might say, “if contact sensor A is on and light actuator

X is off then turn light actuator X on.”

This more general machine can be described as an augmented deterministic finite state

machine
������� � = (S, � , A, � , � , I, E, Q,

�
, � , � � , F)

S is the set of sensors in the environment.

� is the number of sensors.

A is the set of actuators in the environment.

� is the number of actuators.

� = � + � .

I is a set of ordered pairs. For each ordered pair, the first element is from

S, and the second element is a finite set of integers representing the

sensor‘s possible values.

E is a set of ordered pairs that represents the finite set of possible values for

each actuator.

Q is the finite set of states, each state ����� is a set of ordered pairs. In each

pair, the first element is an actuator from A and the second element is

a valid value (defined by E) of that actuator. Each state contains one

possible instantaneous concurrent values of all devices in A.

112

�
is the alphabet. It contains both sensor and actuators. Each alphabet is a

� -tuple of ordered pairs. In the first � ordered pairs, the first element

is a sensor from S and the second element a valid value (defined by I)

of the sensor. In the remaining � pairs, the first element is an actuator

from A and the second element a valid value (defined by E) of the

actuator.

� is the total transition function. the transition function of PIE.

� � is the start state.

F is the set of accepting states.

6.1.4 Automata With Memory

I have just shown that a PIE is a deterministic finite machine. Can the PIE be more pow-

erful? The difference between a finite machine and all other more powerful machines

is access to memory. Just beyond the finite machine is the one-counter machine. It is a

finite machine that can read and increment/decrement integer values to a single memory

slot. This may not appear exciting, until you realize that if a PIE has this memory and

its corresponding operations, it can have a timer/counter/clock.

The next machine is the push down automata (PDA), with access to a stack. But its

power derives from the unattainable physical attribute of an infinite stack memory. This

appears to be a lost cause. But, we are saved by a two-counter machine. This is similar

to the one-counter, except it has two independent memory slots to hold integers. Turns

out the two-counter machine, with just 2 slots, can emulate the PDA. More incredibly,

it can emulate a RAM machine 1.

1The various machines are very nicely described in Floyd and Beigel’s text [34].

113

This is truly amazing. If a PIE can emulate the two-counter machine, then it is as

powerful as any others. But what good is memory? What else can we do in addition to

having a timer?

The following example will perhaps reveal a very nice property of “memory.” Suppose

we have a PIE enabled house with n rooms. Inside each room is 1 toggle light switch.

Now, suppose we want this PIE to trace our activities and execute according to this rule:

In whatever order I turn the light on, when I exit the house, the lights should be turned

off in the reverse order.

Of course we can encode this problem as a finite state machine. But, it can be quite large,

to the order of O(n!). On the other hand, a PDA can offer a more compact solution by

pushing the identities of the switches onto the stack as they are turned on, and turning

the lights off as their identities pop off the stack.

The counting, stack, and RAM machines are more powerful than the FSA because they

remember, and they can make decisions about the future by revisiting the past. So it

would be in my interest to add memory to the PIE. I can even get around the problem

of infinite memory by using the two-counter emulator. But Emulating PDA and RAM

requires many steps in the two-counter machine, and since each of these steps may

correspond to some physical programming activities in the PIE, a PIE equivalent of the

two-counter machine may be unwieldy. For now, let me just take a look at a PIE with a

finite tape. (Unlike theoretical machines, the physical environment is a finite place.)

This PIE with a finite tape can make decision about a state transition based on the current

of sensors, actuators, AND a recorded history! With this new capability, we can encode

statements such as: If sensors A and B have never been triggered, activate actuator X.

There are some more powerful implications. First, we can supply a looping construct.

Instead of flattening out a repeated sequence of commands, we can collect the sequence

114

and impose a counting modifier. In addition, the tape supports the variable construct.

But now comes the difficult part. For children, what are the physical symbols of mem-

ory? What kind of tools, metaphors, and interaction rules do we need to support the

manipulation of both reading and writing memory? This was the final part of my work

and it became immediately clear to me that much more time was needed for both the

adults and the child designers to work on this problem. There were two outstanding

issues. First, the adults were unable to clearly communicate the ideas of memory to

children. And second, prior IDT work that were related to this problem resulted in

complex and convoluted user interactions. Therefore, at this moment, because of time

constraints, I cannot currently offer any definitive insights.

6.2 A Refined Physical Programming Definition

The working definition of physical programming included a rather vague term: com-

puter programs. Based on my discussion in 6.1.1, I can replace computer programs with

physical interaction instruction. Now a refined definition is:

Definition 3 Physical programming is the generation of physical interaction instruc-

tions by the physical manipulation of computationally augmented (or aware) objects in

a ubiquitous computing environment.

The definition of finite machine only describes the content of the transition table, but

not how the table’s content is “written” or created. Similarly, the definition of a physical

interactive environment also does not say anything about creating physical interaction

instructions 6.1.1. This is where physical manipulation and generation come in. Rather

than using the traditional model of a user typing or drawing program code, I want to

115

explore new ways for the user to create program code (physical interaction instruction)

by way of syntactically meaningful physical gestures.

Definition 4 Physical syntax is a set of physical gestures that are used to interact with

computational objects in order to create physical interaction instructions.

Similar to the text editors used to create conventional program code (Java, C, etc.),

Physical programming also requires tools for the user to create the physical instruc-

tions. In the next section, I describe one implementation of physical programming for

StoryRooms and its suite of programming tools and physical syntax.

6.3 Implementation

Because StoryRooms was designed for young children, the programming tools should

be tailored to their abilities. One metaphor that worked well with the IDT child partners

was magic. That is, as a child was creating physical interaction instructions, she was

casting magic spells. Furthermore, she could create magic when she was a wizard, but

not at other times.

The programming tools to support this approach was comprised of a set of tangible

tools and icons. The tools included a magic wand, a wizard’s hat, and a once-upon-a-

time lever. When a child wore the hat, she became a wizard. When she took off the hat,

she became normal again. The once-upon-a-time lever was a switch for turning on/off

the StoryRoom machine. The magic wand was used to generate physical instructions.

The icons were the sensors and actuators, such as hand, light, fan, foot, and blinker. The

shape of the icons imply functionality that could be used to augment interactivity onto

props. For example, a hand implies touchable, a blinker implies “look here.”

116

The primitive physical gestures for StoryRooms were:

1. Wear the hat. Enter the programming mode of StoryRoom.

2. Put the hat back. Exit the programming mode of StoryRoom.

3. Pull the once-upon-a-time lever down. Activate the StoryRoom machine.

4. Pull the once-upon-a-time level up. Turn off the StoryRoom machine.

5. Press the new-spell button located on the magic wand. Start a new physical

interaction instruction.

6. Wave magic wand over an icon. Include this icon into the current physical inter-

action instruction.

The physical syntax for creating a physical interaction instruction was:

Press the new-spell button .

For each sensor/actuator that I want to include in the instruction

Wave the magic wand over the object.

Next

The StoryRoom had two distinct modes: authoring and playback. In the authoring

mode, the programming system captured activities and saved interaction instructions

into a database. In the playback mode, the system monitored sensor events and referred

to this database to trigger actuators. A child initiated the authoring mode by becoming a

wizard. When she wore the wizard’s hat from a “magic table” and took the magic wand,

she became a wizard and could cast spells onto the physical icons in the StoryRoom.

117

Figure 6.2: A child creating interaction rules. By wearing the wizard’s hat, she knows
that she can create magic. The magic wand gives her the power to create “invisible”
wires to connect different icons. Here, she is waving the wand over a physical hand
icon.

118

By returning the hat and the wand to the magic table, she turned off the authoring mode

(figure 6.2).

To create relationships among the physical icons, the child wizard waved the magic

wand over any icons that she wanted to be within a group. For example, if the wizard

wanted a blue light to turn on when a red hand was pressed, she first presses a new-spell

button on the wand. Then, she waved the wand over both the blue light and the red

hand. To the child wizard, she had just created “invisible wires” between these icons

so that the red hand had control over the blue light (figure 6.3). A generated physical

interaction rule is:

���'� � ��� ��� � �
��� � �(� � ��� ��� �

�
�
� � �������$�(����������� ��� � � � �������(��� � ��� ��� � � ��� �'� �

�	� ��� � � � �
��� � �(� ��� � � �

�
�
� � �������(�(�	��
 ������� � ��� � � ��� � � �������'�(� ��� � � � � ��� �'���

�
�	� ��� � � � �

��� � �(� ��� � � �
�
�
� � �������(�(�	��
�
)��
 ��� � � ����� � ����������� ��� � � � � ��� ��� .

The new-spell button was the programming language equivalent of the semicolon. Each

press of the button 1) closed the currently recorded set of sensors and actuators, and 2)

began another physical interaction instruction. Multiple sensors or actuators within a

rule were treated to have AND relationships. When several rules shared the same sensor,

they were interpreted to have OR relationships. For example, given sensors A, B, C,

D, and actuators X and Y, if I want X to be actuated when A, B, and C are triggered

simultaneously, then I would press the new-spell button , wave the wand over A, B, C,

and X (figures 6.4, 6.5, 6.6, 6.7, and 6.8).

The corresponding physical interaction instructions are:

1.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� ��� �'� ���	��� �
� � ����� ��� �'��� � �	��� � � � �(��� ��� ��� .

2.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� � � �'� ���	��� �
� � ����� ��� �'��� � �	��� � � � �(��� ��� ��� .

119

Figure 6.3: The new-spell button on the magic wand lets children create multiple inde-
pendent physical interaction instructions. The yes and no sides were modifiers to the
selection action of the wand. Yes meant include the positive action of an icon into a rule.
No meant include the negative action of an icon. (If an icon was not selected by the
wand, it was considered a don’t care.)

Figure 6.4: A physical programming example. Given sensors A, B, C, D, and actuators
X and Y, actuate X when A, B, and C are triggered simultaneously. The first step is to
press the new-spell button .

Figure 6.5: Step two: wave the star side of the wand over sensor A.

120

Figure 6.6: Step three: wave the star side of the wand over sensor B.

Figure 6.7: Step four: wave the star side of the wand over sensor C.

Figure 6.8: Step five: wave the star side of the wand over actuator X.

121

Figure 6.9: Another physical programming example. Given sensors A, B, C, D, and
actuators X and Y, actuate X when either of A and B are triggered. Again, the first step
is to press the new-spell button .

Figure 6.10: Step two: wave the Star Side of the Wand over Sensor A.

3.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� ��� �'� ���	��� �
� � ����� � � �'��� � �	��� � � � �(��� ��� ��� .

4.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� � � �'� ���	��� �
� � ����� � � �'��� � �	��� � � � �(��� ��� ��� .

5.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� ��� �'� ���	��� � � � ����� ��� �'��� � �	��� � � � �(��� ��� ��� .

6.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� � � �'� ���	��� � � � ����� ��� �'��� � �	��� � � � �(��� ��� ��� .

7.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� � � �'� ���	��� � � � ����� � � �'��� � �	��� � � � �(��� ��� ��� .

8.
�'���%�&� � � �(��� � � � ��� ��� � � �(��� � � �'� ���	��� � � � ����� � � �'��� � �	��� � � � �(��� ��� ��� .

Notice that with the physical approach, five simple gestures—one button press and four

waves—created the eight physical interaction instructions.

If I want X to be actuated when either A or B are triggered, then I would press the

new-spell button , wave the wand over A and X; followed by new-spell button , and

wave wand over B and X (figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14). These six gestures

generate
� �

physical interaction instructions.

122

Figure 6.11: Step three: wave the star side of the wand over actuator X.

Figure 6.12: Step four: push the new-spell button for a new rule.

Figure 6.13: Step five: wave the star side of the wand over sensor B.

Figure 6.14: Step six: the star side of the wand over actuator X.

123

The magic wand had two terminals: the star side (Yes) and the X side (No). The star

side imposed a positive modifier to the attribute of the physical icon, whereas the X side

imposed a negative modifier. For example, given sensors A, B, C and actuators D, E, if

I want E to activate when A is triggered AND B is not triggered, I would wave the star

side over A and the X side over B. A device that has not been selected is considered a

don’t care. Note: The X side was only implemented in a wired version of the physical

programming tools.

6.4 The Enabling Technology to Support Physical Pro-

gramming

Physical interactions are fundamental in the StoryRoom, whether they 1) occur among

the physical icons and children, 2) among the physical icons themselves, 3) between

props and the children, or 4) among children themselves. I designed a system to sup-

port the first two cases, which required embedded devices (within physical icons) and a

communication protocol to control them. In doing so, I came to understand that these

devices had to be rugged, durable, and predictable in behavior.

6.4.1 Embedded Devices

The embedded devices, or “icon controllers,” consisted of several components (figure

6.15):

� A printed circuit board (PCB) with micro-controller and various general circuits

for communications and sensors.

124

Figure 6.15: The components to a StoryRoom icon controller (left) and the components
of a StoryRoom icon (right).

� A battery circuit board.

� A wireless communications module.

� A driver circuit board with custom circuits for controlling the sensors and actua-

tors of a specific type of StoryRoom icon.

The multi-layer PCB micro-controller and battery circuit boards were designed by Eu-

gene Chipman (a graduate student in the department of computer science), and profes-

sionally manufactured. The polymer rechargeable battery, with a packaged protection

circuit, provided a minimum of 4 hours operation without recharging. The driver circuit

boards were built in our lab from basic electronic components, and used external bat-

teries to drive the higher power consuming actuators such as lights and motors. These

four components stack vertically into a single package less than 1” in height and were

enclosed within a 2” � 4” plastic box and embedded into a foamy iconic shell.

A sophisticated wireless modem, the WIT2410 Wireless Module from Cirronet, Inc.

[www.cirronet.com] was chosen, primarily because it had extremely low latency. It also

had good bandwidth, reasonable size and power consumption, a package that eliminated

125

most of the RF design challenges, and on-board management of the wireless protocol.

There was an unexpected design challenge: the placement of the power socket and the

on-off switch of the embedded device. In order for the physical icon to not reveal the

technology, the foam interior could not have an opening for charging the battery or one

for turning the device on/off. This meant that we had to constantly remove the devices

from its outer shell just to perform simple tasks.

6.4.2 Communication Protocol

A StoryRoom application ran on a single computer and monitored the activities of the

environment and controlled the states of the icon controllers. Communication between

the StoryRoom application and the physical icons follow a three-layered protocol (fig-

ure 6.16) similar to the TCP/IP Network model [104]. These include: 1) the wireless

layer, similar to the link and IP network layers in the TCP/IP model, 2) the network

layer, similar to the TCP network and transport layers, and 3) the application layer. The

WIT2410 modules provided the wireless layer. Network layer software, running on both

the icon-controllers and the computer with the StoryRoom application, provided deliv-

ery of application layer messages. Application layer software in the icon controllers

executed incoming application messages and generated outgoing ones as needed.

6.4.2.1 The Wireless Layer

The WIT2410 was configured to operate in a point-to-multipoint mode where the base

unit (attached to the computer running the StoryRoom application) could send and re-

ceive data from each remote (attached to an icon controller). Remotes send and receive

data only with the base. The base transmitted a broadcast where every remote unit

126

Figure 6.16: The StoryRoom network model.

Figure 6.17: Application originated packet format. Each packet was 12 bytes long.

received the data. Units shared the RF channel using time division multiple access

(TDMA).

6.4.2.2 The Network Layer

The network layer managed delivery of messages regardless of whether they originated

from the application or an icon; however, a different packet structure was used for each.

Packets originating at the application could carry multiple messages (figure 6.17). These

packets could be destined for a single icon or could be broadcast to groups of icons (or

all icons). Packets originating at an icon carried only a single message to the application

(figure 6.18). In both packet types there was a sequence number that represented the

number of packets sent by a specific origin. The sequence number could be used for

checking the order of arriving messages and was necessary for a future implementation

of the network layer that will provide guaranteed delivery.

127

Figure 6.18: Icon originated packet format. Each packet was 8 bytes long. The ack/seq
field indicated whether the message was an acknowledgement of an application message
or was an icon originated message.

6.4.2.3 The Application Layer

The application layer provided a message format for the application to configure and

control icons and for icons to provide both polled and event-driven information to the

application. Each application inbound/outbound message was handled by individual

threads. The read or update operations on the application’s device database were con-

trolled by semaphores. Messages could contain instruction codes, service codes and

data. The instruction code was used to determine the function of the message. Ex-

amples include discovery, inbound data, and outbound set data. The application could

generate instructions for setting or requesting the status of service parameters, setting

default service values for an icon or issuing a reset command to an icon. Icons could

generate instructions for registration with the application and for reporting application-

requested or icon-generated information. Service codes were used to identify icon spe-

cific functions. Some example services include touch (hand icon), intensity (light icon),

and selected (icons during the programming mode).

The most common instruction codes were:

discovery An embedded device sends this icon-originated message to the application

to register itself.

inboundData Am embedded device sends this icon-originated message to the applica-

tion.

128

outboundSetData An application outbound message for embedded devices to update

their internal values and actuate physical changes if necessary.

outboundRequestData An application outbound message to request the current state

data from an embedded device.

inboundReplyWithRequestedData The complement to outboundResetData, an em-

bedded device returns the requested data.

outboundResetData An application outbound message to reset the target device(s) in-

ternal values and actuate physical changes if necessary.

Each device could support one or more services. The most common services were:

intensity Primarily supported by actuators.

touched Primarily an attribute of contact sensors.

selected Supported by all devices. Used during the recording phase.

includeThisDevice Used during the recording phase, generated by a proximity sensing

device (magic wand).

beginProgramStatement Used during the recording phase.

broadcast service ack All devices support this low level synchronization service.

single device ack All devices support this low level synchronization service.

discovery synchronization All devices support this low level synchronization service.

deviceType All devices support this low level synchronization service.

129

deviceColor All devices support this low level synchronization service.

proximity Supported by proximity sensing devices, such as the magic wand.

6.4.3 Icon Controller Hardware and Software

The 17C756A micro-controller from Microchip, Inc. [62] was used on the icon con-

troller board. In addition to the micro-controller, the icon controller board had several

support circuits, including a RS232 driver and two 7-segment displays for debugging

purposes. One of the micro-controller’s serial ports was dedicated to the WIT2410

wireless module. The other serial port was used for communication with the applica-

tion computer, in the case of the base unit, or for control of sensor devices as needed in

StoryRoom icons.

The digital input/output of the micro-controller was used for sensors and actuators. The

driver circuit board had custom circuits depending on the device to be controlled. A

common sensor used in StoryRooms was a simple switch that ran through a simple

circuit to provide a latch on the switch, which then drove one of the micro-controller’s

digital inputs. When an input change was detected, the appropriate message was sent

to the application and the latch cleared to be ready for the next event. Actuators could

be simple lights, which the controller drove through a transistor circuit that provided

external battery power to the light. Other driver circuits included a motor driver and a

circuit to drive glow fiber.

In order for StoryRooms to be a physically programmable environment, it was necessary

to have physical tools that acted over physical icons. The most basic tool was the “magic

wand,” which allowed children to create icon groups (figure 6.19). The term group is

identical to physical interaction instruction and is used when I explain the process to

130

the children. The wand must be able to detect the proximity of other icons and identify

them. The ATT used a radio frequency identification (RFID) system from SkyeTek, Inc.

This system detected and identified RFID tags, which are inexpensive, passive, credit

card sized pieces of paper and wire that were inserted into StoryRoom icons. Control

of the system was through the micro-controller serial port, and RFID reader data was

translated into a message for the StoryRoom application. The magic wand was able to

detect and identify other StoryRoom icons consistently from a range of about 4”.

I considered two possible methods for tracking objects in the StoryRoom environment:

1) proximity among objects, and 2) object tracking. Conceptually, a proximity enabling

technology contains multiple transponders with unique identifiers (tags), at least one of

which is a “reader,” and a transfer of data from the reader to a data-processing com-

puter. When tags come within the range of the reader, the reader is able to read their

identities and then send the data to the data-processor. RFID technology is one popular

implementation.

Conceptually, a way to track object locations in indoor environments is to strategically

place beacons around the environment and to embed transceivers into mobile objects (in

my case, this would be the physical icons). The beacons send continuous and uniquely

identified signals. Each mobile object can calculate its location by decoding and calcu-

lating the differences in the arrival times of the signals. These location data can then be

sent to a central data-processing computer.

Although the second choice would offer more interaction possibilities, I was unable

to find any viable demonstration or commercial systems that could be as reliable as

the simpler proximity sensing abilities of the RFID technology. With regard to the

StoryRoom, this was not a detriment, since in physical stories interactions usually, if

not always, took place when objects interact with each other or with people. That is,

131

Figure 6.19: The Magic Wand and an underlying RFID reader.

story interactions were built upon the proximity of objects to each other.

6.5 Limitations of the Implemented Language

The StoryRooms and its physical programming tool was limited by two main factors:

1) the underlying machine model, and 2) the choice of user interactions (i. e., physical

syntax). Since StoryRooms is a physical interactive environment, it is a state machine.

As such, it lacks memory and operations on memory. The physical syntax was incred-

ibly simple. It only involved five kinds of physical actions: press, wave, pick up, put

back, and pull.

In 6.1.4 I suggested that adding memory to PIE would introduce desirable features to

the programming efforts of physical interactive environments. For example, with only

a counter variable, the environment would be able to keep track of time, allow a user to

specify when an action should occur, or count the number of occurrences of an event.

More memory could provide more powerful programming constructs such as loop and

sequence into the physical syntax. But this extra programming power comes at a cost of

more complexity in physical syntax. For instance, I do not believe that a physical syntax

132

for looping can be as easy as the press and wave combinations of the finite state PIE.

Even if the primitive physical gestures were the same, a more complex combination of

the gesture would probably be needed.

The current implementation of StoryRoom is a PIE. That is, the physical environment

only inspects the current sensor values to transition into new states. In order for Story-

Room to support the more general and useful PIE
� � , I would need to modify the press-

and-wave syntax. This is because the PIE version implicitly groups all the sensors into

the pre-condition and all the actuators into the post-condition of a physical interaction

instruction. But in a PIE � � , since the actuators could appear in both pre-condition as

well as the post-condition of the instruction, there needs to be a physical gesture to pre-

cisely indicate where the actuators should be assigned. This is actually a difficult issue.

Of the many physical syntax designed during the IDT sessions, all were more compli-

cated (in terms of gesture count and gesture type) then the simple press and wave of the

PIE. Again, adding more flexibility in the machine requires more complicated gestures.

Physical programming is not just for children to create StoryRooms. Prudent choice

of physical gesture primitives can offer adults simple ways to control everyday devices.

For example, let me extend the alarm blocks idea from the Introduction to a hypothetical

set of blocks to control both a VCR and a microwave oven. This set of blocks contains:

1) hour block, 2) minute block, 3) second block, 4) play block, and 5) record block.

Now, suppose I want to heat up my dinner for three minutes, I would place the minute

block on top the microwave and turn it so that I see the number 3. Then I would place

the play block adjacent to the minute block. This activates the microwave and I am

happy to have my dinner. Using the same blocks, I now place the hour block on top of

the VCR and turn it to see the number 8. Then I place the minute block and turn it to see

the number 30. Finally I place the record block adjacent to these two blocks. I have just

133

set the VCR to record at 8:30. Of course these two examples do not address important

interface issues such as, how do I represent 60 numbers on a block. But the point I want

to make is that while these blocks are not nearly as powerful as a remote control, they

can perform very simple tasks simply.

134

Chapter 7

An Exploratory Study of a New Programming Approach

for Kindergarten Children: Physical Programming

After the early StoryRooms—The Red Balloon, The Sneetches, and others—I still did

not have a clear vision of a children-usable programming system to define sensor-

actuator interactions. I was also surprised to find that the picture based prototypes

did not give children a clear way to program. Fortunately, as the IDT’s elementary

school aged design partners demonstrated, direct manipulation of physical objects was

a promising direction. This (programming) was the last unsolved element of the Sto-

ryKit and became my new goal: to develop a usable system and to find out to what

extent kindergarten students could understand the interactive nature of StoryRooms and

whether they could create custom interactions in their own stories.

This chapter covers the exploratory study I led on physical programming [67], a physical

user interface metaphor for users to generate interaction rules by the direct and physical

manipulation of physical icons. It was conducted both in HCIL, with IDT members,

and at the Center for Young Children (CYC), a preschool on the University of Maryland

campus, which fosters and supports research and development activities.

135

In this early stage, I was less concerned with the potential educational benefits of the

technology. I was instead interested in whether the technology was usable by these very

young children. To understand the relationship between interactive environments and

the young children, I explored three basic questions:

1. Can young children (4-6 years old) comprehend what a story is about in a physi-

cally interactive environment such as a StoryRoom?

2. Can they use or participate in an already created story in a StoryRoom?

3. Can they use physical programming to create a StoryRoom?

With the IDT, I used descriptive and qualitative research methods (further described

later in this chapter) to answer these questions.

7.1 Participants

This study included three participant groups: 1) adult researcher, 2) elementary school

aged researcher, and 3) preschool user. The adults were regular members of the IDT. At

the research sessions, the adult team was composed of five people: two adults who fa-

cilitated the storytelling with the children; one videographer in the room; one researcher

situated behind a one-way observation window using the computer to react to what the

children did; and one assistant, who helped interpret the children’s activities when they

became difficult to see or understand. The elementary school students were also reg-

ular members of the IDT. Normally, they think about technology for their peers. But

this project placed them in a more significant role— designers of technology for people

136

younger than they were—and to also consider whether the age difference would have se-

rious usability impacts. This study involved two different preschool subgroups. The first

were invited to HCIL for informal sessions. The next were students at the kindergarten.

7.2 Session Structures

After I identified the goal of a physical programming approach, I and the IDT team de-

voted numerous brainstorming sessions and developed the first semi-wizard-of-oz sys-

tem, including physical artifacts such as icons and a magic wand (figure 7.2). Because

the team did not have extensive working knowledge of kindergarteners before the study,

the ATM invited two separate groups of two kindergarten aged children (ages 5-6) to our

lab (figure 7.1) for informal observations. The adults explained how the programming

tools worked, and observed their explorations with tools. The time they spent using the

tools was unstructured. We wanted to see where they led us. One adult facilitated each

session, four adults took notes, seven other children (regular design partners of the IDT)

were also note-takers and periodically asked questions, and one child design partner

videotaped the experience.

With these initial observations, the adult members quickly realized that the children’s

exploration of the prototype must be structured. The idea of interactive stories needed to

be presented with increasingly more abstractions, in order for us to understand to what

extent children understood the technology. One child design partner (age 11) wrote,

“I don’t think they got it when we started. When I showed them something it made

sense then. I think it was good when they did it with me. Then they had some good

ideas to show us.” The notion of a physical interactive environment was conceptually

difficult to understand and still somewhat uncommon, so to start off with the idea of

137

Figure 7.1: Prior to visits to the local kindergarten, the ATM fine-tuned possible inter-
action techniques with two pairs of children in the same age range.

programming one was difficult to grasp for children (and many adults). Therefore the

sessions at the kindergarten that followed these initial sessions contained three parts,

which conveniently correlated to the three research questions of the study:

Children as Audience An adult told an example story with a StoryRoom.

Children Joined Adults as Storytellers The children retold the story, so that they get

to play with the props and squeeze the physical icons.

Children as Physical Programmers Children were shown how to program with the

physical icons and were asked to make up a story.

The adult members conducted four subsequent sessions with the structures described

above, at the kindergarten. In total, this study included 11 kindergarteners (ages 4-6)

(table 7.1). Seven were boys, four were girls and each group included one girl and

at least one boy. The first three groups had three children participating and the last

138

Figure 7.2: Early Low-tech design session on physical programming tools.

139

group had two children. The first three groups worked with researchers an average of 13

minutes/session, and the last group worked for 50 minutes to see if there were obvious

differences in children when they had longer exposure to the tools and props.

Table 7.1: Group composition of the study.

Group Number of
Children

Gender

1 3 2 Boys, 1 Girl
2 3 2 Boys, 1 Girl
3 3 2 Boys, 1 Girl
4 2 1 Boy, 1 Girl

7.3 Wizard-of-Oz Prototype

In order to understand if young children who had not helped design my programming

tools could use its physical metaphor, I, with the ATT, developed a mid-tech or wizard-

of-oz prototype (figure 7.3) for this formative study. I thought it was important to have

the flexibility to experiment with different technology behaviors depending on the user

interaction. But I also learned from many low-tech design sessions that often the “wiz-

ard” (person) could not track the many concurrent activities in the environment and react

appropriately. Therefore, I developed a software application, written in RealBasic [83]

on the Macintosh computer, that allowed the wizard to define and group action-reaction

rules on-the-fly as the children were using the technology. The wizard software broad-

casted serial data packets via a 433 MHz RF Transceiver connected to the serial port

on a Macintosh laptop. These signals were then received by RF transceivers embedded

in the physical icons and interpreted by BASIC Stamp Microcontrollers [98]. Based on

the data content, the microcontroller then could turn on and off activators such as lights,

140

Figure 7.3: Physical Icons for programming a StoryRoom. From left to right: A “hand”
to make an object touch-sensitive; a “light” to make an object “light up”; a “sound box”
to attach a sound to an object; a “magic wand” to signal the authoring mode.

sounds, and buzzers. This implementation supported one-way communication, so chil-

dren pressing the sensors, or tapping the icons with the wand did not actually activate

anything. Through a one-way mirror adult researchers observed the actions of a child,

and sent the appropriate response from the computer. For example if a child pressed the

hand and expected a light to come on, it would.

7.4 Story for the Research Sessions

Based on preliminary meetings with the invited young children, The IDT designed a

story that was understandable and involved the interactive technology.

Here is The Irene Story:

Narrator: “One day, Irene was hiking in the woods behind her house, and

she went farther than ever before. She became lost. Irene saw a cottage just

up ahead. She walked up to the cottage and saw a strange purple hand and

141

pressed it.” [Narrator presses the purple hand physical icon. A purple light

placed next to a furry mouse lights up.]

Narrator: “She walks up to the purple light, and sees a mouse. She said,

‘Mr. Mouse, do you know a way back to my house?’ Mr. Mouse replied,

‘I do not know where your house is. Maybe you should ask Mr. Koala.’

Irene finds and goes up to Mr. Koala. She sees a green hand next to it. So

she squeezes it and asks, ‘Mr. Koala, do you know the way to my home?”

[Narrator presses the green hand physical icon. A green light placed next to

a snake lights up.]

Narrator: “Mr. Koala said, ‘I do not know where your house is. Maybe you

should ask Mr. Snake.’ Irene follows the green light and sees Mr. Snake.

She asks the same question. Finally, Mr. Snake says, ‘Sure, I know just the

way. Come, follow me back to your home.”

Using this story as the anchor, two adult interactors led the kindergarteners through the

three session segments. In the Children as Audience part, while the children sat and

watched, an adult was the narrator of the story, pressing on the hand physical icons and

pointing out the resulting sound effects and actuated lights in the room. In the Children

Join Adults part, the adults encouraged the children to retell the story as they had just

seen. In the Children as Physical Programmers section, the adults showed the children

how the magic wand worked. The children were then free to use any of the props,

existing objects in the room, and any number of physical icons, to tell their very own

stories.

142

7.5 Default Interaction Rules

Because a standard did not yet exist for physical programming, I defined a set of inter-

action rules for this study.

� The magic wand was only used for programming activities.

� The glow-fiber and buzzer of the icons indicated the selected state of

the icon, and were used during the programming mode. For exam-

ple, when the wand touched a light icon, the wand’s glow-fiber would

blink. In addition, the icon would make a buzzing sound, its glow fiber

would blink, and its light would turn on.

� To create a condition-action rule: “if red hand is touched, then turn

blue light on,” a child would take the magic wand, and tap the red

hand and the blue light to create a group.

� To start a story, put away the magic wand.

These rules came from observations during IDT design sessions. The magic metaphor

was chosen because children liked the idea that they could make things magical. Magic

was also a reasonable explanation for the more abstract behaviors of technology. The

ATT members used both sound and light to indicate an icon’s selected state, because it

was the easiest feedback method. Tapping was designed to be a deliberate and unam-

biguous action, so that both the system and the children would share the same expecta-

tion of behaviors. Finally, a simple cue of removing the wand away from the storytelling

area was chosen to distinguish the play from the programming mode.

143

7.6 Data

This was a qualitative study. One video camera, located in the classroom, about fifteen
feet away from the story area, captured the activities and dialogue of all children. Back
in the HCIL lab, I reviewed the tapes and created a contextual inquiry chart [24]. From
this chart, I noted the time, verbal discussion, and activities (table 7.2).

Table 7.2: Sample data from the contextual inquiry chart.

Time Quote Activities
32:23 F: can you tell a

story with these
things?

W: yeah

32:44 W: I want to be
mouse, B: I want
to be koala

W grabs mouse, B grabs koala, G grabs
snake.

32:57 W: the mouse
went...

W grabs purple set and moves to the cottage

33:07 W positions the purple hand and light by the
cottage. B holds on to the green hand.

33:13 W: the mouse went

to sleep one night

W: touches the purple hand, the light came
on

33:15 B: squeezes the green hand

33:23 W: who’s on my

door

33:55 B: squeezes the green hand. Green light came

on.

7.7 Analysis

After a review of the dialogue and activities, three members of the team together ana-

lyzed the data charts and developed codes for “roles” (who a child was during a specific

action (e.g., experimenter, story participant, etc.) and “activity patterns” (e.g., story-

telling, playing, etc.). Once the team agreed on these initial codes, then all the charts

144

were coded. In figures 7.4 & 7.5, the frequency of these roles and activity patterns were

summarized for the last third of each session. It was decided by the AT members that

during the third part of the session was really when the children were most in control

and had the most freedom to explore. During the first two parts of the session, they were

learning primarily about the technologies employed. In the following sections, I will

discuss my analysis of the four sessions.

7.7.1 Children as Audience

In this initial part of the session that lasted on average less than 2 minutes, children

were shown the “Irene story” and across the four sessions, children were quite attentive.

They were fascinated by the use of the physical icons to create a physical interactive

experience. At no time did any children look bored; many of the children could not wait

to use the physical icons themselves to try out the story experience.

7.7.2 Children Join Adults as Storytellers

During this section of the session, most of the children (10 out of 11) were readily able

to recall and reenact elements of the story. They actively participated in the StoryRoom

experiences of Irene. Many of them (9 out of 11) also seemed to understand how to use

the physical icons to participate in the story. Interestingly, one child began to experiment

with the physical icons’ behavior during this part of the session. She kept pressing on

the hand to see if it would repeatedly turn on a light.

145

7.7.3 Children as Physical Programmers

During this third and final part of the session, the children were shown how to physically

program and they explored the use of these technologies for storytelling. My analysis

of the roles and activity patterns revealed that the children spent most of their time

experimenting with the tools (see Charts 7.4 & 7.5). They were not afraid to try out

different combinations of taps with the magic wand, and frequently pressed the hand to

explore the possibilities of what it affected. There were times when a technical glitch

occurred(e.g., the researcher at the computer sent the wrong command to the physical

icons, or was delayed in responding). This also prompted the children to continue to

experiment with the physical icons. Interestingly, some of the children either waved the

wand several times, or tapped repeatedly, until they saw the feedback they expected. In

each session at least one child was able to form a definite idea about how to physically

program with the tools.

Where the children seemed to have the most challenges with physical programming

was in understanding the difference between the programming mode and the partici-

pation/use mode. The children understood that the wand helped them “make things

magic.” But they had difficulty understanding that it was a tool, and not part of the

story. This confusion may partially come from the feedback of light and sound when

the children were in programming mode. As the children touched the physical icons

with the wand, a sound would occur and a glow light on the icon would turn on. Many

children were quite excited by this and thought this “was the story”. Perhaps by reduc-

ing the “excitement” of the feedback, that they may be more likely to see this as one

step in the storytelling process.

In regards to storytelling, I found that the children told stories in three ways: (1) com-

146

Figure 7.4: Frequency of children’s roles for the last part of the session. There is a small
but significant percentage of children who showed potential as “programmers.”

pletely verbal with the use of no props or physical icons; (2) with the use of some props

such as stuffed animals and verbal descriptions; (3) with the use of physical icons and

props and verbal description. As Chart 7.5 summarizes, when the children were asked

to tell a story, they most frequently just verbally told a story1. The children fell back into

what they knew best. However, once the researcher asked if they would like to use the

things in the room to tell a story, they most frequently used both the physical icons and

the props to physically program. Surprisingly, it was far less frequent for the children

just to use the props.

1Experimentation was not included since it was not considered a storytelling activity.

147

Figure 7.5: Frequency of children’s activity patterns for the final part of the session. A
large percentage of the activities (30%) appear to be storytelling.

148

The kinds of stories the children told were very similar to the Irene story they heard. In

many cases only one or two elements were changed to make it their own. However, there

were interesting additions to the stories they told. For example, one child incorporated

the physical icon lights as decorations on a cottage prop. In her story she had the char-

acters ask, “Who is there? Would you please turn off the lights (one of the actuators)?

I need to sleep.” Perhaps, had there been additional props (outside of the ones used for

the Irene story) and more time to explore, more original stories might have emerged.

7.8 Lessons Learned from this Exploratory Study

In understanding what I have learned with children, let me refer back to the three initial

questions: (1) Can young children comprehend what a story is about in a physically

interactive environment such as a StoryRoom? (2) Can they use or participate in an

already created story in a StoryRoom? (3) Can they use physical programming to create

a StoryRoom?

With regards to the first question, I saw without a doubt that children ages 4-6, who

had no experience in designing my technology, could easily comprehend what the story

is about. I also saw with regards to the second question, that all of the children could

also use or participate in an already created story. Once shown how to interact with the

physical icons, they had no trouble interacting with the StoryRoom experience. I was

also pleased to note that the introduction of technology did not get in the way of the

storytelling experience.

As for the third question concerning physical programming, the answers are less clear

cut. I did see in each session one or more children able to physically program. They un-

derstood that placing the physical icons on a prop around the room either offered some

149

input or output. They also understood that the physical icons had relationships to each

other based on how they were programmed. In fact, out of the 11 children the ATM

worked with only 3 children could not comprehend any aspect of this approach. Thanks

to a longer session with the last group, I believe that if we had spent more time with

each group, more children might have been able to accomplish higher levels of physical

programming. But considering the short period of time the adult team spent with the

children, they were able to accomplish much more than I initially expected. It was not

surprising that their main difficulty was in understanding the difference between pro-

gramming and participation in an already created story. At this young age, children’s

most common form of storytelling is improvisational storytelling (many times referred

to as “play”) where children freely move in and out of storytelling and “storylistening”

[2]. This may be the biggest challenge in supporting children with physical program-

ming. Is there a way to naturally move between programming and participating? The

magic wand shows a promising direction.

With regards to lessons learned about the cooperative inquiry methods, I believed that

the mid-tech or wizard-of-oz prototype served the team well. It went a long way in

simulating the full experience of physical programming. It offered a flexible way of

exploring my ideas with children, without having to spend many more months fully

developing the technologies. But, even though it was just a prototype, it had to be

extremely rugged. On numerous occasions, during the research sessions at HCIL and

during the study, when the devices failed to work as the children expected, they stopped

being users and became debuggers of the technology.

150

Chapter 8

A Usability Study of Physical Programming

and Kindergarten Students

Encouraged by the results from the exploratory study, I and the Adult Technical Team

refined the StoryRoom and physical programming prototypes, and conducted a longer

term study. As in the exploratory study, I focused on the following three questions:

1. Can young children (4-6 years old) comprehend what a story is about in a physi-

cally interactive environment such as a StoryRoom?

2. Can they use or participate in an already created story in a StoryRoom?

3. Can they use physical programming to create a StoryRoom?

8.1 The Study Setting

Over a one-month period in the fall of 2002, a new group of 18 children (ages 5-6) used

the StoryRoom and physical programming technologies in an initial empirical study.

The children who participated in this study were racially and ethnically diverse, varied

151

widely in their academic ability, and were in the kindergarten program at the CYC. Chil-

dren worked with the StoryRoom technology in the Great Room (a large open space in

the middle of the CYC) with a team of four adults for sessions that lasted approximately

20 minutes. The pairs were diverse in gender, race, and ethnicity, and remained the same

throughout the research (table 8.1).

Table 8.1: Group composition of the usability study.

Group Child A Child B

1 Girl Girl
2 Boy Boy
3 Boy Boy
4 Boy Girl
5 Girl Boy
6 Girl Boy
7 Girl Girl
8 Boy Boy
9 Boy Girl

8.1.1 The Irene Story

Because the kindergarten children in the exploratory study understood the Irene Story,

I used this story as the basis for teaching this new group of children the concept of

StoryRooms. I changed the light in the first study to a blinking arrow because the I

found that the arrow was better at getting children’s attention and was therefore better

able to direct the flow of the story. I also added the Wind physical icon to the final part

of the story, because the IDT’s child designers thought its ability to make them feel wind

was important in storymaking.

The slightly modified “Irene Story” contained a cottage built from cardboard sheets and

swatches of felt fabric; a stuffed mouse; a stuffed koala bear; a cave that is a cardboard

152

Figure 8.1: The completed setup for the story. The props include the cabin, the mouse,
the koala bear, and the snake inside the cave. The foot icon is a contact sensor that
was programmed to trigger the blinking arrow by the mouse. The hand icon was pro-
grammed to trigger the sun icon (light) and the wind icon (fan).

box with a hole in it; and a snake made out of foam.

A foot icon (touch sensor) was placed next to the cottage. A blinking arrow (actuator)

was placed next to the mouse. A hand icon (touch sensor) was placed next to the koala

bear prop and a wind actuator and light actuator were placed next to the cave. To support

the story, the foot icon was pre-programmed1 to trigger the blinking arrow, and the hand

to trigger both the wind and the lights (figure 8.1).

1This program was created by an adult using physical programming.

153

8.1.2 Session Structure

This study shared the same session structure as in the exploratory study. The only two

differences were that 1) the children had significantly more time to learn physical pro-

gramming; and 2) a select group of the children had the opportunity to create a Story-

Room, from story inception, to prop construction, to physical programming, and finally

to share the story with their peers.

Here is a quick reminder of the session activities:

Children as Audience An adult tells and performs the Irene story to the children.

Children Join Adults as Storytellers The children retell the story, so that they get to

play with the props and squeeze the physical icons.

Children as Physical Programmers Children are shown how to program with the

physical icons and are asked to make up a story.

Children as Audience

When children enter the Irene StoryRoom, they saw the icons and props set up in a semi-

circle that follow the chronological order of the story. A researcher was the narrator and

she helped them through the environment. First, she turned on the story by flipping the

“once-upon-a-time lever.” She then led the children to the cottage, next to which was

the foot icon. She began, “This story is about Irene, a little girl who is lost in the woods

and cannot find her house. Irene asks the people in the cottage if they know where her

house is, but they do not. Irene sees a strange foot and pushes on it.” The researcher

asked the children to press the foot. This activated the blinking purple arrow light next

to a stuffed mouse. The children then saw a blinking arrow pointing to the mouse. The

154

researcher continued, “Irene asks Mr. Mouse if he knows where her house is. Mr. Mouse

says no, but that she should ask Mr. Koala.” The children ran to Mr. Koala, who has the

hand icon near him. The researcher says, “Irene then asks Mr. Koala if he knows where

her house is. Mr. Koala says no, but that she should ask Mr. Snake in the cave.” The

children pressed on the hand icon, which activated the fan and light placed near a snake

prop in a cave. The children ran over to the cave and were told by the adult, “Irene asks

Mr. Snake if he knows where her house is. Mr. Snake says yes, just turn around and go

ten feet and there it is.”

Children Join Adults as Storytellers

A researcher asked the children to retell the story that they had just experienced. The

adult refrained from helping the children unless it was obvious that they either 1) forgot

a part of the story, 2) retold the story incorrectly, 3) forgot to use an icon, or 4) were

confused.

Children as Physical Programmers

An adult researcher demonstrated and asked the children to repeat the process of pro-

gramming the interaction rules for a StoryRoom. This process consisted of five steps.

1. Put on the magic hat to enter the program mode.

2. Use the wand to create one rule that included at least one actuator and one sensor.

3. Take off the magic hat to exit the program mode.

4. Turn on the “once-upon-a-time lever” to enter the play mode and to review the

program.

155

5. Turn off the “once-upon-a-time lever” to end play mode.

Again, the adult did not make any suggestions to the children unless it was clear that

they were confused or could not continue without help.

8.2 Data

Data from these sessions were collected by videotaping and taking observational notes.

To analyze the data, the ATM developed a coding scheme based on the data that emerged

from the raw artifacts. Two members of ATM initially coded the tapes, after which the

codes were refined. Inter-rater reliability was established by having two of the adult

team members code 33% of the data. There was one discrepancy in coding which was

resolved, and one team member continued to code the rest of the data.

A scoring system was designed to indicate the level of understanding that the children

exhibited during the study (table 8.2).

Table 8.2: The scoring system for the usability study.

Score Explanation

2 A child performed or remembered an activity independent
from adult assistance.

1 A child (A) is given this score under 3 conditions: 1) A cor-
rectly performed or remembered an activity with help from
adult or the child’s partner (B), 2) B intervened and completed
the task before A could attempt the task, or 3) an adult inter-
vened and completed the task before A could attempt the task.

0 A child could not complete the activity.

156

8.2.1 Can Children Participate in an Already Created StoryRoom?

The activity designed to answer this question provided the children with their first expo-

sure to StoryRooms. An adult told children a story using the Irene StoryRoom and then

invited the children to retell the story.

In analyzing the tapes, the ATM first determined if children were engaged – that is, if

they listened to and/or observed the storytelling researcher for a majority (more than

50%) of the time while being told the Irene story. The adults also determined if the

children reacted when something “magical” (e.g., the fan and light turning on when the

hand was pushed) happened.

This analysis showed that 100% of the children were able to participate fully in this

previously created StoryRoom. This laid the groundwork for the next part of the activity,

in which the children were asked to retell the Irene story to a new researcher.

During retelling, the ATM looked for the children’s ability to recall and retell the main

events of the story and to use the StoryRoom elements in order to do so. Because the

children were functioning as a pair in this activity, points were given when at least one

of the children did a task. During this section, data from one pair of children had to be

eliminated due to poor video quality.

The scoring of the retelling phase was based on eight activities. A child could score a

maximum of 2 points towards each activity, for a maximum of 16 points. The activities

were separated into 2 categories. The first involved telling the story using the props

(house, mouse, koala bear, cave). The second category involved retelling the story with

the physical icons and tools (“once-upon-a-time” lever on, foot, hand, “once-upon-a-

time” lever off).

From the the remaining 8 pairs, I saw a greater variance of ability to use the StoryRoom

157

Figure 8.2: The number of total points (out of 16) that each pair scored on retelling the
Irene story. The range of scores is from 7 – 14, showing that children were able to retell
the story with varying degrees of adult support.

on retelling than on participating. The children scored from 7 to 14 out of a possible 16

points. It appears then that all pairs were able to show some understanding of how to

use the StoryRoom to retell a story (figure 8.2). An analysis of the two frequency charts

(activities by icons and by props) reveals a more interesting picture. In figure 8.3, most

of the children could retell a story using a prop. In figure 8.4, almost ALL the children

correctly retold the story with the icons. The unusually large percent of adult help for

the Story On and Story Off activities were mostly due to the children not remembering

to change into the play mode. I had expected that the children could tell stories with

props and that some could involve the use of icons. So it was a pleasant surprise to see

the overwhelming number of storytelling with physical icons.

It should be noted that adult prompting, such as “What’s next?” was not coded as adult

158

Figure 8.3: Frequency of retelling by props. 75% of the activities were correctly com-
pleted.

159

Figure 8.4: Frequency of retelling by icons. The large number of adult assistance during
Story On and Story Off events were likely because the children had to enter and exit the
play mode.

160

guidance as it was not related specifically to the children’s ability to use the StoryRoom.

More specific prompting, such as “What do you do with that foot?” was coded as adult

guidance as this prompt was specific to the use of the StoryRoom.

8.2.2 Can Children Program Using Physical Programming?

In order to answer this question, the adults placed a large pile of StoryRoom actuators

and sensors on the floor along with the “once-upon-a-time lever” switch. The magic

wand and the wizard hat were placed on a table. I began the sessions by showing the

physical programming technique to the children.

Children were then each given the opportunity to define interactions for a StoryRoom.

Because each child was given a turn to define these interactions on his or her own, the

coding for this activity was done by individual rather than by pair. One pair was absent,

so 16 children participated in this phase.

Again, videotape of each child was analyzed to determine if he or she took the five

necessary steps (section 8.1.2) to create an interaction rule for a StoryRoom.

The ATM also tried to determine if the child understood the interaction rules that he or

she had created. Because every child (A) was working with a peer (B) nearby, there were

times when B stepped in and completing a task before A had a chance to do so. In that

situation, an h designation was given to A on the part of the programming completed

by B. Any task designated h was given a score of 1. One time an adult stepped in to

complete a task. This was designated H. The videotape did not capture one child’s (pair

1, child b) Story Off activity. This activity was given a score of 0. Therefore child 1b’s

total score was at least 50% (table 8.3).

All children scored between 50% and 90% on programming (figure 8.5). These num-

161

bers showed that most of the children were able to program with some degree of adult

guidance, and all had some understanding of what to do in order to control the interac-

tions of sensors and actuators in a StoryRoom. Inter-rater reliability was established for

the coding of this activity by having two adult researchers compare 25% of their coded

data. There were no discrepancies; therefore one team member finished the coding.

Table 8.3: Physical programming scores.

Activity 1A 1B 2A 2B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B

Hat On 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2
Use
Wand

2 2 2 2 1 2 2 2 1 2 1 2 2 2 2 2

Hat Off 1 1 1 1 2 2 2 1 1 1 2 1 1 1 2 1
Story
On

1 1 h 2 1 1 1 1 1 1 1 1 2 1 h 1

Story
Off

1 * 0 0 h h 1 H h h 1 1 2 1 1 1

Score/10 7 5 5 7 7 8 7 7 6 7 7 7 9 7 8 7

Analysis of the frequency count of the 5 programming activities led me to three impor-

tant observations (figure 8.6). First, an overwhelming majority of the children could

“become wizards” without help. This may indicate that they accepted the “magic”

metaphor. Second, more than 95% of the activities could be completed, whether in-

dependently or with help. This level of success might be due to the simplicity of the

individual activities. With the exception of the magic wand, the other four activities

were single step, direct physical manipulation of real objects. Third, the wide range of

user competence (50% to 90%) in chart 8.5 could be partly explained by the frequency

count: adults often needed to supply hints to remind the children to negotiate the modal

changes.

162

Figure 8.5: Percentage of possible points that each child scored on physical program-
ming tasks.

163

Figure 8.6: Frequency of programming activities.

Both by direct observations2 and inspections of the interaction rules captured by the

StoryRoom application, I was able to see that delineating two different interaction

rules was a particularly difficult concept for the children. One common action was

to hold the button down while they waved the wand over different icons. Another was

to push the button once for each icon they wanted to include into an interaction rule.

There are two obvious choices to address this problem: 1) find a different interaction, or

2) find a way to teach the interaction. I did not attempt the first approach. However, as

the study progressed I began to pick up some of the children’s own language to describe

the interactions. When I used the “invisible wire” metaphor 3.6.2 to explain when to use

the new-spell button , they appeared to understand the concept more easily.

2The video data could not reveal the use of the new-spell button because we did not have a way to

capture close-up activities of the hand.

164

Finally, an observation on user confusion. Besides the confusion from the record and

play modes, I was surprised to see that the physical icons themselves were the cause

of many confusions too. The icons were all made of foam and covered with felt. This

apparently created an affordance that children could not resist: they wanted to squeeze

everything, and not just contact sensors. While the children could learn the difference

uses of the physical icons, a better solution would be to work with the kindergarten

children to find better representations for input and output devices.

8.2.3 Can the Children Use Physical Programming to Create an

Original StoryRoom?

This question necessitated a much more in-depth approach than the previous two. In

order to create a StoryRoom, each pair would have to come up with a story, create the

necessary relevant props out of common art supplies, set up their story in the room,

and program the interactions. The ATM decided to only work with two pairs for this

activity, but to work with these pairs in an in-depth manner. Because the earlier data

showed that almost all of the children could program with some degree of adult support,

results from the retelling section of activity one were analyzed in order to select pairs

for this case study. The two pairs chosen were the pairs with the highest and lowest

scores on retelling the Irene story. In this way, I hoped to better understand the abilities

of children at each end of the spectrum of StoryRooms use.

Because of the case study-like nature of this task, the adults observed each pair in detail.

To analyze the children’s stories I asked five questions about the process of creating a

StoryRoom.

1. Can the children create a story with a plot, characters, and a setting?

165

2. Can the children make appropriate props for their story?

3. Can the children program their Story Room?

4. Can the children appropriately integrate the StoryRooms technology into their

story?

5. Can the children play or retell the StoryRoom they created by telling a story in-

volving props and aided by the use of the StoryRooms technology?

8.2.4 Case Study One: Bobby and Dennis

The first pair chosen was the highest scoring pair on activity one. These two Caucasian

boys, Bobby and Dennis3, are both age five. These children both come from two-parent

homes and have no siblings. It was both Bobby and Dennis’s third year at the CYC.

They worked with us for four consecutive days for approximately 45 minutes each day

on the task of creating a story using StoryRooms.

On the first day, Bobby and Dennis came up with a plot for their story which follows.

The letters in parenthesis show who conceived each part of the story. Italics indicate a

mention of how physical programming devices could be integrated into the story.

A little girl was combing her hair when the sink came on all by itself (Den-

nis). She knew her dog could help her find what was wrong with the sink

(researcher). The dog’s name was Rocket (researcher). Rocket didn’t know

what happened (Dennis). We could put the purple arrow next to the sink

so everybody will know that the sink is broken (Bobby). There was a bad

3All names have been changed to protect the identity of the children.

166

Figure 8.7: Example props in Bobby and Dennis’ story. From left to right, the ghost,
the mask for scaring the ghost away, Rocket the dog, the sink, and the comb. Adjacent
to the sink are the foot and arrow icons.

ghost in the sink (Dennis). The girl scared the ghost away with the mask

(Dennis). The ghost ran away to a cave (Bobby).

Bobby and Dennis decided that they would need a brush, a ghost, a dog, a sink, a cave,

and a mask as props for their story (figure 8.7). Using low-tech art supplies, Bobby and

Dennis worked with us to construct these props. On the second day, they used their

props and StoryRooms icons to set up the story. Both Bobby and Dennis were given a

chance to set up and program the story. Each child had a different way that they wanted

to arrange the props and icons. After coming to a consensus, they then programmed the

story and practiced telling it to us.

On the third and fourth days, Bobby and Dennis set up their StoryRoom and told the

story to selected classmates and their teachers (figure 8.8). The classmates often got

involved in the StoryRoom by asking questions about the story (e.g., “Once upon a time

what?”) or by pushing icons themselves, and by participating on the floor with Bobby

and Dennis. The teachers remained seated in chairs when listening to the story, but were

quite engaged with their students’ work.

167

Figure 8.8: Bobby and Dennis share their story with classmates.

8.2.5 Case Study Two: Mary and Shelly

Mary and Shelly were chosen so the ATM could understand the potential for Story-

Rooms with a pair of children who scored lower on the retelling. Both Mary and Shelly

are females and are 5 years old. Both Mary and Shelly come from two-parent homes.

Mary is Chinese-American and speaks Chinese at home, is bilingual, and has an older

brother. It is her second year at the CYC. Shelly was born in Korea. She moved to the

U.S. with her parents and her younger brother one month before the school year began,

and is in the process of learning English. It is Shelly’s first year at the CYC. The ATM

worked with Mary and Shelly for three consecutive days for approximately 45 minutes

each day.

On the first day, Mary and Shelly were given the same prompts as Bobby and Dennis

and were asked to come up with a story that they could tell using the StoryRooms tech-

nology. The story they chose was a retelling of a story that they saw on Dragon Tales, a

popular animated television show for children in the United States. Although Mary and

168

Shelly were asked several times to tell an original story, instead they wanted to tell the

Dragon Tales story. Here is their story.

Max and Emmy moved to a new house and they found a magic wish in a drawer (M).

They made the wish come true by saying “I wish I wish with all my heart to fly with

dragons in a land apart” (S). This wish took them to Dragon Land (M). There they went

to Dragon School (M). At the dragon school they met lots of dragons like Zack, Weezie

and Ord (M). (Note: there was no mention of how physical programming devices could

be integrated into the story)

Mary and Shelly decided that in order to tell this story, the props they would need were

Max and Emmy’s house, a drawer for a magic box, the dragon school, and dragons.

They then worked with low-tech art supplies and with the adults’ help the children made

the drawer with the magic box, the dragon school, and some dragons.

On day two, Mary and Shelly were given their props and asked to program the Story-

Room. Mary and Shelly set up the props and icons around the room, but in two different

places: one for the props that they made and one for the StoryRoom icons. There was no

apparent connection between the prop group and the icon group. Mary flipped the play

story switch and expected the icons to work before either she or Shelly programmed

them. Mary needed to be prompted explicitly by adults to remember that she needed

to program the icons. One adult asked, “How are you going to get magic in those (the

icons)?” and another hummed the music that plays during programming before Mary

remembered that she needed to use the hat and wand to program. When Mary did use

the wand to program, she connected all of the sensors and actuators in one command,

which meant that pushing all of the actuators at one time would cause all of the sensors

to go off. In this situation, pushing one sensor will not cause any actuator to go off.

Mary did remember to flip the play story switch in order to test the icons, but did not

169

realize that she had connected all of the sensors to all of the actuators. She pushed on

one sensor at a time expecting something to happen. During this time, Shelly was not

paying attention to the StoryRooms task.

When she tried programming again, Mary connected two hands, a foot, and two arrows.

At this point, an adult asked, “What do you do if you’re done with that spell?” to prompt

Mary to use the new spell button to create a new command. At this point, Mary put the

hat and wand away, ending the programming mode. Because of the manner in which

Mary connected the sensors and actuators, she would have to push on both hands and

the foot in order to activate both arrows. She tried pushing the hand and the foot and

then tried just a hand. Therefore it was assumed that Mary did not understand how to

“play” the StoryRoom she had just made.

When again prompted to use the props and icons together, Mary put an arrow pointing

to the school prop that the children made but also put another arrow pointing to a foot,

which is a StoryRoom icon and not a prop. This is significant because it shows that

Mary was not distinguishing between the functions of props and icons.

On day three, Mary and Shelly again had trouble programming. Shelly was more en-

gaged on this day, but when magic was mentioned, she pantomimed sprinkling magic

dust on the icons. She also said “abracadabra” when using the magic wand with the

icons, and said that this was making them work. Mary and Shelly spent time on this day

repeatedly picking up and down the magic hat, which turns the programming music on

and off, and turning the play story switch on and off, which caused it to repeatedly say

“once upon a time” and “the end”. Shelly also appeared to enjoy when the StoryRoom

gave auditory feedback (such as “yellow foot” when the yellow foot was pressed). When

asked again to tell their story, the girls used their props but not the StoryRoom icons to

tell a Dragon Tales story, this time telling a different story than the one they had planned.

170

8.3 Analysis

The two pairs of children in the case study performed very differently in their attempts

to create StoryRooms. Both groups created stories with plots and created appropriate

props that suggest a setting and characters. However, the disparities between the groups

became apparent when it came to programming and integrating the technology with

their narratives. Bobby and Dennis were both able to create independent interaction

rules. Mary and Shelly were unable to perform this task; instead, they programmed

all of the actuators to go on at once. Furthermore, Bobby and Dennis were able to

integrate the StoryRooms technology into their story. Mary and Shelly were not – they

programmed the icons separately from the story and did not relate the StoryRooms icons

to the props or events in their story. Finally, Bobby and Dennis were able to retell their

story to their peers and teachers using the StoryRooms technology. Mary and Shelly did

not progress that far in their storytelling experience.

8.4 Lessons Learned from this Usability Study

Through this research, I learned valuable information that will help to direct my fu-

ture work with StoryRooms. Children may need more prompting when using physical

programming technologies such as StoryRooms. My experience with Mary and Shelly

taught me that providing more feedback during physical programming can help children

to be more successful. This could be supported in future versions of the StoryRoom

technologies. For example, the magic wand could provide an audible cue when children

are finished with a spell or starting a new spell. In addition, the icons could visually

show a child if she had connected icons together, or a new tool could allow children to

171

see which icons had connected in a physical interaction instruction. On the other hand,

the novelty of the StoryRoom can sometimes hinder children from using the StoryRoom

for its intended purpose of telling stories. For example, Mary and Shelly spent a lot of

time picking up and putting down the wizard hat in order to make the ambient music

start and stop.

I also learned that for children to understand, predict, and control the interactions in

their environment, it may be necessary to expose the system components (i .e., give

them symbolic objects for sensor and actuator tasks). However, Mary and Shelly had

challenges integrating the sensors and actuators with the props into one physical story.

This may be due to their inability to abstract certain programming concepts, but this

may also have to do with the system characteristics. The icons may have been too easily

identifiable as say a foot or hand. Some children such as Mary and Shelly tended to

focus on those characteristics (as in, “I see a foot”) and forget that the item had another

purpose, which was to be an interactive proxy for a prop. I think in some cases, this may

have been due to the relationship between sensing devices and the physical environment.

For instance, a child may place a large icon next to small cottage, making the icon more

visually important than the prop.

On the other hand, exposing the system components may not have been quite as obvious

as it needed to be in some cases. For instance, Mary just could not relate the new-spell

button to the programming activity of creating a new interaction group. I believed that

this button was perhaps not an appropriate metaphor for more challenged children. Per-

haps the visual metaphors for sensors and actuators need to be carefully reconsidered.

So while I have revised the physical interfaces many times, further revision to this sys-

tem needs to be accomplished.

Another obstacle to consider for children using these technologies may have been the

172

system’s ruggedness and reliability. There were times that our current RFID system

could not respond correctly to children’s natural movements (e.g., heavy punching of

sensors, constant repetition). A lack of timely feedback often led to unpredictable tech-

nology behaviors, which we found could confuse children quite quickly. This study

further confirmed that these technologies must be extremely rugged and flexible for

children to control in ways that are cognitively and physically appropriate.

In summary, a tool for children to control ubicomp environments demands extremely

reliable, rugged, and flexible technologies they can control. In addition, a balance needs

to be struck between visible concrete metaphors for these technologies and integrating

these technologies into the environment for storytelling.

173

Chapter 9

Final Words

I have shown that physical programming is a simple and direct way for children to

program interactions in a special ubiquitous computing environment called StoryRooms.

While the data show that not all the children were completely capable of the creative

process (creating a story) or the programming process, that some children were more

than competent users of this approach is extremely encouraging.

I have also shown that the physical programming language and its resultant StoryRooms

are equivalent to deterministic finite automata. Moreover, I suggested that the single

most important improvement to the language would be the addition of finite memory.

The goal of this dissertation was to understand the relationships among children, ubi-

comp environments, and control. Thanks to my experience with StoryRooms, I can now

offer some insights about general interactive systems. First, when children can place

sensors and actuators in their surroundings, the system can better conform its behav-

ior. Second, children do not have to be confused by modal changes, such as between

programming and playback, if they are given unambiguous signals by the system (the

wizard’s hat). Third, extremely simple physical interactions (waving, pushing button),

in conjunction with a compelling tool (magic wand) are sufficient for children to indicate

174

programming intentions.

This means that a ubiquitous computing environment for children should contain these

features:

1. Sensors and actuators that can be attached anywhere in the space.

2. Tools and ambient signals to unambiguously indicate mode.

3. Tools with a compelling underlying metaphor to create interaction rules.

I have learned that children CAN, without any adult assistance, control the behavior of

a ubiquitous computing environment.

9.1 Revisit the Questions on Control and Tools

Here are the answers the questions that I first posed in the Introduction: What do chil-

dren need to control the interactions of a physical interactive environment (table 9.1).

Table 9.1: Answers to control and tools.

Question Answer
What kind of tools are
needed?

The tools should 1) be concrete objects to
minimize abstractions, and 2) clearly define
and set modes.

What do the tools look
like?

They should utilize metaphor that is child
appropriate (e.g., magic).

How are they used? The tools are operated by simple gestures
within the metaphor.

Do the tools require new
interaction models?

Yes. The tools rely on physical syntax that
are combinations of physical gesture primi-
tives.

Can children in fact use
the tools?

Yes. Refer to the Usability chapter (8)

175

Table 9.1: Answers to control and tools, continued.

Question Answer
Implicitly, the ability to
control may require a pro-
gramming model. What is
that model?

Physical programming and PIE.

9.2 Limitations of the Research

Although I was pleased by my work on StoryRooms, physical programming, and the

results of the usability study, I believe the results would have been more useful if I had

spent more than one month with the children at the CYC. It was clear that Bobby and

Dennis cognitively understood the programming tools and the concept of a room that

can express stories. But I am more concerned about Mary and Shelly. Did the two pairs

represent the boundary conditions of the cognitive abilities of six year old children,

in terms of storytelling and programming? Or, did Mary and Shelly just need more

time. And all the other children in between, would they have also benefited from more

time learning about my system? These are all questions that require a more significant

investment in time and personnel.

Much of the early designs on the physical programming tools and interactions were

inspired by the 7-11 year old design partners. I did not have the chance to perform a

usability on THIS population. I would be extremely excited to see the result of such a

study.

The premise of my research was to understand the relationship between young chil-

dren and ubicomp environments. I created a deliberately narrow storytelling environ-

ment so that children could latch on to something familiar. The natural follow-up ques-

176

tion is whether the same tangible tools (perhaps with a different look) and interaction

metaphors could carry over to any general ubicomp environment. One future direction

might be to collaborate with researchers of a well-established ubicomp environment,

perhaps with ties to universal accessibility and universal control, enhance their devices

with the minimum software and hardware requirements of StoryRoom/physical pro-

gramming, and introduce the IDT’s young designers into the mix.

My work has been consistently been a tension between what I can make (because of

hardware limitations) and what I should make. So am I imposing a solution onto the

children, even though it may not be optimal? Thankfully, this is where the magic of

the IDT comes in. Because the children and the adults are in the design TOGETHER,

everyone is aware of the issues involved. So if a compromise had to be made, it was

with the agreement of the entire team.

9.3 The Lab’s On-going Work: HazardRoom

Soon after I completed my StoryRooms project, another graduate student embarked on

a project to extend the StoryRoom architecture. This project, HazardRoom, is being

used to teach children about the many hazardous materials in their environment. Unlike

the StoryRoom, which is a free form creative environment, the HazardRoom is intended

to be a constrained content-based learning experience. That is, the environment would

already be setup to contain the knowledge that teachers would want students to learn.

The technologies and concepts for this work is being developed today.

177

9.4 My Future Work

In the near term, my work would include the realization of the tools I mentioned in

Chapter 9.4.1: Sound, Magic Lens, and Counter. I want to engage the IDT to think

about the idea of memory and what its symbols look like in the physical environment. I

would like to review the current state of technology and see whether smaller versions of

the physical objects could be built.

9.4.1 Additional Physical Programming Interfaces

In prior chapters I described the tools and icons of the physical programming system.

Conceptual prototypes were developed for several tools to both extend the usability of

the system as well as the power of the language.

The Sound Board

Recorded narration and sound effects are critical elements of StoryRooms. I designed a

prototype of the Sound Board and the Sound Stick for children to easily record sounds

to enhance the storytelling experience. The Sound Board was a colorful platform with

many different colored patches (Sound Patch) on the top. Within each patch was a hole

to hold the Sound Stick (figure 9.1). To record a narrative, children would place the

Sound Stick into a hole and speak into the stick. The color patch associated with the

hole would then become the symbolic holder of the sound.

Here is a scenario to better illustrate the use of the Sound Board. Suppose I want to hear

the words, “I am happy you are here.” when someone presses the blue hand physical

icon. I would do the following:

178

Figure 9.1: A Conceptual Sound Board. A Sound Stick is currently placed inside a
Sound Patch.

179

Figure 9.2: A Conceptual Magic Lens. A child can query the state of an icon by holding
the disk over it.

1. Associate a Sound Patch to contain the words, “I am happy you are here.”

2. Wear the wizard’s hat to invoke the programming mode.

3. Press on the new-spell button on the magic wand to begin a new rule.

4. Wave the wand over the blue hand physical icon.

5. Wave the wand over the Sound Patch used in step 1.

The Magic Lens

Programming and debugging go hand-in-hand. The Magic Lens may be a direct method

for children to get information about objects within a StoryRoom (figures 9.2, 9.3, and

9.4).

A Magic Lens can be extremely useful. For example, when children move the lens over

an object, the lens tool combines the images captured by the camera and the informa-

tion gathered by the RFID reader to display a composite drawing of the object and its

relations to other objects in the room.

180

Figure 9.3: Another conceptual magic lens. This lens is in the closed position.

Clock, Timer, or Counter

Counting is a natural element of any PIE. It is useful because we often want to control

devices relative to time. A physical counter, perhaps in the form of a clock, can offer a

simple approach for children to include time into physical programming.

For example, after 10 seconds, turn on the light icon and leave it on for 15 seconds. To

program this rule, I would:

1. Wear the wizard’s hat to invoke the programming mode.

2. Press on the new-spell button on the magic wand to begin a new rule.

3. Wave the wand over the clock tool 10 times.

4. Wave the wand over the light.

5. Wave the wand over the clock tool 15 times.

181

Figure 9.4: The open position of the magic lens in (figure 9.3). The top third of the as-
sembly contains an RFID reader. The middle section might hold a palm-sized computer
with a screen to display relevant information. The bottom third contains the power sup-
ply, communication, and microcontroller units. The side facing the object (not shown)
would contain a camera.

182

9.4.2 Collaboration Potentials

The current success of physical interface components such as iStuff [7], Phidgets [42],

and X10 [118], and their lack of a physical programming interface may be an opportu-

nity. Here the idea would be to separate physical programming from the StoryRooms

environment, and to allow physical interactions to generate rules for the above systems.

9.4.3 Connection to Universal Accessibility and Universal Control

In the long term, I would like to connect my work to the universal control and universal

access areas. This could open up the opportunity of a physical, simple to use device

for use by other special needs populations (e. g., senior citizens) to dictate their special

requirements to the environment.

183

BIBLIOGRAPHY

[1] ABOWD, G. D., AND MYNATT, E. D. Charting past, present and future research

in ubiquitous computing. ACM Transactions on Computer-Human Interaction,

Special Issue on HCI in the New Millenium 7, 1 (March 2000), 29–58.

[2] ALBORZI, H., DRUIN, A., MONTEMAYOR, J., PLATNER, M., PORTEOUS, J.,

SHERMAN, L., BOLTMAN, A., TAXÉN, G., BEST, J., HAMMER, J., KRUSKAL,

A., LAL, A., PLAISANT-SCHWENN, T., SUMIDA, L., WAGNER, R., AND

HENDLER, J. Designing StoryRooms: Interactive storytelling spaces for chil-

dren. In Proceedings of Designing Interactive Systems (DIS-2000) (2000), ACM

Press, pp. 95–104.

[3] ALLIANCE FOR CHILDHOOD. Fool’s gold: A critical look at computers in child-

hood. url: www.allianceforchildhood.net/projects/

computers/computers reports fools gold contents.htm, 2001.

[4] ANJANEYULU, K. S. R., AND ANDERSON, J. R. The advantages of data flow

diagrams for beginning programming. In Intelligent Tutoring Systems: Second

International Conference (1992), C. Frasson, G. G., and G. I. McCalla, Eds.,

pp. 585–592.

184

[5] ANNANY, M., AND CASSELL, J. TellTale: A toy to encourage written literacy

skills through oral storytelling. In Winter Conference on Text, Discourse and

Cognition (2001).

[6] BACK, M., COHEN, J., GOLD, R., HARRISON, S., AND MINNEMAN, S. Lis-

ten Reader: An electronically augmented paper-based book. In Proceedings of

Human Factors in Computing Systems (2001), ACM Press, pp. 23–29.

[7] BALLAGAS, R., RINGEL, M., STONE, M., AND BORCHERS, J. iStuff: A physi-

cal user interface toolkit for ubiquitous computing environments. In Proceedings

of Human Factors in Computing Systems (2003), ACM Press, pp. 537–544.

[8] BEIGL, M. Using spatial co-location for coordination in ubiquitous comput-

ing environments. In Handheld and Ubiquitous Computing, First International

Symposium, HUC’99, Karlsruhe, Germany, September 27-29, 1999, Proceedings

(1999), H.-W. Gellersen, Ed., vol. 1707 of Lecture Notes in Computer Science,

Springer.

[9] BELLOTTI, V. M. E., BACK, M. J., EDWARDS, W. K., GRINTER, R. E.,

LOPES, C. V., AND HENDERSON, A. Making sense of sensing systems: Five

questions for designers and researchers. In Proceedings of Human Factors in

Computing Systems (2002), ACM Press, pp. 415–422.

[10] BERMAN, R. Preschool knowledge of language: What five-year olds know about

language structure and language use. In Writing development: An interdisci-

plinary view, C. Pontecorvo, Ed. John Benjamins Publishing, 1977.

185

[11] BILLINGHURST, M., KATO, H., AND POUPYREV, I. The MagicBook - Moving

seamlessly between reality and virtuality. Computer Graphics and Applications

21, 3 (2001), 2–4.

[12] BLACKWELL, A. F., AND HAGUE, R. AutoHAN: An architecture for program-

ming the home. In Proceedings of the IEEE Symposia on Human-Centric Com-

puting Languages and Environments (2001), pp. 150–157.

[13] BOBICK, A., INTILLE, S. S., DAVIS, J. W., BAIRD, F., PINHANEZ, C. S.,

CAMPBELL, L. W., IVANOV, Y. A., SCHÜTTE, A., AND WILSON, A. The

KidsRoom: A perceptually-based interactive and immersive story environment.

In PRESENCE: Teleoperators and Virtual Environments (August 1999), pp. 367–

391.

[14] BONASSO, R. P., FIRBY, R. J., GAT, E., KORTENKAMP, D., MILLER, D., AND

SLACK, M. Experiences with architecture for intelligent, reactive agents. Journal

of Experimental and Theoretical Artificial Intelligence (1997), 237–256.

[15] BROOKS JR., F. P. No silver bullet: essence and accidents of software engineer-

ing. Computer 20, 4 (1987), 10–19.

[16] BROSTERMAN, N. Inventing Kindergarten. Harry N. Adams Inc., 1997.

[17] BRUCHAC, J. Survival this way: Interviews with American Indian poets. Uni-

versity of Arizona Press, Tuscson, Arizona, 1987.

[18] BRUNER, J. Toward a theory of instruction. Harvard University Press, 1966.

[19] BURNETT, M. M., BAKER, M. J., BOHUS, C., CARLSON, P., YANG, S., AND

VAN ZEE, P. Scaling up visual programming languages. IEEE Computer 28, 3

(1995), 45–54.

186

[20] CURTIS, B., SHEPPARD, S., KRUESI-BAILEY, E., BAILEY, J., AND BOEHM-

DAVIS, D. Experimental evalutation of software documentation formats. Journal

of Systems and Software 9, 2 (1989), 167–207.

[21] CYPHER, A., AND SMITH, D. Kidsim: End-user programming of simulations.

In Proceedings of Human Factors in Computing Systems (1995), ACM Press,

pp. 27–34.

[22] DRUIN, A. Research notes. 1998.

[23] DRUIN, A. Cooperative inquiry: Developing new technologies for children with

children. In Proceedings of Human Factors in Computing Systems (1999), ACM

Press, pp. 592–599.

[24] DRUIN, A. The role of children in the design of new technology. Behaviour and

Information Technology (BIT) 21, 1 (2002), 1–25.

[25] DRUIN, A. When technology does not serve children. SIGCHI Bulletin 34, 4

(July/August 2002).

[26] DRUIN, A., BEDERSON, B., BOLTMAN, A., MIURA, A., KNOTTS-

CALLAHAN, D., AND PLATT, M. Children as our technology design partners.

In The design of children’s technology, A. Druin, Ed. Morgan Kaufmann, 1999,

pp. 51–72.

[27] DRUIN, A., BEDERSON, B., HOURCADE, J. P., SHERMAN, L., REVELLE, G.,

PLATNER, M., AND WENG, S. Designing a digital library for young children:

An intergenerational partnership. In Proceedings of ACM/IEEE Joint Conference

on Digital Libraries (JCDL 2001) (2001), pp. 398–405.

187

[28] DRUIN, A., MONTEMAYOR, J., HENDLER, J., MCALISTER, B., BOLTMAN,

A., FITERMAN, E., PLAISANT, A., KRUSKAL, A., OLSEN, H., REVETT, I.,

PLAISANT-SCHWENN, T., SUMIDA, L., AND WAGNER, R. Designing PETS:

A personal electronic teller of stories. In Proceedings of Human Factors in Com-

puting Systems (1999), ACM Press, pp. 326–329.

[29] DRUIN, A., AND PERLIN, K. Immersive environments: A physical approach to

the computer interface. In Proceedings of Human Factors in Computing Systems

(1994), vol. 2, ACM Press, pp. 325–326.

[30] Edwin Schlossberg Incorporated, 641 Sixth Avenue, New York, NY 10011.

url: http://www.esidesign.com/.

[31] EHN, P. Scandinavian design: On participation and skill. In Participatory design:

Principles and practices, D. Schuler and A. Namioka, Eds. Lawrence Erlbaum,

1993, pp. 41–77.

[32] FARBER, A., DRUIN, A., CHIPMAN, G., JULIAN, D., AND SOMASHEKHAR,

S. How young can our design partners be? Tech. rep., University of Maryland

Insitute of Advanced Computer Studies. UMIACS-TR-2002-76, 2002.

[33] FITZMAURICE, G. W., ISHII, H., AND BUXTON, W. Bricks: Laying the foun-

dations for graspable user interfaces. In Proceedings of Human Factors in Com-

puting Systems (1995), pp. 442–449.

[34] FLOYD, R. W., AND BEIGEL, R. The Language of Machines: An introduction

to Computability and Formal Languages. Computer Science Press, 1994.

188

[35] FREI, P., SU, V., MIKHAK, B., AND ISHII, H. Curlybot: Designing a new class

of computational toys. In Proceedings of Human Factors in Computing Systems

(2000), ACM Press, pp. 129–136.

[36] GEISEL, T. The Sneetches, and Other Stories. Random House, New York, 1961.

[37] GISH, R. F. Beyond bounds: Cross–Cultural essays on Anglo, American Indian,

and Chicano literature. University of New Mexico Press, Albuquerque, NM,

1996.

[38] GREEN, T. R. G. Noddy’s guide to ... visual programming. Interfaces (1995).

[39] GREEN, T. R. G., AND PETRE, M. Usability analysis of visual programming

environemnts: a ‘cognitive dimensions’ framework. Journal of Visual Languages

and Computing (1996), 131–174.

[40] GREENBAUM, J. A design of one’s own: Toward participatory design in the

united states. In Participatory design: Principles and practices, D. Schuler and

A. Namioka, Eds. Lawrence Erlbaum, 1993, pp. 27–37.

[41] GREENBAUM, J., AND KYNG, M. Design at work: Cooperative design of com-

puter systems. Lawrence Erlbaum, 1991.

[42] GREENBERG, S., AND FITCHETT, C. Phidgets: Easy development of physical

interfaces through physical widgets. In Proceedings of UIST (2001), pp. 209–

218.

[43] GREENFIELD, P. M. Mind and media. Harvard University Press, 1984.

[44] HILS, D. D. Visual languages and computing survey: Data flow visual program-

ming languages. Journal of Visual Languages and Computing 3 (1992), 69–101.

189

[45] HOURCADE, J. P. User Interface Technologies and Guidelines to Support Chil-

dren’s Creativity, Collaboration, and Learning. PhD thesis, University of Mary-

land, College Park, 2003.

[46] HOURCADE, J. P., BEDERSON, B., DRUIN, A., ROSE, A., FARBER, A., AND

TAKAYAMA, Y. The international childrens digital library: Viewing digital books

online. In Proceedings of Interaction Design and Children International Work-

shop (2002), Shaker Publishing, pp. 125–128.

[47] HOURCADE, J. P., BEDERSON, B., DRUIN, A., AND TAXÉN, G. Kidpad: Col-

laborative storytelling for children. In Proceedings of Human Factors in Com-

puting Systems, Extended Abstracts (2002), ACM Press, pp. 500–501.

[48] HOYLES, C., NOSS, R., ADAMSON, R., AND LOWE, S. Programming rules:

what do children understand? In Proceedings of the Twenty Fifth Annual Confer-

ence of the International Group for the Psychology of Mathematics (2001).

[49] INGEN-HOUSZ, T. Available at http://www.apple.com/education/LTReview/

spring99/elephant/.

[50] ISHII, H., AND ULLMER, B. Tangible bits: Towards seamless interfaces between

people, bits and atoms. In Proceedings of Human Factors in Computing Systems

(1997), ACM Press, pp. 234–241.

[51] KAHN, K. Generalizing by removing detail: How any program can be cre-

ated by working with examples, 2000. Available at http://www.animated-

programs.com/PBD/index.html.

[52] KELLEHER, C., AND PAUSCH, R. Lowering the barriers to programming: a sur-

vey of programming environments and languages for novice programmers. Tech.

190

Rep. CMU-CS-03-137, School of Computer Science, Carnegie Mellon Univer-

sity, 2003.

[53] KURLANDER, D. Characterizing pbd systems. In Watch What I Do: Program-

ming by Demonstration, A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,

D. Maulsby, B. A. Myers, and A. Turransky, Eds. MIT Press, 1993, ch. 12.

[54] LAMORISSE, A. The Red Balloon, 1956.

[55] LAVE, J. Cognition in practice. Cambridge University Press, 1992.

[56] MACKAY, W., VELAY, G., CARTER, K., MA, C., AND PAGANI, D. Augment-

ing reality: Adding computational dimensions to paper. Computer-Augmented

Environ-ments: Back to the Real World. Special issue of Communications of the

ACM 36, 7 (1993).

[57] MACKAY, W. E. Augmented reality: Linking real and virtual worlds (Keynote

Address). In Proceedings of Conference on Advanced Visual Interfaces (1998),

ACM Press, pp. 1–9.

[58] MALONE, T. W. Heuristics for designing enjoyable user interfaces. In Proceed-

ings of Human Factors in Computing SystemsGathersburg Conference (1982),

ACM Press, pp. 63–68.

[59] MARTIN, F., MIKHAK, B., RESNICK, M., SILVERMAN, B., AND BERG, R. To

mindstorms and beyond: Evolution of a construction kit for magical machines.

In Robots for kids: New technologies for learning, A. Druin and J. Hendler, Eds.

Morgan Kaufmann, San Francisco CA, 2000, pp. 9–33.

[60] MARTIN, F. G. The handy board technical reference. Available at

http://www.handyboard.com/techdocs/hbmanual.pdf, 1998.

191

[61] MCNERNEY, T. S. Tangible programming bricks: An approach to making pro-

gramming accessible to everyone. Master’s thesis, MIT Media Lab, 2000.

[62] http://www.microchip.com.

[63] MODLEY, R. Handbook of Pictorial Symbols: 3,250 Examples from Interna-

tional Sources. Dover Publications, 1976.

[64] MONTEMAYOR, J., DRUIN, A., CHIPMAN, G., FARBER, A., AND GUHA,

M. L. Sensing, storytelling, and children: Putting users in control. Tech. rep.,

University of Maryland. UMIACS-TR-2003-16, January 2003.

[65] MONTEMAYOR, J., DRUIN, A., FARBER, A., SIMMS, S., CHURAMAN, W.,

AND D’AMOUR, A. Physical Programming: Designing tools for children to

create physical interactive environments. In Proceedings of Human Factors in

Computing Systems (2002), ACM Press, pp. 299–306.

[66] MONTEMAYOR, J., DRUIN, A., AND HENDLER, J. PETS: A personal electronic

teller of stories. In Robots for kids: New technologies for learning, A. Druin and

J. Hendler, Eds. Morgan Kaufmann, San Francisco CA, 2000, pp. 367–391.

[67] MONTEMAYOR, J., DRUIN, A., AND HENDLER, J. From PETS to storyrooms,

constructive storytelling systems designed with children, for children. In Socially

Intelligent Agents - creating relationships with computers and robots, K. Dauten-

hahn, A. Bond, L. Canamero, and B. Edmonds, Eds. Kluwer Academic Publish-

ers, 2002, ch. 25, pp. 205 – 212.

[68] MUMFORD, E., AND HENSHALL, D. Designing participatively: A participative

approach to computer systems design. Manchester Business School, 1979/1983.

192

[69] MYERS, B. A. Taxonomies of visual programming and program visualization.

Journal of Visual Languages and Computing 1, 1 (1990), 97–123.

[70] MYERS, B. A. Using hand-held devices and pcs together. In Communications of

the ACM, vol. 44. ACM Press, November 2001, pp. 34–41.

[71] NARDI, B. A Small Matter of Programming: Perspectives on End-User Comput-

ing. MIT Press, 1993.

[72] NISHI, T., SATO, Y., AND KOIKE., H. Interactive object registration and recog-

nition for augmented desk interface. In ACM SIGCHI 2001 (short talk). ACM

Press, April 2001, pp. 371–372.

[73] OBERLANDER, J., BRNA, P., COX, R., AND GOOD, J. The Match-

Mismatch Conjecture and Learning to Use Data-Flow Visual Program-

ming Languages. The University of Leeds, 1999. Available at

http://www.cbl.leeds.ac.uk/ paul/grip.html.

[74] ORTIZ, S. J. Speaking for generations: Native writers on writing. University of

Arizona Press, Tuscson, AR, 1998.

[75] PAPERT, S. Mindstorms: Children, computers and powerful ideas. Basic Books,

New York, 1980.

[76] PAPERT, S. The Children’s Machine: Rethinking School in the Age of the Com-

puter. Basic Books, 1993.

[77] PAUSCH, R., VOGTLE, L., AND CONWAY, M. One dimensional motion tailoring

for the disabled: A user study. In Proceedings of Human Factors in Computing

Systems (1992), ACM Press, pp. 405–411.

193

[78] PIAGET, J. Psychology and Epistemology: Towards a theory of knowledge.

Viking Press, 1971.

[79] PIAGET, J. To understand is to invent: The future of education. Grossman, 1973.

[80] PINHANEZ, C. S., DAVIS, J. W., INTILLE, S., JOHNSON, M. P., WILSON,

A. D., BOBICK, A. F., AND BLUMBERG, B. Physically interactive story envi-

ronments. IBM Systems Journal 39, 3–4 (2000), 438–455.

[81] PLAISANT, C., DRUIN, A., LATHAN, C., DAKHANE, K., EDWARDS, K.,

VICE, J. M., AND MONTEMAYOR, J. A storytelling robot for pediatric reha-

bilitation. In Proceedings of ASSETS’2000 (2000), ACM Press, pp. 50–55.

[82] http://www.portdiscovery.com.

[83] http://www.realsoftware.com.

[84] REKIMOTO, J., ULLMER, B., AND OBA, H. DataTiles: A modular platform for

mixed physical and graphical interactions. In Proceedings of Human Factors in

Computing Systems (2001), ACM Press, pp. 269–276.

[85] RESNICK, M. Technologies for lifelong kindergarten. Educational Technology

Research and Development 46, 4 (1998), 16–19.

[86] RINGEL, M., BERG, H., JIN, Y., AND WINOGRAD, T. Barehands: Implement-

free interaction with a wall-mounted display. In Proceedings of Human Factors

in Computing Systems, Extended Abstracts (2001), ACM Press, pp. 367–368.

[87] SALBER, D., DEY, A., AND ABOWD, G. Ubiquitous computing: Defining an

hci research agenda for an emerging interaction paradigm. Tech. rep., Georgia

Institute of Technology, 1998.

194

[88] SCAIFE, M., ROGERS, Y., ALDRICH, F., AND DAVIES, M. Designing for or

designing with? informant design for interactive learning environments. In Pro-

ceedings of Human Factors in Computing Systems (1997), ACM Press, pp. 343–

350.

[89] SCARLATOS, L., DUSHKINA, Y., AND LANDY, S. Ticle: A tangible interface

for collaborative learning environments. Proceedings of Human Factors in Com-

puting Systems, Extended Abstracts (1999), 260–261.

[90] SCHELL, J., AND SHOCHET, J. Designing interactive theme park

rides: Lessons from disney’s battle for the buccaneer gold. available at:

http://www.gamasutra.com/features/20010706/schell 01.htm., 2001.

[91] SCHILIT, W. N. A Context-Aware System Architecture for Mobile Distributed

Computing. PhD thesis, Columbia University, 1995.

[92] SEMPER, R. J. Science museums as environments for learning. Physics Today

(November 1990), 50–56.

[93] SHAFER, S. A. N., BRUMITT, B., AND CADIZ, J. Interaction issues in context-

aware intelligent environments. Human-Computer Interaction 16 (2001), 363–

378.

[94] SHNEIDERMAN, B. Direct manipulation: A step beyond programming lan-

guages. IEEE Computer 16, 8 (1983), 56–69.

[95] SHU, N. Visual Programming. Van Nostrand Reinhold, 1988.

[96] SLOMAN, A. Interactions between philosophy and artificial intelligence: The

role of intuition and non-logical reasoning in intelligence. In Proceedings of the

195

Second International Joint Conference on Artificial Intelligence (1971), pp. 270–

278.

[97] SMITH, D. C. Pygmalion: An executable electronic blackboard. In Watch What

I Do: Programming by Demonstration, A. Cypher, D. C. Halbert, D. Kurlander,

H. Lieberman, D. Maulsby, B. A. Myers, and A. Turransky, Eds. MIT Press,

1993, ch. 1.

[98] http://www.parallax.com.

[99] STROMMEN, E. Children’s use of mouse-based interfaces to control virtual

travel. In Proceedings of Human Factors in Computing Systems (1994), ACM

Press, pp. 405–410.

[100] STROMMEN, E. When the interface is a talking dinosaur: Learning across media

with actimates barney. In Proceedings of Human Factors in Computing Systems

(1998), ACM Press, pp. 288–295.

[101] SUNDBLAD, Y. Quality and interaction in computer-aided graphic design

(Utopia Report 15). Tech. rep., Stockholm: Arbetslivscentrum, 1987.

[102] SUPPES, P. Computer tchnology and the future of education. In Computer-

assisted instruction: A book of readings, R. Atkinson and H. A. Wilson, Eds.

Academic Press, 1969, pp. 41–47.

[103] SUZUKI, H., AND KATO, H. Interaction-level support for collaborative learn-

ing: AlgoBlock — an open programming language. In Proceedings of CSCL‘95

(October 1995), J. L. Schnase, Ed., pp. 349–355.

[104] TANENBAUM, A. S. Computer Networks, 3 ed. Prentice Hall, 1996.

196

[105] TANIMOTO, S. L. Tutorial notes on visual languages for computer based com-

munication. Human Centered Computing Conference (2002).

[106] THE PRESIDENT’S COMMITTEE OF ADVISORS ON SCIENCE AND TECHNOL-

OGY. Report to the President on the use of technology to strengthen K-12 edu-

cation in the United States. The Executive Office of the President of the United

States, 1997.

[107] UMASCHI, M. Soft toys with computer hearts: Building personal storytelling

environments. In Proceedings of Human Factors in Computing Systems (1997),

ACM Press, pp. 20–21.

[108] WANT, R., HOPPER, A., FALCAO, V., AND GIBBONS, J. The active badge

location system. ACM Transactions on Information Systems 10, 1 (1992), 91–

102.

[109] WANT, R., PERING, T., BORRIELLO, G., AND FARKAS, K. Disappearing hard-

ware. In IEEE Pervasive Computing (2002), pp. 36–47.

[110] WANT, R., SCHILIT, B. N., ADAMS, N. I., GOLD, R., PETERSEN, K., GOLD-

BERG, D., ELLIS, J. R., , AND WEISER, M. An overview of the parctab ubiqui-

tous computing experiment. IEEE Personal Communications 2, 6 (1995), 28–43.

[111] WARD, A., JONES, A., AND HOPPER, A. A new location technique for the

active office. IEEE Personal Communications 4, 5 (October 1997), 42–47.

[112] WEISER, M. The computer for the twenty-first century. Scientific American

(September 1991), 94–104.

[113] WEISER, M. Some computer science problems in ubiquitous computing. Com-

munications of the ACM (1993).

197

[114] WILSON, A., AND SHAFER, S. XWand: UI for intelligence spaces. In Proceed-

ings of Human Factors in Computing Systems (2003), ACM Press, pp. 545–552.

[115] WOODRUFF, A., AOKI, P., HURST, A., AND SZYMANSKI, P. The guidebook,

the friend, and the room: Visitor experience in a historic house. In Proceedings of

Human Factors in Computing Systems, Extended Abstracts (2001), pp. 273–274.

[116] WYETH, P., AND PURCHASE, H. C. Programming without a computer: A new

interface for children under eight. Australian Computer Science Conference 22,

5 (2000), 141–148.

[117] WYETH, P., AND WYETH, G. Electronic blocks: Tangible programming ele-

ments for preschoolers. In Human-Computer Interaction - INTERACT’01 (2001),

IOS Press, pp. 496–503.

[118] http://www.x10.com.

198

