
Feature Design Evaluation
Streaming started Oct 24, 2014 Dec 21, 2014
Streaming ended Nov 21, 2014 Jan 22, 2015
Users followed 95,000 180,000
Users who tweeted 91,283 179,425
Number of tweets 80,8239,916 415,582,993
Labeled tweets 78,527,525 406,140,249
Deletion rate 3.64% 2.33%
Deletion rate by user 3.55%±9.15% 2.88%±7.47%
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Introduction

• Delete own tweet
• Make a profile private
• Suspend an account
• Cascade RT deletions

How Do Deletions Occur?Why Predict Deletions?

• Regret avoidance
• Censorship avoidance
• Collection persistence

Experiments

Data

Naïve Features and Evaluation

Conclusion

• User ID is a strong feature
• Different tasks ⇒ Different evaluation designs

• Study different deletion types
• Study language-dependent features

Future Work

Separating Users

• Goal: Neutralize the effect of user ID
• Training: 70% of users
• F1 optimization: 10% of users

• Testing : 20% of users

Excluding Retweets and Outliers

• Exclude Retweets (65% of deletions)
• Exclude 2% users  (34% of non RT deletions)

F1 for training on indicated feature(s)
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• Petrovic et al.  F1 = 0.39
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• User ID:   F1 = 0.46
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