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Spring 1998
Dave Mount

Lecture 1: Course Introduction

(Tuesday, Jan 27, 1998)
Read: Course syllabus and Chapter 1 in CLR (Cormen, Leiserson, and Rivest).

What is algorithm design? Our text defines analgorithm to be any well-defined computational procedure
that takes some values asinputand produces some values asoutput. Like a cooking recipe, an algorithm
provides a step-by-step method for solving a computational problem.

A good understanding of algorithms is essential for a good understanding of the most basic element of
computer science:programming. Unlike a program, an algorithm is a mathematical entity, which is
independent of a specific programming language, machine, or compiler. Thus, in some sense, algorithm
design is all about the mathematical theory behind the design of good programs.

Why study algorithm design? There are many facets to good program design. Good algorithm design is
one of them (and an important one). To be really complete algorithm designer, it is important to be
aware of programming and machine issues as well. In any important programming project there are
two major types of issues,macro issuesandmicro issues.

Macro issues involve elements such as how does one coordinate the efforts of many programmers
working on a single piece of software, and how does one establish that a complex programming system
satisfies its various requirements. These macro issues are the primary subject of courses on software
engineering.

A great deal of the programming effort on most complex software systems consists of elements whose
programming is fairly mundane (input and output, data conversion, error checking, report generation).
However, there is often a small critical portion of the software, which may involve only tens to hundreds
of lines of code, but where the great majority of computational time is spent. (Or as the old adage goes:
80% of the execution time takes place in 20% of the code.) The micro issues in programming involve
how best to deal with these small critical sections.

It may be very important for the success of the overall project that these sections of code be written
in the most efficient manner possible. An unfortunately common approach to this problem is to first
design an inefficient algorithm and data structure to solve the problem, and then take this poor design
and attempt to fine-tune its performance by applying clever coding tricks or by implementing it on the
most expensive and fastest machines around to boost performance as much as possible. The problem is
that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial
difference.

As an example, I know of a programmer who was working at Boeing on their virtual reality system for
the 777 project. The system was running unacceptably slowly in spite of the efforts of a large team of
programmers and the biggest supercomputer available. A new programmer was hired to the team, and
his first question was on the basic algorithms and data structures used by the system. It turns out that
the system was based on rendering hundreds of millions of polygonal elements, most of which were
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invisible at any point in time. Recognizing this source of inefficiency, he redesigned the algorithms and
data structures, recoded the inner loops, so that the algorithm concentrated its efforts on eliminating
many invisible elements, and just drawing the few thousand visible elements. In a matter of two weeks
he had a system that ran faster on his office workstation, than the one running on the supercomputer.

This may seem like a simple insight, but it is remarkable how many times the clever efforts of a single
clear-sighted person can eclipse the efforts of larger groups, who are not paying attention to the basic
principle that we will stress in this course:

Before you implement, first be sure you have a good design.

This course is all about how to design good algorithms. Because the lesson cannot be taught in just
one course, there are a number of companion courses that are important as well. CMSC 420 deals with
how to design good data structures. This is not really an independent issue, because most of the fastest
algorithms are fast because they use fast data structures, and vice versa. CMSC 451 is the advanced
version of this course, which teaches other advanced elements of algorithm design. In fact, many of the
courses in the computer science department deal with efficient algorithms and data structures, but just
as they apply to various applications: compilers, operating systems, databases, artificial intelligence,
computer graphics and vision, etc. Thus, a good understanding of algorithm design is a central element
to a good understanding of computer science and good programming.

Implementation Issues: One of the elements that we will focus on in this course is to try to study algorithms
as pure mathematical objects, and so ignore issues such as programming language, machine, and op-
erating system. This has the advantage of clearing away the messy details that affect implementation.
But these details may be very important.

For example, an important fact of current processor technology is that oflocality of reference. Fre-
quently accessed data can be stored in registers or cache memory. Our mathematical analyses will
usually ignore these issues. But a good algorithm designer can work within the realm of mathemat-
ics, but still keep an open eye to implementation issues down the line that will be important for final
implementation. For example, we will study three fast sorting algorithms this semester, heap-sort,
merge-sort, and quick-sort. From our mathematical analysis, all have equal running times. However,
among the three (barring any extra considerations) quicksort is the fastest on virtually all modern ma-
chines. Why? It is the best from the perspective of locality of reference. However, the difference is
typically small (perhaps 10–20% difference in running time).

Thus this course is not the last word in good program design, and in fact it is perhaps more accu-
rately just the first word in good program design. The overall strategy that I would suggest to any
programming would be to first come up with a few good designs from a mathematical and algorithmic
perspective. Next prune this selection by consideration of practical matters (like locality of reference).
Finally prototype (that is, do test implementations) a few of the best designs and run them on data
sets that will arise in your application for the final fine-tuning. Also, be sure to use whatever develop-
ment tools that you have, such as profilers (programs which pin-point the sections of the code that are
responsible for most of the running time).

Course in Review: This course will consist of three major sections. The first is on the mathematical tools
necessary for the analysis of algorithms. This will focus on asymptotics, summations, recurrences.
The second element will deal with one particularly important algorithmic problem: sorting a list of
numbers. We will show a number of different strategies for sorting, and use this problem as a case-
study in different techniques for designing and analyzing algorithms. The final third of the course will
deal with a collection of various algorithmic problems and solution techniques. Finally we will close
this last third with a very brief introduction to the theory of NP-completeness. NP-complete problem
are those for which no efficient algorithms are known, but no one knows for sure whether efficient
solutions might exist.
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Lecture 2: Analyzing Algorithms: The 2-d Maxima Problem

(Thursday, Jan 29, 1998)
Read: Chapter 1 in CLR.

Analyzing Algorithms: In order to design good algorithms, we must first agree the criteria for measuring
algorithms. The emphasis in this course will be on the design of efficient algorithm, and hence we
will measure algorithms in terms of the amount ofcomputational resourcesthat the algorithm requires.
These resources include mostly running time and memory. Depending on the application, there may
be other elements that are taken into account, such as the number disk accesses in a database program
or the communication bandwidth in a networking application.

In practice there are many issues that need to be considered in the design algorithms. These include
issues such as the ease of debugging and maintaining the final software through its life-cycle. Also,
one of the luxuries we will have in this course is to be able to assume that we are given a clean, fully-
specified mathematical description of the computational problem. In practice, this is often not the case,
and the algorithm must be designed subject to only partial knowledge of the final specifications. Thus,
in practice it is often necessary to design algorithms that are simple, and easily modified if problem
parameters and specifications are slightly modified. Fortunately, most of the algorithms that we will
discuss in this class are quite simple, and are easy to modify subject to small problem variations.

Model of Computation: Another goal that we will have in this course is that our analyses be as independent
as possible of the variations in machine, operating system, compiler, or programming language. Unlike
programs, algorithms to be understood primarily by people (i.e. programmers) and not machines. Thus
gives us quite a bit of flexibility in how we present our algorithms, and many low-level details may be
omitted (since it will be the job of the programmer who implements the algorithm to fill them in).

But, in order to say anything meaningful about our algorithms, it will be important for us to settle
on a mathematical model of computation. Ideally this model should be a reasonable abstraction of a
standard generic single-processor machine. We call this model arandom access machineor RAM.

A RAM is an idealized machine with an infinitely large random-access memory. Instructions are exe-
cuted one-by-one (there is no parallelism). Each instruction involves performing somebasic operation
on two values in the machines memory (which might be characters or integers; let’s avoid floating
point for now). Basic operations include things like assigning a value to a variable, computing any
basic arithmetic operation (+, −, ∗, integer division) on integer values of any size, performing any
comparison (e.g.x ≤ 5) or boolean operations, accessing an element of an array (e.g.A[10]). We
assume that each basic operation takes the same constant time to execute.

This model seems to go a good job of describing the computational power of most modern (nonparallel)
machines. It does not model some elements, such as efficiency due to locality of reference, as described
in the previous lecture. There are some “loop-holes” (or hidden ways of subverting the rules) to beware
of. For example, the model would allow you to add two numbers that contain a billion digits in constant
time. Thus, it is theoretically possible to derive nonsensical results in the form of efficient RAM
programs that cannot be implemented efficiently on any machine. Nonetheless, the RAM model seems
to be fairly sound, and has done a good job of modeling typical machine technology since the early
60’s.

Example: 2-dimension Maxima: Rather than jumping in with all the definitions, let us begin the discussion
of how to analyze algorithms with a simple problem, called2-dimension maxima. To motivate the
problem, suppose that you want to buy a car. Since you’re a real swinger you want the fastest car
around, so among all cars you pick the fastest. But cars are expensive, and since you’re a swinger on
a budget, you want the cheapest. You cannot decide which is more important, speed or price, but you
know that you definitely do NOT want to consider a car if there is another car that is both faster and
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cheaper. We say that the fast, cheap cardominatesthe slow, expensive car relative to your selection
criteria. So, given a collection of cars, we want to list those that are not dominated by any other.

Here is how we might model this as a formal problem. Let a pointp in 2-dimensional space be given
by its integer coordinates,p = (p.x, p.y). A point p is said todominated bypoint q if p.x ≤ q.x and
p.y ≤ q.y. Given a set ofn points,P = {p1, p2, . . . , pn} in 2-space a point is said to bemaximalif it
is not dominated by any other point inP .

The car selection problem can be modeled in this way. If for each car we associated(x, y) values where
x is the speed of the car, andy is the negation of the price (thus highy values mean cheap cars), then
the maximal points correspond to the fastest and cheapest cars.

2-dimensional Maxima: Given a set of pointsP = {p1, p2, . . . , pn} in 2-space, each represented by
its x andy integer coordinates, output the set of the maximal points ofP , that is, those pointspi,
such thatpi is not dominated by any other point ofP . (See the figure below.)
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Figure 1: Maximal Points.

Observe that our description of the problem so far has been at a fairly mathematical level. For example,
we have intentionally not discussed issues as to how points are represented (e.g., using a structure with
records for thex andy coordinates, or a 2-dimensional array) nor have we discussed input and output
formats. These would normally be important in a software specification. However, we would like to
keep as many of the messy issues out since they would just clutter up the algorithm.

Brute Force Algorithm: To get the ball rolling, let’s just consider a simple brute-force algorithm, with no
thought to efficiency. Here is the simplest one that I can imagine. LetP = {p1, p2, . . . , pn} be the
initial set of points. For each pointpi, test it against all other pointspj . If pi is not dominated by any
other point, then output it.

This English description is clear enough that any (competent) programmer should be able to implement
it. However, if you want to be a bit more formal, it could be written in pseudocode as follows:

Brute Force Maxima

Maxima(int n, Point P[1..n]) { // output maxima of P[0..n-1]
for i = 1 to n {

maximal = true; // P[i] is maximal by default
for j = 1 to n {

if (i != j) and (P[i].x <= P[j].x) and (P[i].y <= P[j].y) {
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maximal = false; // P[i] is dominated by P[j]
break;

}
}
if (maximal) output P[i]; // no one dominated...output

}
}

There are no formal rules to the syntax of this pseudocode. In particular, do not assume that more
detail is better. For example, I omitted type specifications for the procedureMaxima and the variable
maximal , and I never defined what aPoint data type is, since I felt that these are pretty clear
from context or just unimportant details. Of course, the appropriate level of detail is a judgement call.
Remember, algorithms are to be read by people, and so the level of detail depends on your intended
audience. When writing pseudocode, you should omit details that detract from the main ideas of the
algorithm, and just go with the essentials.

You might also notice that I did not insert any checking for consistency. For example, I assumed that
the points inP are all distinct. If there is a duplicate point then the algorithm may fail to output even
a single point. (Can you see why?) Again, these are important considerations for implementation, but
we will often omit error checking because we want to see the algorithm in its simplest form.

Correctness: Whenever you present an algorithm, you should also present a short argument for its correct-
ness. If the algorithm is tricky, then this proof should contain the explanations of why the tricks works.
In a simple case like the one above, there almost nothing that needs to be said. We simply implemented
the definition: a point is maximal if no other point dominates it.

Running Time Analysis: The main purpose of our mathematical analyses will be be measure the execution
time (and sometimes the space) of an algorithm. Obviously the running time of an implementation of
the algorithm would depend on the speed of the machine, optimizations of the compiler, etc. Since we
want to avoid these technology issues and treat algorithms as mathematical objects, we will only focus
on the pseudocode itself. This implies that we cannot really make distinctions between algorithms
whose running times differ by a small constant factor, since these algorithms may be faster or slower
depending on how well they exploit the particular machine and compiler. How small is small? To
make matters mathematically clean, let us just ignore all constant factors in analyzing running times.
We’ll see later why even with this big assumption, we can still make meaningful comparisons between
algorithms.

In this case we might measure running time by counting the number of steps of pseudocode that are
executed, or the number of times that an element ofP is accessed, or the number of comparisons that
are performed.

Running time depends on input size. So we will define running time in terms of a function of input
size. Formally, theinput sizeis defined to be the number of characters in the input file, assuming some
reasonable encoding of inputs (e.g. numbers are represented in base 10 and separated by a space).
However, we will usually make the simplifying assumption that each number is of some constant
maximum length (after all, it must fit into one computer word), and so the input size can be estimated
up to constant factor by the parametern, that is, the length of the arrayP .

Also, different inputs of the same size may generally result in different execution times. (For example,
in this problem, the number of times we execute the inner loop before breaking out depends not only on
the size of the input, but the structure of the input.) There are two common criteria used in measuring
running times:

Worst-case time: is the maximum running time over all (legal) inputs of sizen? LetI denote a legal
input instance, and let|I| denote its length, and letT (I) denote the running time of the algorithm
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on inputI.
Tworst(n) = max

|I|=n
T (I).

Average-case time:is the average running time over all inputs of sizen? More generally, for each
input I, let p(I) denote the probability of seeing this input. The average-case running time is the
weight sum of running times, with the probability being the weight.

Tavg(n) =
∑
|I|=n

p(I)T (I).

We will almost always work with worst-case running time. This is because for many of the problems
we will work with, average-case running time is just too difficult to compute, and it is difficult to specify
a natural probability distribution on inputs that are really meaningful for all applications. It turns out
that for most of the algorithms we will consider, there will be only a constant factor difference between
worst-case and average-case times.

Running Time of the Brute Force Algorithm: Let us agree that the input size isn, and for the running
time we will count the number of time that any element ofP is accessed. Clearly we go through the
outer loopn times, and for each time through this loop, we go through the inner loopn times as well.
The condition in the if-statement makes four accesses toP . (Under C semantics, not all four need be
evaluated, but let’s ignore this since it will just complicate matters). The output statement makes two
accesses (toP [i].x andP [i].y) for each point that is output. In the worst case every point is maximal
(can you see how to generate such an example?) so these two access are made for each time through
the outer loop.

Thus we might express the worst-case running time as a pair of nested summations, one for thei-loop
and the other for thej-loop:

T (n) =
n∑

i=1


2 +

n∑
j=1

4


 .

These are not very hard summations to solve.
∑n

j=1 4 is just4n, and so

T (n) =
n∑

i=1

(4n + 2) = (4n + 2)n = 4n2 + 2n.

As mentioned before we will not care about the small constant factors. Also, we are most interested in
what happens asn gets large. Why? Because whenn is small, almost any algorithm is fast enough.
It is only for large values ofn that running time becomes an important issue. Whenn is large, then2

term will be much larger than then term, and so it will dominate the running time. We will sum this
analysis up by simply saying that the worst-case running time of the brute force algorithm isΘ(n2).
This is called theasymptotic growth rateof the function. Later we will discuss more formally what
this notation means.

Summations: (This is covered in Chapter 3 of CLR.) We saw that this analysis involved computing a sum-
mation. Summations should be familiar from CMSC 150, but let’s review a bit here. Given a finite
sequence of valuesa1, a2, . . . , an, their suma1+a2+ · · ·+an can be expressed insummation notation
as

n∑
i=1

ai.

If n = 0, then the value of the sum is the additive identity, 0. There are a number of simple algebraic
facts about sums. These are easy to verify by simply writing out the summation and applying simple
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high school algebra. Ifc is a constant (does not depend on the summation indexi) then

n∑
i=1

cai = c

n∑
i=1

ai and
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi.

There are some particularly important summations, which you should probably commit to memory (or
at least remember their asymptotic growth rates). If you want some practice with induction, the first
two are easy to prove by induction.

Arithmetic Series: Forn ≥ 0,

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
= Θ(n2).

Geometric Series: Let x 6= 1 be any constant (independent ofi), then forn ≥ 0,

n∑
i=0

xi = 1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

If 0 < x < 1 then this isΘ(1), and ifx > 1, then this isΘ(xn).

Harmonic Series: This arises often in probabilistic analyses of algorithms. Forn ≥ 0,

Hn =
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · ·+ 1
n
≈ lnn = Θ(lnn).

Lecture 3: Summations and Analyzing Programs with Loops

(Tuesday, Feb 3, 1998)
Read: Chapt. 3 in CLR.

Recap: Last time we presented an algorithm for the 2-dimensional maxima problem. Recall that the algo-
rithm consisted of two nested loops. It looked something like this:

Brute Force Maxima

Maxima(int n, Point P[1..n]) {
for i = 1 to n {

...
for j = 1 to n {

...
...

}
}

We were interested in measuring the worst-case running time of this algorithm as a function of the
input size,n. The stuff in the “. . . ” hasbeen omitted because it is unimportant for the analysis.

Last time we counted the number of times that the algorithm accessed a coordinate of any point. (This
was only one of many things that we could have chosen to count.) We showed that as a function ofn
in the worst case this quantity was

T (n) = 4n2 + 2n.
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We were most interested in the growth rate for large values ofn (since almost all algorithms run fast
for small values ofn), so we were most interested in the4n2 term, which determines how the function
grows asymptotically for largen. Also, we do not care about constant factors (because we wanted
simplicity and machine independence, and figured that the constant factors were better measured by
implementing the algorithm). So we can ignored the factor 4 and simply say that the algorithm’s
worst-case running time grows asymptotically asn2, which we wrote asΘ(n2).

In this and the next lecture we will consider the questions of (1) how is it that one goes about analyzing
the running time of an algorithm as function such asT (n) above, and (2) how does one arrive at a
simple asymptotic expression for that running time.

A Harder Example: Let’s consider another example. Again, we will ignore stuff that takes constant time
(expressed as “. . . ” in thecode below).

A Not-So-Simple Example:

for i = 1 to n { // assume that n is input size
...
for j = 1 to 2*i {

...
k = j;
while (k >= 0) {

...
k = k - 1;

}
}

}

How do we analyze the running time of an algorithm that has many complex nested loops? The
answer is that we write out the loops as summations, and then try to solve the summations. LetI(),
M(), T () be the running times for (one full execution of) the inner loop, middle loop, and the entire
program. To convert the loops into summations, we work from the inside-out. Let’s consider one pass
through the innermost loop. The number of passes through the loop depends onj. It is executed for
k = j, j−1, j−2, . . . , 0, and the time spent inside the loop is a constant, so the total time is justj +1.
We could attempt to arrive at this more formally by expressing this as a summation:

I(j) =
j∑

k=0

1 = j + 1

Why the “1”? Because the stuff inside this loop takes constant time to execute. Why did we count
up from 0 toj (and not down as the loop does?) The reason is that the mathematical notation for
summations always goes from low index to high, and since addition is commutative it does not matter
in which order we do the addition.

Now let us consider one pass through the middle loop. It’s running time is determined byi. Using
the summation we derived above for the innermost loop, and the fact that this loop is executed forj
running from 1 to2i, it follows that the execution time is

M(i) =
2i∑

j=1

I(j) =
2i∑

j=1

(j + 1).

Last time we gave the formula for the arithmetic series:

n∑
i=1

i =
n(n + 1)

2
.
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Our sum is not quite of the right form, but we can split it into two sums:

M(i) =
2i∑

j=1

j +
2i∑

j=1

1.

The latter sum is clearly just2i. The former is an arithmetic series, and so we find can plug in2i for n,
andj for i in the formula above to yield the value:

M(i) =
2i(2i + 1)

2
+ 2i =

4i2 + 2i + 4i

2
= 2i2 + 3i.

Now, for the outermost sum and the running time of the entire algorithm we have

T (n) =
n∑

i=1

(2i2 + 3i).

Splitting this up (by the linearity of addition) we have

T (n) = 2
n∑

i=1

i2 + 3
n∑

i=1

i.

The latter sum is another arithmetic series, which we can solve by the formula above asn(n + 1)/2.
The former summation

∑n
i=1 i2 is not one that we have seen before. Later, we’ll show the following.

Quadratic Series: Forn ≥ 0.

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
2n3 + 3n2 + n

6
.

Assuming this fact for now, we conclude that the total running time is:

T (n) = 2
2n3 + 3n2 + n

6
+ 3

n(n + 1)
2

,

which after some algebraic manipulations gives

T (n) =
4n3 + 15n2 + 11n

6
.

As before, we ignore all but the fastest growing term4n3/6, and ignore constant factors, so the total
running time isΘ(n3).

Solving Summations: In the example above, we saw an unfamiliar summation,
∑n

i=1 i2, which we claimed
could be solved in closed form as:

n∑
i=1

i2 =
2n3 + 3n2 + n

6
.

Solving a summation inclosed-formmeans that you can write an exact formula for the summation
without any embedded summations or asymptotic terms. In general, when you are presented with an
unfamiliar summation, how do you approach solving it, or if not solving it in closed form, at least
getting an asymptotic approximation. Here are a few ideas.
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Use crude bounds:One of the simples approaches, that usually works for arriving at asymptotic
bounds is to replace every term in the summation with a simple upper bound. For example,
in
∑n

i=1 i2 we could replace every term of the summation by the largest term. This would give

n∑
i=1

i2 ≤
n∑

i=1

n2 = n3.

Notice that this is asymptotically equal to the formula, since both areΘ(n3).
This technique works pretty well with relatively slow growing functions (e.g., anything growing
more slowly than than a polynomial, that is,ic for some constantc). It does not give good bounds
with faster growing functions, such as an exponential function like2i.

Approximate using integrals: Integration and summation are closely related. (Integration is in some
sense a continuous form of summation.) Here is a handy formula. Letf(x) be anymonotonically
increasing function(the function increases asx increases).∫ n

0

f(x)dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x)dx.

210 3 ... n

f(x)f(2)

x
210 3 ... n n+1

f(2)

x

f(x)

Figure 2: Approximating sums by integrals.

Most running times are increasing functions of input size, so this formula is useful in analyzing
algorithm running times.
Using this formula, we can approximate the above quadratic sum. In this case,f(x) = x2.

n∑
i=1

i2 ≤
∫ n+1

1

x2dx =
x3

3

∣∣∣∣
n+1

x=1

=
(n + 1)3

3
− 1

3
=

n3 + 3n2 + 3n

3
.

Note that the constant factor on the leading term ofn3/3 is equal to the exact formula.
You might say, why is it easier to work with integrals than summations? The main reason is
that most people have more experience in calculus than in discrete math, and there are many
mathematics handbooks with lots of solved integrals.

Use constructive induction: This is a fairly good method to apply whenever you can guess the general
form of the summation, but perhaps you are not sure of the various constant factors. In this case,
the integration formula suggests a solution of the form:

n∑
i=1

i2 = an3 + bn2 + cn + d,

but we do not know whata, b, c, andd are. However, we believe that they are constants (i.e., they
are independent ofn).
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Let’s try to prove this formula by induction onn, and as the proof proceeds, we should gather
information about what the values ofa, b, c, andd are.
Since this is the first induction proof we have done, let us recall how induction works. Basically
induction proofs are just the mathematical equivalents of loops in programming. Letn be the
integer variable on which we are performing the induction. The theorem or formula to be proved,
called theinduction hypothesisis a function ofn, denoteIH(n). There is some smallest value
n0 for whichIH(n0) is suppose to hold. We proveIH(n0), and then we work up to successively
larger value ofn, each time we may make use of the induction hypothesis, as long as we apply it
to strictly smaller values ofn.

Prove IH(n0);
for n = n0+1 to infinity do

Prove IH(n), assuming that IH(n’) holds for all n’ < n;

This is sometimes calledstrong induction, because we assume that the hypothesis holds for all
n′ < n. Usually we only need to assume the induction hypothesis for the next smaller value ofn,
namelyn− 1.

Basis Case:(n = 0) Recall that an empty summation is equal to the additive identity, 0. In this
case we want to prove that0 = a · 03 + b · 02 + c · 0 + d. For this to be true, we must have
d = 0.

Induction Step: Let us assume thatn > 0, and that the formula holds for all valuesn′ < n, and
from this we will show that the formula holds for the valuen itself.
The structure of proving summations by induction is almost always the same. First, write the
summation fori running up ton, then strip off the last term, apply the induction hypothesis
on the summation running up ton− 1, and then combine everything algebraically. Here we
go.

n∑
i=1

i2 =

(
n−1∑
i=1

i2

)
+ n2

= a(n− 1)3 + b(n− 1)2 + c(n− 1) + d + n2

= (an3 − 3an2 + 3an− a) + (bn2 − 2bn + b) + (cn− c) + d + n2

= an3 + (−3a + b + 1)n2 + (3a− 2b + c)n + (−a + b− c + d).

To complete the proof, we want this is equal toan3 + bn2 + cn+d. Since this should be true
for all n, this means that each power ofn must match identically. This gives us the following
constraints

a = a, b = −3a + b + 1, c = 3a− 2b + c, d = −a + b− c + d.

We already know thatd = 0 from the basis case. From the second constraint above we can
cancelb from both sides, implying thata = 1/3. Combining this with the third constraint
we haveb = 1/2. Finally from the last constraint we havec = −a + b = 1/6.
This gives the final formula

n∑
i=1

i2 =
n3

3
+

n2

2
+

n

6
=

2n3 + 3n2 + n

6
.

As desired, all of the valuesa throughd are constants, independent ofn. If we had chosen
the wrong general form, then either we would find that some of these “constants” depended
onn, or we might get a set of constraints that could not be satisfied.
Notice that constructive induction gave us the exact formula for the summation. The only
tricky part is that we had to “guess” the general structure of the solution.

11
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In summary, there is no one way to solve a summation. However, there are many tricks that can be
applied to either find asymptotic approximations or to get the exact solution. The ultimate goal is to
come up with a close-form solution. This is not always easy or even possible, but for our purposes
asymptotic bounds will usually be good enough.

Lecture 4: 2-d Maxima Revisited and Asymptotics

(Thursday, Feb 5, 1998)
Read: Chapts. 2 and 3 in CLR.

2-dimensional Maxima Revisited: Recall the max-dominance problem from the previous lectures. A point
p is said todominated bypoint q if p.x ≤ q.x and p.y ≤ q.y. Given a set ofn points, P =
{p1, p2, . . . , pn} in 2-space a point is said to bemaximal if it is not dominated by any other point
in P . The problem is to output all the maximal points ofP .

So far we have introduced a simple brute-force algorithm that ran inΘ(n2) time, which operated by
comparing all pairs of points. The question we consider today is whether there is an approach that is
significantly better?

The problem with the brute-force algorithm is that uses no intelligence in pruning out decisions. For
example, once we know that a pointpi is dominated by another pointpj , then we we do not need to use
pi for eliminating other points. Any point thatpi dominates will also be dominated bypj . (This follows
from the fact that the domination relation istransitive, which can easily be verified.) This observation
by itself, does not lead to a significantly faster algorithm though. For example, if all the points are
maximal, which can certainly happen, then this optimization saves us nothing.

Plane-sweep Algorithm: The question is whether we can make an significant improvement in the running
time? Here is an idea for how we might do it. We will sweep a vertical line across the plane from left
to right. As we sweep this line, we will build a structure holding the maximal points lying to the left of
the sweep line. When the sweep line reaches the rightmost point ofP , then we will have constructed
the complete set of maxima. This approach of solving geometric problems by sweeping a line across
the plane is calledplane sweep.

Although we would like to think of this as a continuous process, we need some way to perform the
plane sweep in discrete steps. To do this, we will begin by sorting the points in increasing order of
theirx-coordinates. For simplicity, let us assume that no two points have the samey-coordinate. (This
limiting assumption is actually easy to overcome, but it is good to work with the simpler version, and
save the messy details for the actual implementation.) Then we will advance the sweep-line from point
to point inn discrete steps. As we encounter each new point, we will update the current list of maximal
points.

First off, how do we sort the points? We will leave this problem for later in the semester. But the
bottom line is that there exist any number of good sorting algorithms whose running time to sortn
values isΘ(n log n). We will just assume that they exist for now.

So the only remaining problem is, how do we store the existing maximal points, and how do we update
them when a new point is processed? We claim that as each new point is added, it must be maximal for
the current set. (Why? Beacuse itsx-coordinate is larger than all thex-coordinates of all the existing
points, and so it cannot be dominated by any of the existing points.) However, this new point may
dominate some of the existing maximal points, and so we may need to delete them from the list of
maxima. (Notice that once a point is deleted as being nonmaximal, it will never need to be added back
again.) Consider the figure below.

Let pi denote the current point being considered. Notice that since thepi has greaterx-coordinate
than all the existing points, it dominates an existing point if and only if itsy-coordinate is also larger

12
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Figure 3: Plane sweep algorithm for 2-d maxima.

(or equal). Thus, among the existing maximal points, we want to find those having smaller (or equal)
y-coordinate, and eliminate them.

At this point, we need to make an important observation about how maximal points are ordered with
respect to thex- andy-coordinates. As we read maximal points from left to right (in order of increasing
x-coordinates) they-coordinates appear in decreasing order. Why is this so? Suppose to the contrary,
that we had two maximal pointsp andq, with p.x ≥ q.x butp.y ≥ q.y. Then it would follow thatq is
dominated byp, and hence it is not maximal, a contradiction.

This is nice, because it implies that if we store the existing maximal points in a list, the points that
pi dominates (if any) will all appear at the end of this list. So we have to scan this list to find the
breakpoint between the maximal and dominated points. The question is how do we do this?

I claim that we can simply scan the list linearly. But we must do the scan in the proper direction for
the algorithm to be efficient. Which direction should we scan the list of current maxima? From left
to right, until finding the first point that is not dominated, or from right to left, until finding the first
point that is dominated? Stop here and think about it for a moment. If you can answer this question
correctly, then it says something about your intuition for designing efficient algorithms. Let us assume
that we are trying to optimize worst-case performance.

The correct answer is to scan the list from left to right. Here is why. If you only encounter one point
in the scan, then the scan will always be very efficient. The danger is that you may scan many points
before finding the proper breakpoint. If we scan the list from left to right, then every point that we
encounter whosey-coordinate is less thanpi’s will be dominated, and hence it will be eliminated from
the computation forever. We will never have to scan this point again. On the other hand, if we scan
from left to right, then in the worst case (consider when all the points are maximal) we may rescan the
same points over and over again. This will lead to anΘ(n2) algorithm

Now we can give the pseudocode for the final plane sweep algorithm. Since we add maximal points
onto the end of the list, and delete them from the end of the list, we can use a stack to store the maximal
points, where the top of the stack contains the point with the highestx-coordinate. LetS denote this
stack. The top element of the stack is denotedS.top. Popping the stack means removing the top
element.

Plane Sweep Maxima

Maxima2(int n, Point P[1..n]) {

13
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Sort P in ascending order by x-coordinate;
S = empty; // initialize stack of maxima
for i = 1 to n do { // add points in order of x-coordinate

while (S is not empty and S.top.y <= P[i].y)
Pop(S); // remove points that P[i] dominates

Push(S, P[i]); // add P[i] to stack of maxima
}
output the contents of S;

}

Why is this algorithm correct? The correctness follows from the discussion up to now. The most
important element was that since the current maxima appear on the stack in decreasing order ofx-
coordinates (as we look down from the top of the stack), they occur in increasing order ofy-coordinates.
Thus, as soon as we find the last undominated element in the stack, it follows that everyone else on the
stack is undominated.

Analysis: This is an interesting program to analyze, primarily because the techniques that we discussed in
the last lecture donot apply readily here. I claim that after the sorting (which we mentioned takes
Θ(n log n) time), the rest of the algorithm only takesΘ(n) time. In particular, we have two nested
loops. The outer loop is clearly executedn times. The inner while-loop could be iterated up ton − 1
times in the worst case (in particular, when the last point added dominates all the others). So, it seems
that though we haven(n− 1) for a total ofΘ(n2).

However, this is a good example of how not to be fooled by analyses that are too simple minded.
Although it is true that the inner while-loop could be executed as many asn − 1 times any one time
through the outer loop, over the entire course of the algorithm we claim that it cannot be executed
more thann times. Why is this? First observe that the total number of elements that have ever been
pushed onto the stack is at mostn, since we execute exactly one Push for each time through the outer
for-loop. Also observe that every time we go through the inner while-loop, we must pop an element off
the stack. It is impossible to pop more elements off the stack than are ever pushed on. Therefore, the
inner while-loop cannot be executed more thann times over the entire course of the algorithm. (Make
sure that you believe the argument before going on.)

Therefore, since the total number of iterations of the inner while-loop isn, and since the total number
of iterations in the outer for-loop isn, the total running time of the algorithm isΘ(n).

Is this really better? How much of an improvement is this plane-sweep algorithm over the brute-force al-
gorithm? Probably the most accurate way to find out would be to code the two up, and compare their
running times. But just to get a feeling, let’s look at the ratio of the running times. (We have ignored
constant factors, but we’ll see that they cannot play a very big role.)

We have argued that the brute-force algorithm runs inΘ(n2) time, and the improved plane-sweep
algorithm runs inΘ(n log n) time. What is the base of the logarithm? It turns out that it will not matter
for the asymptotics (we’ll show this later), so for concreteness, let’s assume logarithm base 2, which
we’ll denote aslg n. The ratio of the running times is:

n2

n lg n
=

n

lg n
.

For relatively small values ofn (e.g. less than 100), both algorithms are probably running fast enough
that the difference will be practically negligible. On larger inputs, say,n = 1, 000, the ratio ofn to
lg n is about1000/10 = 100, so there is a 100-to-1 ratio in running times. Of course, we have not
considered the constant factors. But since neither algorithm makes use of very complex constructs, it
is hard to imagine that the constant factors will differ by more than, say, a factor of 10. For even larger
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inputs, say,n = 1, 000, 000, we are looking at a ratio of roughly1, 000, 000/20 = 50, 000. This is
quite a significant difference, irrespective of the constant factors.

For example, suppose that there was a constant factor difference of 10 to 1, in favor of the brute-force
algorithm. The plane-sweep algorithm would still be 5,000 times faster. If the plane-sweep algorithm
took, say 10 seconds to execute, then the brute-force algorithm would take 14 hours.

From this we get an idea about the importance of asymptotic analysis. It tells us which algorithm is
better for large values ofn. As we mentioned before, ifn is not very large, then almost any algorithm
will be fast. But efficient algorithm design is most important for large inputs, and the general rule of
computing is that input sizes continue to grow until people can no longer tolerate the running times.
Thus, by designing algorithms efficiently, you make it possible for the user to run large inputs in a
reasonable amount of time.

Asymptotic Notation: We continue to use the notationΘ() but have never defined it. Let’s remedy this now.

Definition: Given any functiong(n), we defineΘ(g(n)) to be a set of functions that areasymptotically
equivalentto g(n), or put formally:

Θ(g(n)) = {f(n) | there exist positive constantsc1, c2, andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Your response at this point might be, “I’m sorry that I asked”. It seems that the reasonably simple
concept of “throw away all but the fastest growing term, and ignore constant factors” should have a
simpler and more intuitive definition than this. Unfortunately, it does not (although later we will see
that there is somewhat easier, and nearly equivalent definition).

First off, we can see that we have been misusing the notation. We have been saying things likeT (n) =
Θ(n2). This cannot be true. The left side is a function, and right side is a set of functions. This should
properly be written asT (n) ∈ Θ(n2). However, this abuse of notation is so common in the field of
algorithm design, that no one notices it.

Going back to an earlier lecture, recall that we argued that the brute-force algorithm for 2-d maxima
had a running time ofT (n) = 4n2 + 2n, which we claimed wasΘ(n2). Let’s verify that this is so. In
this caseg(n) = n2. We want to show thatf(n) = 4n2 +2n is a member of this set, which means that
we must argue that there exist constantsc1, c2, andn0 such that

0 ≤ c1n
2 ≤ (4n2 + 2n) ≤ c2n

2 for all n ≥ n0.

There are really three inequalities here. The constraint0 ≤ c1n
2 is no problem, since we will always

be dealing with positiven and positive constants. The next is:

c1n
2 ≤ 4n2 + 2n.

If we setc1 = 4, then we have0 ≤ 4n2 ≤ 4n2 + 2n, which is clearly true as long asn ≥ 0. The other
inequality is

4n2 + 2n ≤ c2n
2.

If we selectc2 = 6, and assume thatn ≥ 1, then we haven2 ≥ n, implying that

4n2 + 2n ≤ 4n2 + 2n2 = 6n2 = c2n
2.

We have two constraints onn, n ≥ 0 andn ≥ 1. So let us maken0 = 1, which will imply that we as
long asn ≥ n0, we will satisfy both of these constraints.

Thus, we have given a formal proof that4n2 + 2n ∈ Θ(n2), as desired. Next time we’ll try to give
some of the intuition behind this definition.
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Lecture 5: Asymptotics

(Tuesday, Feb 10, 1998)
Read: Chapt. 3 in CLR. The Limit Rule is not really covered in the text. Read Chapt. 4 for next time.

Asymptotics: We have introduced the notion ofΘ() notation, and last time we gave a formal definition.
Today, we will explore this and other asymptotic notations in greater depth, and hopefully give a better
understanding of what they mean.

Θ-Notation: Recall the following definition from last time.

Definition: Given any functiong(n), we defineΘ(g(n)) to be a set of functions:

Θ(g(n)) = {f(n) | there exist strictly positive constantsc1, c2, andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.

Let’s dissect this definition. Intuitively, what we want to say with “f(n) ∈ Θ(g(n))” is that f(n) and
g(n) areasymptotically equivalent. This means that they have essentially the same growth rates for
largen. For example, functions like4n2, (8n2 +2n−3), (n2/5+

√
n−10 log n), andn(n−3) are all

intuitively asymptotically equivalent, since asn becomes large, the dominant (fastest growing) term is
some constant timesn2. In other words, they all growquadraticallyin n. The portion of the definition
that allows us to selectc1 andc2 is essentially saying “the constants do not matter because you may
pick c1 andc2 however you like to satisfy these conditions.” The portion of the definition that allows
us to selectn0 is essentially saying “we are only interested in largen, since you only have to satisfy
the condition for alln bigger thann0, and you may maken0 as big a constant as you like.”

An example: Consider the functionf(n) = 8n2 + 2n − 3. Our informal rule of keeping the largest term
and throwing away the constants suggests thatf(n) ∈ Θ(n2) (sincef grows quadratically). Let’s see
why the formal definition bears out this informal observation.

We need to show two things: first, thatf(n) does grows asymptotically at least as fast asn2, and
second, thatf(n) grows no faster asymptotically thann2. We’ll do both very carefully.

Lower bound: f(n) grows asymptotically at least as fast asn2: This is established by the portion
of the definition that reads: (paraphrasing): “there exist positive constantsc1 andn0, such that
f(n) ≥ c1n

2 for all n ≥ n0.” Consider the following (almost correct) reasoning:

f(n) = 8n2 + 2n− 3 ≥ 8n2 − 3 = 7n2 + (n2 − 3) ≥ 7n2 = 7n2.

Thus, if we setc1 = 7, then we are done. But in the above reasoning we have implicitly made
the assumptions that2n ≥ 0 andn2 − 3 ≥ 0. These are not true for alln, but they are true for all
sufficiently largen. In particular, ifn ≥ √3, then both are true. So let us selectn0 ≥

√
3, and

now we havef(n) ≥ c1n
2, for all n ≥ n0, which is what we need.

Upper bound: f(n) grows asymptotically no faster thann2: This is established by the portion of
the definition that reads “there exist positive constantsc2 andn0, such thatf(n) ≤ c2n

2 for all
n ≥ n0.” Consider the following reasoning (which is almost correct):

f(n) = 8n2 + 2n− 3 ≤ 8n2 + 2n ≤ 8n2 + 2n2 = 10n2.

This means that if we letc2 = 10, then we are done. We have implicitly made the assumption
that2n ≤ 2n2. This is not true for alln, but it is true for alln ≥ 1. So, let us selectn0 ≥ 1, and
now we havef(n) ≤ c2n

2 for all n ≥ n0, which is what we need.

16



Lecture Notes CMSC 251

From the lower bound, we haven0 ≥
√

3 and from the upper bound we haven0 ≥ 1, and so combining
these we letn0 be the larger of the two:n0 =

√
3. Thus, in conclusion, if we letc1 = 7, c2 = 10, and

n0 =
√

3, then we have

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0,

and this is exactly what the definition requires. Since we have shown (by construction) the existence of
constantsc1, c2, andn0, we have established thatf(n) ∈ n2. (Whew! That was a lot more work than
just the informal notion of throwing away constants and keeping the largest term, but it shows how this
informal notion is implemented formally in the definition.)

Now let’s show whyf(n) is not in some other asymptotic class. First, let’s show thatf(n) /∈ Θ(n).
If this were true, then we would have to satisfy both the upper and lower bounds. It turns out that
the lower bound is satisfied (becausef(n) grows at least as fast asymptotically asn). But the upper
bound is false. In particular, the upper bound requires us to show “there exist positive constantsc2

andn0, such thatf(n) ≤ c2n for all n ≥ n0.” Informally, we know that asn becomes large enough
f(n) = 8n2 + 2n − 3 will eventually exceedc2n no matter how large we makec2 (sincef(n) is
growing quadratically andc2n is only growing linearly). To show this formally, suppose towards a
contradiction that constantsc2 andn0 did exist, such that8n2 + 2n − 3 ≤ c2n for all n ≥ n0. Since
this is true for all sufficiently largen then it must be true in the limit asn tends to infinity. If we divide
both side byn we have:

lim
n→∞

(
8n + 2− 3

n

)
≤ c2.

It is easy to see that in the limit the left side tends to∞, and so no matter how largec2 is, this statement
is violated. This means thatf(n) /∈ Θ(n).

Let’s show thatf(n) /∈ Θ(n3). Here the idea will be to violate the lower bound: “there exist positive
constantsc1 andn0, such thatf(n) ≥ c1n

3 for all n ≥ n0.” Informally this is true becausef(n) is
growing quadratically, and eventually any cubic function will exceed it. To show this formally, suppose
towards a contradiction that constantsc1 andn0 did exist, such that8n2+2n−3 ≥ c1n

3 for all n ≥ n0.
Since this is true for all sufficiently largen then it must be true in the limit asn tends to infinity. If we
divide both side byn3 we have:

lim
n→∞

(
8
n

+
2
n2
− 3

n3

)
≥ c1.

It is easy to see that in the limit the left side tends to 0, and so the only way to satisfy this requirement
is to setc1 = 0, but by hypothesisc1 is positive. This means thatf(n) /∈ Θ(n3).

O-notation and Ω-notation: We have seen that the definition ofΘ-notation relies on proving both a lower
and upper asymptotic bound. Sometimes we are only interested in proving one bound or the other. The
O-notation allows us to state asymptotic upper bounds and theΩ-notation allows us to state asymptotic
lower bounds.

Definition: Given any functiong(n),

O(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Definition: Given any functiong(n),

Ω(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.
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Compare this with the definition ofΘ. You will see thatO-notation only enforces the upper bound of
theΘ definition, andΩ-notation only enforces the lower bound. Also observe thatf(n) ∈ Θ(g(n)) if
and only iff(n) ∈ O(g(n)) andf(n) ∈ Ω(g(n)). Intuitively, f(n) ∈ O(g(n)) means thatf(n) grows
asymptotically at the same rate or slower thang(n). Whereas,f(n) ∈ O(g(n)) means thatf(n) grows
asymptotically at the same rate or faster thang(n).

For examplef(n) = 3n2 + 4n ∈ Θ(n2) but it is not inΘ(n) or Θ(n3). But f(n) ∈ O(n2) and in
O(n3) but not inO(n). Finally,f(n) ∈ Ω(n2) and inΩ(n) but not inΩ(n3).

The Limit Rule for Θ: The previous examples which used limits suggest alternative way of showing that
f(n) ∈ Θ(g(n)).

Limit Rule for Θ-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc > 0 (strictly positive but not infinity), thenf(n) ∈ Θ(g(n)).

Limit Rule for O-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc ≥ 0 (nonnegative but not infinite), thenf(n) ∈ O(g(n)).

Limit Rule for Ω-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

6= 0

(either a strictly positive constant or infinity) thenf(n) ∈ Ω(g(n)).

This limit rule can be applied in almost every instance (that I know of) where the formal definition can
be used, and it is almost always easier to apply than the formal definition. The only exceptions that I
know of are strange instances where the limit does not exist (e.g.f(n) = n(1+sin n)). But since most
running times are fairly well-behaved functions this is rarely a problem.

You may recall the important rules from calculus for evaluating limits. (If not, dredge out your old
calculus book to remember.) Most of the rules are pretty self evident (e.g., the limit of a finite sum is
the sum of the individual limits). One important rule to remember is the following:

L’H ôpital’s rule: If f(n) andg(n) both approach 0 or both approach∞ in the limit, then

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

,

wheref ′(n) andg′(n) denote the derivatives off andg relative ton.

Polynomial Functions: Using the Limit Rule it is quite easy to analyze polynomial functions.

Lemma: Let f(n) = 2n4 − 5n3 − 2n2 + 4n− 7. Thenf(n) ∈ Θ(n4).

Proof: This would be quite tedious to do by the formal definition. Using the limit rule we have:

lim
n→∞

f(n)
n4

= lim
n→∞

(
2− 5

n
− 2

n2
+

4
n3
− 7

n4

)
= 2− 0− 0 + 0− 0 = 2.

Since 2 is a strictly positive constant it follows from the limit rule thatf(n) ∈ Θ(n2).
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In fact, it is easy to generalize this to arbitrary polynomials.

Theorem: Consider any asymptotically positive polynomial of degreep(n) =
∑d

i=0 ain
i, where

ad > 0. Thenp(n) ∈ Θ(nd).

From this, the informal rule of “keep the largest term and throw away the constant factors” is now much
more evident.

Exponentials and Logarithms: Exponentials and logarithms are very important in analyzing algorithms.
The following are nice to keep in mind. The terminologylgb n means(lg n)b.

Lemma: Given any positive constantsa > 1, b, andc:

lim
n→∞

nb

an
= 0 lim

n→∞
lgb n

nc
= 0.

We won’t prove these, but they can be shown by taking appropriate powers, and then applying L’Hôpital’s
rule. The important bottom line is that polynomials always grow more slowly than exponentials whose
base is greater than 1. For example:

n500 ∈ O(2n).

For this reason, we will try to avoid exponential running times at all costs. Conversely, logarithmic
powers (sometimes calledpolylogarithmic functions) grow more slowly than any polynomial. For
example:

lg500 n ∈ O(n).

For this reason, we will usually be happy to allow any number of additional logarithmic factors, if it
means avoiding any additional powers ofn.

At this point, it should be mentioned that these last observations are really asymptotic results. They
are true in the limit for largen, but you should be careful just how high the crossover point is. For
example, by my calculations,lg500 n ≤ n only for n > 26000 (which is much larger than input size
you’ll ever see). Thus, you should take this with a grain of salt. But, for small powers of logarithms,
this applies to all reasonably large input sizes. For examplelg2 n ≤ n for all n ≥ 16.

Asymptotic Intuition: To get a intuitive feeling for what common asymptotic running times map into in
terms of practical usage, here is a little list.

• Θ(1): Constant time; you can’t beat it!

• Θ(log n): This is typically the speed that most efficient data structures operate in for a single
access. (E.g., inserting a key into a balanced binary tree.) Also it is the time to find an object in a
sorted list of lengthn by binary search.

• Θ(n): This is about the fastest that an algorithm can run, given that you needΘ(n) time just to
read in all the data.

• Θ(n log n): This is the running time of the best sorting algorithms. Since many problems require
sorting the inputs, this is still considered quite efficient.

• Θ(n2),Θ(n3), . . ..: Polynomial time. These running times are acceptable either when the expo-
nent is small or when the data size is not too large (e.g.n ≤ 1, 000).

• Θ(2n),Θ(3n): Exponential time. This is only acceptable when either (1) your know that you
inputs will be of very small size (e.g.n ≤ 50), or (2) you know that this is a worst-case running
time that will rarely occur in practical instances. In case (2), it would be a good idea to try to get
a more accurate average case analysis.

• Θ(n!),Θ(nn): Acceptable only for really small inputs (e.g.n ≤ 20).

Are their even bigger functions. You betcha! For example, if you want to see a function that grows
inconceivably fast, look up the definition of Ackerman’s function in our book.
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Lecture 6: Divide and Conquer and MergeSort

(Thursday, Feb 12, 1998)
Read: Chapt. 1 (on MergeSort) and Chapt. 4 (on recurrences).

Divide and Conquer: The ancient Roman politicians understood an important principle of good algorithm
design (although they were probably not thinking about algorithms at the time). You divide your
enemies (by getting them to distrust each other) and then conquer them piece by piece. This is called
divide-and-conquer. In algorithm design, the idea is to take a problem on a large input, break the input
into smaller pieces, solve the problem on each of the small pieces, and then combine the piecewise
solutions into a global solution. But once you have broken the problem into pieces, how do you solve
these pieces? The answer is to apply divide-and-conquer to them, thus further breaking them down.
The process ends when you are left with such tiny pieces remaining (e.g. one or two items) that it is
trivial to solve them.

Summarizing, the main elements to a divide-and-conquer solution are

• Divide (the problem into a small number of pieces),

• Conquer (solve each piece, by applying divide-and-conquer recursively to it), and

• Combine (the pieces together into a global solution).

There are a huge number computational problems that can be solved efficiently using divide-and-
conquer. In fact the technique is so powerful, that when someone first suggests a problem to me,
the first question I usually ask (after what is the brute-force solution) is “does there exist a divide-and-
conquer solution for this problem?”

Divide-and-conquer algorithms are typically recursive, since the conquer part involves invoking the
same technique on a smaller subproblem. Analyzing the running times of recursive programs is rather
tricky, but we will show that there is an elegant mathematical concept, called arecurrence, which is
useful for analyzing the sort of recursive programs that naturally arise in divide-and-conquer solutions.
For the next couple of lectures we will discuss some examples of divide-and-conquer algorithms, and
how to analyze them using recurrences.

MergeSort: The first example of a divide-and-conquer algorithm which we will consider is perhaps the best
known. This is a simple and very efficient algorithm for sorting a list of numbers, calledMergeSort.
We are given an sequence ofn numbersA, which we will assume is stored in an arrayA[1 . . . n]. The
objective is to output a permutation of this sequence, sorted in increasing order. This is normally done
by permuting the elements within the arrayA.

How can we apply divide-and-conquer to sorting? Here are the major elements of the MergeSort
algorithm.

Divide: Split A down the middle into two subsequences, each of size roughlyn/2.

Conquer: Sort each subsequence (by calling MergeSort recursively on each).

Combine: Merge the two sorted subsequences into a single sorted list.

The dividing process ends when we have split the subsequences down to a single item. An sequence
of length one is trivially sorted. The key operation where all the work is done is in the combine stage,
which merges together two sorted lists into a single sorted list. It turns out that the merging process is
quite easy to implement.

The following figure gives a high-level view of the algorithm. The “divide” phase is shown on the left.
It works top-down splitting up the list into smaller sublists. The “conquer and combine” phases are
shown on the right. They work bottom-up, merging sorted lists together into larger sorted lists.
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Figure 4: MergeSort.

MergeSort: Let’s design the algorithm top-down. We’ll assume that the procedure that merges two sorted
list is available to us. We’ll implement it later. Because the algorithm is called recursively on sublists,
in addition to passing in the array itself, we will pass in two indices, which indicate the first and last
indices of the subarray that we are to sort. The callMergeSort(A, p, r) will sort the subarray
A[p..r] and return the sorted result in the same subarray.

Here is the overview. Ifr = p, then this means that there is only one element to sort, and we may return
immediately. Otherwise (ifp < r) there are at least two elements, and we will invoke the divide-and-
conquer. We find the indexq, midway betweenp andr, namelyq = (p + r)/2 (rounded down to the
nearest integer). Then we split the array into subarraysA[p..q] andA[q + 1..r]. (We need to be careful
here. Why would it be wrong to doA[p..q − 1] andA[q..r]? Supposer = p + 1.) Call MergeSort
recursively to sort each subarray. Finally, we invoke a procedure (which we have yet to write) which
merges these two subarrays into a single sorted array.

MergeSort

MergeSort(array A, int p, int r) {
if (p < r) { // we have at least 2 items

q = (p + r)/2
MergeSort(A, p, q) // sort A[p..q]
MergeSort(A, q+1, r) // sort A[q+1..r]
Merge(A, p, q, r) // merge everything together

}
}

Merging: All that is left is to describe the procedure that merges two sorted lists.Merge(A, p, q, r)
assumes that the left subarray,A[p..q], and the right subarray,A[q + 1..r], have already been sorted.
We merge these two subarrays by copying the elements to a temporary working array calledB. For
convenience, we will assume that the arrayB has the same index rangeA, that is,B[p..r]. (One nice
thing about pseudocode, is that we can make these assumptions, and leave them up to the programmer
to figure out how to implement it.) We have to indicesi andj, that point to the current elements of
each subarray. We move the smaller element into the next position ofB (indicated by indexk) and
then increment the corresponding index (eitheri or j). When we run out of elements in one array, then
we just copy the rest of the other array intoB. Finally, we copy the entire contents ofB back intoA.
(The use of the temporary array is a bit unpleasant, but this is impossible to overcome entirely. It is one
of the shortcomings of MergeSort, compared to some of the other efficient sorting algorithms.)

In case you are not aware of C notation, the operatori++ returns the current value ofi, and then
increments this variable by one.

Merge

Merge(array A, int p, int q, int r) { // merges A[p..q] with A[q+1..r]
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array B[p..r]
i = k = p // initialize pointers
j = q+1
while (i <= q and j <= r) { // while both subarrays are nonempty

if (A[i] <= A[j]) B[k++] = A[i++] // copy from left subarray
else B[k++] = A[j++] // copy from right subarray

}
while (i <= q) B[k++] = A[i++] // copy any leftover to B
while (j <= r) B[k++] = A[j++]
for i = p to r do A[i] = B[i] // copy B back to A

}

This completes the description of the algorithm. Observe that of the last two while-loops in the Merge
procedure, only one will be executed. (Do you see why?)

If you find the recursion to be a bit confusing. Go back and look at the earlier figure. Convince yourself
that as you unravel the recursion you are essentially walking through the tree (therecursion tree) shown
in the figure. As calls are made you walk down towards the leaves, and as you return you are walking
up towards the root. (We have drawn two trees in the figure, but this is just to make the distinction
between the inputs and outputs clearer.)

Discussion: One of the little tricks in improving the running time of this algorithm is to avoid the constant
copying fromA to B and back toA. This is often handled in the implementation by using two arrays,
both of equal size. At odd levels of the recursion we merge from subarrays ofA to a subarray ofB. At
even levels we merge from fromB to A. If the recursion has an odd number of levels, we may have to
do one final copy fromB back toA, but this is faster than having to do it at every level. Of course, this
only improves the constant factors; it does not change the asymptotic running time.

Another implementation trick to speed things by a constant factor is that rather than driving the divide-
and-conquer all the way down to subsequences of size 1, instead stop the dividing process when the
sequence sizes fall below constant, e.g. 20. Then invoke a simpleΘ(n2) algorithm, like insertion sort
on these small lists. Often brute force algorithms run faster on small subsequences, because they do
not have the added overhead of recursion. Note that since they are running on subsequences of size at
most 20, the running times isΘ(202) = Θ(1). Thus, this will not affect the overall asymptotic running
time.

It might seem at first glance that it should be possible to merge the lists “in-place”, without the need
for additional temporary storage. The answer is that it is, but it no one knows how to do it without
destroying the algorithm’s efficiency. It turns out that there are faster ways to sort numbers in-place,
e.g. using either HeapSort or QuickSort.

Here is a subtle but interesting point to make regarding this sorting algorithm. Suppose that in the if-
statement above, we haveA[i] = A[j]. Observe that in this case we copy from the left sublist. Would
it have mattered if instead we had copied from the right sublist? The simple answer is no—since the
elements are equal, they can appear in either order in the final sublist. However there is a subtler reason
to prefer this particular choice. Many times we are sorting data that does not have a single attribute,
but has many attributes (name, SSN, grade, etc.) Often the list may already have been sorted on one
attribute (say, name). If we sort on a second attribute (say, grade), then it would be nice if people with
same grade are still sorted by name. A sorting algorithm that has the property that equal items will
appear in the final sorted list in the same relative order that they appeared in the initial input is called a
stable sorting algorithm. This is a nice property for a sorting algorithm to have. By favoring elements
from the left sublist over the right, we will be preserving the relative order of elements. It can be shown
that as a result, MergeSort is a stable sorting algorithm. (This is not immediate, but it can be proved by
induction.)
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Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running time
of the procedureMerge(A, p, q, r) . Let n = r − p + 1 denote the total length of both the left
and right subarrays. What is the running time of Merge as a function ofn? The algorithm contains four
loops (none nested in the other). It is easy to see that each loop can be executed at mostn times. (If
you are a bit more careful you can actually see that all the while-loops together can only be executedn
times in total, because each execution copies one new element to the arrayB, andB only has space for
n elements.) Thus the running time to Mergen items isΘ(n). Let us write this without the asymptotic
notation, simply asn. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of arecurrence, that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given value ofn is defined in terms of values that are strictly smaller
thann. Finally, a recurrence has some basis values (e.g. forn = 1), which are defined explicitly.

Let’s see how to apply this to MergeSort. LetT (n) denote the worst case running time of MergeSort on
an array of lengthn. For concreteness we could count whatever we like: number of lines of pseudocode,
number of comparisons, number of array accesses, since these will only differ by a constant factor.
Since all of the real work is done in the Merge procedure, we will count the total time spent in the
Merge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is a
constant. Since we are ignoring constant factors, we can just writeT (n) = 1. When we call MergeSort
with a list of lengthn > 1, e.g.Merge(A, p, r) , wherer−p+1 = n, the algorithm first computes
q = b(p + r)/2c. The subarrayA[p..q], which containsq − p + 1 elements. You can verify (by some
tedious floor-ceiling arithmetic, or simpler by just trying an odd example and an even example) that is
of sizedn/2e. Thus the remaining subarrayA[q+1..r] hasbn/2c elements in it. How long does it take
to sort the left subarray? We do not know this, but becausedn/2e < n for n > 1, we can express this
asT (dn/2e). Similarly, we can express the time that it takes to sort the right subarray asT (bn/2c).
Finally, to merge both sorted lists takesn time, by the comments made above. In conclusion we have

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Lecture 7: Recurrences

(Tuesday, Feb 17, 1998)
Read: Chapt. 4 on recurrences. Skip Section 4.4.

Divide and Conquer and Recurrences:Last time we introduced divide-and-conquer as a basic technique
for designing efficient algorithms. Recall that the basic steps in divide-and-conquer solution are (1)
divide the problem into a small number of subproblems, (2) solve each subproblem recursively, and (3)
combine the solutions to the subproblems to a global solution. We also described MergeSort, a sorting
algorithm based on divide-and-conquer.

Because divide-and-conquer is an important design technique, and because it naturally gives rise to
recursive algorithms, it is important to develop mathematical techniques for solving recurrences, either
exactly or asymptotically. To do this, we introduced the notion of arecurrence, that is, a recursively
defined function. Today we discuss a number of techniques for solving recurrences.

MergeSort Recurrence: Here is the recurrence we derived last time for MergeSort. Recall thatT (n) is the
time to run MergeSort on a list of sizen. We argued that if the list is of length 1, then the total sorting
time is a constantΘ(1). If n > 1, then we must recursively sort two sublists, one of sizedn/2e and
the other of sizebn/2c, and the nonrecursive part tookΘ(n) time for splitting the list (constant time)
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and merging the lists (Θ(n) time). Thus, the total running time for MergeSort could be described by
the following recurrence:

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Notice that we have dropped theΘ()’s, replacingΘ(1) andΘ(n) by just 1 andn, respectively. This
is done to make the recurrence more concrete. If we had wanted to be more precise, we could have
replaced these with more exact functions, e.g.,c1 andc2n for some constantsc1 andc2. The analysis
would have been a bit more complex, but we would arrive at the same asymptotic formula.

Getting a feel: We could try to get a feeling for what this means by plugging in some values and expanding
the definition.

T (1) = 1 (by the basis.)

T (2) = T (1) + T (1) + 2 = 1 + 1 + 2 = 4
T (3) = T (2) + T (1) + 3 = 4 + 1 + 3 = 8
T (4) = T (2) + T (2) + 4 = 4 + 4 + 4 = 12
T (5) = T (3) + T (2) + 5 = 8 + 4 + 5 = 17

. . .

T (8) = T (4) + T (4) + 8 = 12 + 12 + 8 = 32
. . .

T (16) = T (8) + T (8) + 16 = 32 + 32 + 16 = 80
. . .

T (32) = T (16) + T (16) + 32 = 80 + 80 + 32 = 192.

It’s hard to see much of a pattern here, but here is a trick. Since the recurrence divides by 2 each time,
let’s consider powers of 2, since the function will behave most regularly for these values. If we consider
the ratiosT (n)/n for powers of 2 and interesting pattern emerges:

T (1)/1 = 1 T (8)/8 = 4
T (2)/2 = 2 T (16)/16 = 5
T (4)/4 = 3 T (32)/32 = 6.

This suggests that for powers of 2,T (n)/n = (lg n) + 1, or equivalently,T (n) = (n lg n) + n which
is Θ(n log n). This is not a proof, but at least it provides us with a starting point.

Logarithms in Θ-notation: Notice that I have broken away from my usual convention of saylg n and just
said log n inside theΘ(). The reason is that the base really does not matter when it is inside theΘ.
Recall the change of base formula:

logb n =
loga n

loga b
.

If a andb are constants theloga b is a constant. Consequentlylogb n andloga n differ only by a constant
factor. Thus, inside theΘ() we do not need to differentiate between them. Henceforth, I will not be
fussy about the bases of logarithms if asymptotic results are sufficient.

Eliminating Floors and Ceilings: One of the nasty things about recurrences is that floors and ceilings are
a pain to deal with. So whenever it is reasonable to do so, we will just forget about them, and make
whatever simplifying assumptions we like aboutn to make things work out. For this case, we will
make the simplifying assumption thatn is a power of 2. Notice that this means that our analysis will
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only be correct for a very limited (but infinitely large) set of values ofn, but it turns out that as long as
the algorithm doesn’t act significantly different for powers of 2 versus other numbers, the asymptotic
analysis will hold for alln as well. So let us restate our recurrence under this assumption:

T (n) =
{

1 if n = 1,
2T (n/2) + n otherwise.

Verification through Induction: We have just generated a guess for the solution to our recurrence. Let’s
see if we can verify its correctness formally. The proof will be by strong induction onn. Becausen is
limited to powers of 2, we cannot do the usualn to n + 1 proof (because ifn is a power of 2,n + 1
will generally not be a power of 2). Instead we use strong induction.

Claim: For alln ≥ 1, n a power of 2,T (n) = (n lg n) + n.

Proof: (By strong induction onn.)

Basis case:(n = 1) In this caseT (1) = 1 by definition and the formula gives1 lg 1 + 1 = 1,
which matches.

Induction step: Let n > 1, and assume that the formulaT (n′) = (n′ lg n′)+n′, holds whenever
n′ < n. We want to prove the formula holds forn itself. To do this, we need to expressT (n)
in terms of smaller values. To do this, we apply the definition:

T (n) = 2T (n/2) + n.

Now,n/2 < n, so we can apply the induction hypothesis here, yieldingT (n/2) = (n/2) lg(n/2)+
(n/2). Plugging this in gives

T (n) = 2((n/2) lg(n/2) + (n/2)) + n

= (n lg(n/2) + n) + n

= n(lg n− lg 2) + 2n
= (n lg n− n) + 2n
= n lg n + n,

which is exactly what we want to prove.

The Iteration Method: The above method of “guessing” a solution and verifying through induction works
fine as long as your recurrence is simple enough that you can come up with a good guess. But if the
recurrence is at all messy, there may not be a simple formula. The following method is quite powerful.
When it works, it allows you to convert a recurrence into a summation. By in large, summations are
easier to solve than recurrences (and if nothing else, you can usually approximate them by integrals).

The method is callediteration. Let’s start expanding out the definition until we see a pattern developing.
We first write out the definitionT (n) = 2T (n/2) + n. This has a recursive formula insideT (n/2)
which we can expand, by filling in the definition but this time with the argumentn/2 rather thann.
Plugging in we getT (n) = 2(2T (n/4) + n/2) + n. We then simplify and repeat. Here is what we get
when we repeat this.

T (n) = 2T (n/2) + n

= 2(2T (n/4) + n/2) + n = 4T (n/4) + n + n

= 4(2T (n/8) + n/4) + n + n = 8T (n/8) + n + n + n

= 8(2T (n/16) + n/8) + n + n + n = 16T (n/16) + n + n + n + n

= . . .
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At this point we can see a general pattern emerging.

T (n) = 2kT (n/(2k)) + (n + n + · · ·+ n) (k times)

= 2kT (n/(2k)) + kn.

Now, we have generated alot of equations, but we still haven’t gotten anywhere, because we need to
get rid of theT () from the right-hand side. Here’s how we can do that. WeknowthatT (1) = 1. Thus,
let us selectk to be a value which forces the termn/(2k) = 1. This means thatn = 2k, implying that
k = lg n. If we substitute this value ofk into the equation we get

T (n) = 2(lg n)T (n/(2(lg n))) + (lg n)n
= 2(lg n)T (1) + n lg n = 2(lg n) + n lg n = n + n lg n.

In simplifying this, we have made use of the formula from the first homework,alogb n = nlogb a, where
a = b = 2. Thus we have arrived at the same conclusion, but this time no guesswork was involved.

The Iteration Method (a Messier Example): That one may have been a bit too easy to see the general form.
Let’s try a messier recurrence:

T (n) =
{

1 if n = 1,
3T (n/4) + n otherwise.

To avoid problems with floors and ceilings, we’ll make the simplifying assumption here thatn is a
power of 4. As before, the idea is to repeatedly apply the definition, until a pattern emerges.

T (n) = 3T (n/4) + n

= 3(3T (n/16) + n/4) + n = 9T (n/16) + 3(n/4) + n

= 9(3T (n/64) + n/16) + 3(n/4) + n = 27T (n/64) + 9(n/16) + 3(n/4) + n

= . . .

= 3kT
( n

4k

)
+ 3k−1(n/4k−1) + · · ·+ 9(n/16) + 3(n/4) + n

= 3kT
( n

4k

)
+

k−1∑
i=0

3i

4i
n.

As before, we have the recursive termT (n/4k) still floating around. To get rid of it we recall that
we know the value ofT (1), and so we setn/4k = 1 implying that4k = n, that is,k = log4 n. So,
plugging this value in fork we get:

T (n) = 3log4 nT (1) +
(log4 n)−1∑

i=0

3i

4i
n

= nlog4 3 +
(log4 n)−1∑

i=0

3i

4i
n.

Again, in the last step we used the formulaalogb n = nlogb a wherea = 3 andb = 4, and the fact that
T (1) = 1. (Why did we write it this way? This emphasizes that the function is of the formnc for some
constantc.) By the way,log4 3 = 0.7925 . . . ≈ 0.79, sonlog4 3 ≈ n0.79.
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We have this messy summation to solve though. First observe that the valuen remains constant
throughout the sum, and so we can pull it out front. Also note that we can write3i/4i and(3/4)i.

T (n) = nlog4 3 + n

(log4 n)−1∑
i=0

(
3
4

)i

.

Note that this is a geometric series. We may apply the formula for the geometric series, which gave in
an earlier lecture. Forx 6= 1:

m∑
i=0

xi =
xm+1 − 1

x− 1
.

In this casex = 3/4 andm = log4 n− 1. We get

T (n) = nlog4 3 + n
(3/4)log4 n − 1

(3/4)− 1
.

Applying our favorite log identity once more to the expression in the numerator (witha = 3/4 and
b = 4) we get

(3/4)log4 n = nlog4(3/4) = n(log4 3−log4 4) = n(log4 3−1) =
nlog4 3

n
.

If we plug this back in, we have

T (n) = nlog4 3 + n
nlog4 3

n − 1
(3/4)− 1

= nlog4 3 +
nlog4 3 − n

−1/4

= nlog4 3 − 4(nlog4 3 − n)
= nlog4 3 + 4(n− nlog4 3)
= 4n− 3nlog4 3.

So the final result (at last!) is

T (n) = 4n− 3nlog4 3 ≈ 4n− 3n0.79 ∈ Θ(n).

It is interesting to note the unusual exponent oflog4 3 ≈ 0.79. We have seen that two nested loops typi-
cally leads toΘ(n2) time, and three nested loops typically leads toΘ(n3) time, so it seems remarkable
that we could generate a strange exponent like0.79 as part of a running time. However, as we shall
see, this is often the case in divide-and-conquer recurrences.

Lecture 8: More on Recurrences

(Thursday, Feb 19, 1998)
Read: Chapt. 4 on recurrences, skip Section 4.4.

Recap: Last time we discussed recurrences, that is, functions that are defined recursively. We discussed
their importance in analyzing divide-and-conquer algorithms. We also discussed two methods for solv-
ing recurrences, namely guess-and-verify (by induction), and iteration. These are both very powerful
methods, but they are quite “mechanical”, and it is difficult to get a quick and intuitive sense of what
is going on in the recurrence. Today we will discuss two more techniques for solving recurrences. The
first provides a way of visualizing recurrences and the second, called the Master Theorem, is a method
of solving many recurrences that arise in divide-and-conquer applications.
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Visualizing Recurrences Using the Recursion Tree:Iteration is a very powerful technique for solving re-
currences. But, it is easy to get lost in all the symbolic manipulations and lose sight of what is going
on. Here is a nice way to visualize what is going on in iteration. We can describe any recurrence in
terms of a tree, where each expansion of the recurrence takes us one level deeper in the tree.

Recall that the recurrence for MergeSort (which we simplified by assuming thatn is a power of 2, and
hence could drop the floors and ceilings)

T (n) =
{

1 if n = 1,
2T (n/2) + n otherwise.

Suppose that we draw the recursion tree for MergeSort, but each time we merge two lists, we label that
node of the tree with the time it takes to perform the associated (nonrecursive) merge. Recall that to
merge two lists of sizem/2 to a list of sizem takesΘ(m) time, which we will just write asm. Below
is an illustration of the resulting recursion tree.

= n

n

n
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Figure 5: Using the recursion tree to visualize a recurrence.

Observe that the total work at the topmost level of the recursion isΘ(n) (or justn for short). At the
second level we have two merges, each takingn/2 time, for a total of2(n/2) = n. At the third level we
have 4 merges, each takingn/4 time, for a total of4(n/4) = n. This continues until the bottommost
level of the tree. Since the tree exactlylg n + 1 levels (0, 1, 2, . . . , lg n), and each level contributes a
total of n time, the total running time isn(lg n + 1) = n lg n + n. This is exactly what we got by the
iteration method.

This can be used for a number of simple recurrences. For example, let’s try it on the following recur-
rence. The tree is illustrated below.

T (n) =
{

1 if n = 1,
3T (n/2) + n2 otherwise.

Again, we label each node with the amount of work at that level. In this case the work forT (m) is m2.
For the top level (or 0th level) the work isn2. At level 1 we have three nodes whose work is(n/2)2

each, for a total of3(n/2)2. This can be written asn2(3/4). At the level 2 the work is9(n/4)2, which
can be written asn2(9/16). In general it is easy to extrapolate to see that at the leveli, we have3i

nodes, each involving(n/2i)2 work, for a total of3i(n/2i)2 = n2(3/4)i.

This leads to the following summation. Note that we have not determined where the tree bottoms out,
so we have left off the upper bound on the sum.

T (n) = n2
?∑

i=0

(
3
4

)i

.
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Figure 6: Another recursion tree example.

If all we wanted was an asymptotic expression, then are essentially done at this point. Why? The
summation is a geometric series, and the base (3/4) is less than 1. This means that this series converges
to some nonzero constant (even if we ran the sum out to∞). Thus the running time isΘ(n2).

To get a more exact result, observe that the recursion bottoms out when we get down to single items,
and since the sizes of the inputs are cut by half at each level, it is not hard to see that the final level is
level lg n. (It is easy to be off by±1 here, but this sort of small error will not affect the asymptotic
result. In this case we happen to be right.) So, we can plug inlg n for the “?” in the above summation.

T (n) = n2

lg n∑
i=0

(
3
4

)i

.

If we wanted to get a more exact answer, we could plug the summation into the formula for the geo-
metric series and simplify. This would lead to an expression like

T (n) = n2 (3/4)lg n+1 − 1
(3/4)− 1

.

This will take some work to simplify, but at this point it is all just tedious algebra to get the formula
into simple form. (This sort of algebraic is typical of algorithm analysis, so be sure that you follow
each step.)

T (n) = n2 (3/4)lg n+1 − 1
(3/4)− 1

= − 4n2((3/4)lg n+1 − 1)

= 4n2(1− (3/4)lg n+1) = 4n2(1− (3/4)(3/4)lg n)
= 4n2(1− (3/4)nlg(3/4)) = 4n2(1− (3/4)nlg 3−lg 4)
= 4n2(1− (3/4)nlg 3−2) = 4n2(1− (3/4)(nlg 3/n2))
= 4n2 − 3nlg 3.

Note thatlg 3 ≈ 1.58, so the whole expression isΘ(n2).

In conclusion, the technique of drawing the recursion tree is a somewhat more visual way of analyzing
summations, but it is really equivalent to the method of iteration.

(Simplified) Master Theorem: If you analyze many divide-and-conquer algorithms, you will see that the
same general type of recurrence keeps popping up. In general you are breaking a problem intoa
subproblems, where each subproblem is roughly a factor of1/b of the original problem size, and
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the time it takes to do the splitting and combining on an input of sizen is Θ(nk). For example, in
MergeSort,a = 2, b = 2, andk = 1.

Rather than doing every such recurrence from scratch, can we just come up with a general solution?
The answer is that you can if all you need is an asymptotic expression. This result is called theMaster
Theorem, because it can be used to “master” so many different types of recurrence. Our text gives a
fairly complicated version of this theorem. We will give a simpler version, which is general enough for
most typical situations. In cases where this doesn’t apply, try the one from the book. If the one from
the book doesn’t apply, then you will probably need iteration, or some other technique.

Theorem: (Simplified Master Theorem) Leta ≥ 1, b > 1 be constants and letT (n) be the recurrence

T (n) = aT (n/b) + nk,

defined forn ≥ 0. (As usual let us assume thatn is a power ofb. The basis case,T (1) can be any
constant value.) Then

Case 1: if a > bk thenT (n) ∈ Θ(nlogb a).
Case 2: if a = bk thenT (n) ∈ Θ(nk log n).
Case 3: if a < bk thenT (n) ∈ Θ(nk).

Using this version of the Master Theorem we can see that in the MergeSort recurrencea = 2, b = 2,
andk = 1. Thus,a = bk (2 = 21) and so Case 2 applies. From this we haveT (n) ∈ Θ(n log n).

In the recurrence above,T (n) = 3T (n/2) + n2, we havea = 3, b = 2 andk = 2. We havea < bk

(3 < 22) in this case, and so Case 3 applies. From this we haveT (n) ∈ Θ(n2).

Finally, consider the recurrenceT (n) = 4T (n/3) + n, in which we havea = 4, b = 3 andk = 1. In
this case we havea > bk (4 > 31), and so Case 1 applies. From this we haveT (n) ∈ Θ(nlog3 4) ≈
Θ(n1.26). This may seem to be a rather strange running time (a non-integer exponent), but this not
uncommon for many divide-and-conquer solutions.

There are many recurrences that cannot be put into this form. For example, if the splitting and combin-
ing steps involve sorting, we might have seen a recurrence of the form

T (n) =
{

1 if n = 1,
2T (n/2) + n log n otherwise.

This solves toT (n) = Θ(n log2 n), but the Master Theorem (neither this form nor the one in CLR)
will tell you this. However, iteration works just fine here.

Recursion Trees Revisited:The recursion trees offer some intuition about why it is that there are three cases
in the Master Theorem. Generally speaking the question is where is most of the work done: at the top
of the tree (the root level), at the bottom of the tree (the leaf level), or spread equally throughout the
entire tree.

For example, in the MergeSort recurrence (which corresponds to Case 2 in the Master Theorem) every
level of the recursion tree provides the same total work, namelyn. For this reason the total work is
equal to this value times the height of the tree, namelyΘ(log n), for a total ofΘ(n log n).

Next consider the earlier recurrenceT (n) = 3T (n/2)+n2 (which corresponds to Case 3 in the Master
Theorem). In this instance most of the work was concentrated at the root of the tree. Each level of the
tree provided a smaller fraction of work. By the nature of the geometric series, it did not matter how
many levels the tree had at all. Even with an infinite number of levels, the geometric series that result
will converge to a constant value. This is an important observation to make. A common way to design
the most efficient divide-and-conquer algorithms is to try to arrange the recursion so that most of the
work is done at the root, and at each successive level of the tree the work at this level reduces (by some
constant factor). As long as this is the case, Case 3 will apply.
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Finally, in the recurrenceT (n) = 4T (n/3) + n (which corresponds to Case 1), most of the work is
done at the leaf level of the recursion tree. This can be seen if you perform iteration on this recurrence,
the resulting summation is

n

log3 n∑
i=0

(
4
3

)i

.

(You might try this to see if you get the same result.) Since4/3 > 1, as we go deeper into the levels
of the tree, that is deeper into the summation, the terms are growing successively larger. The largest
contribution will be from the leaf level.

Lecture 9: Medians and Selection

(Tuesday, Feb 24, 1998)
Read: Todays material is covered in Sections 10.2 and 10.3. You are not responsible for the randomized
analysis of Section 10.2. Our presentation of the partitioning algorithm and analysis are somewhat different
from the ones in the book.

Selection: In the last couple of lectures we have discussed recurrences and the divide-and-conquer method
of solving problems. Today we will give a rather surprising (and very tricky) algorithm which shows
the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally.
Suppose that you are given a set ofn numbers. Define therank of an element to be one plus the
number of elements that are smaller than this element. Since duplicate elements make our life more
complex (by creating multiple elements of the same rank), we will make the simplifying assumption
that all the elements are distinct for now. It will be easy to get around this assumption later. Thus, the
rank of an element is its final position if the set is sorted. The minimum is of rank 1 and the maximum
is of rankn.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be the element
of rank (n + 1)/2. Whenn is even there are two natural choices, namely the elements of ranksn/2
and(n/2) + 1. In statistics it is common to return the average of these two elements. We will define
the median to be either of these elements.

Medians are useful as measures of thecentral tendencyof a set, especially when the distribution of val-
ues is highly skewed. For example, the median income in a community is likely to be more meaningful
measure of the central tendency than the average is, since if Bill Gates lives in your community then
his gigantic income may significantly bias the average, whereas it cannot have a significant influence
on the median. They are also useful, since in divide-and-conquer applications, it is often desirable to
partition a set about its median value, into two sets of roughly equal size. Today we will focus on the
following generalization, called theselection problem.

Selection: Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA
of rankk.

The selection problem can easily be solved inΘ(n log n) time, simply by sorting the numbers ofA,
and then returningA[k]. The question is whether it is possible to do better. In particular, is it possible
to solve this problem inΘ(n) time? We will see that the answer is yes, and the solution is far from
obvious.

The Sieve Technique:The reason for introducing this algorithm is that it illustrates a very important special
case of divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as break-
ing the problem into a small number of smaller subproblems, which are then solved recursively. The
sieve technique is a special case, where the number of subproblems is just 1.
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The sieve technique works in phases as follows. It applies to problems where we are interested in
finding a single item from a larger set ofn items. We do not know which item is of interest, however
after doing some amount of analysis of the data, taking sayΘ(nk) time, for some constantk, we find
that we do not know what the desired item is, but we can identify a large enough number of elements
thatcannotbe the desired value, and can be eliminated from further consideration. In particular “large
enough” means that the number of items is at least some fixed constant fraction ofn (e.g. n/2, n/3,
0.0001n). Then we solve the problem recursively on whatever items remain. Each of the resulting
recursive solutions then do the same thing, eliminating a constant fraction of the remaining set.

Applying the Sieve to Selection:To see more concretely how the sieve technique works, let us apply it to
the selection problem. Recall that we are given an arrayA[1..n] and an integerk, and want to find the
k-th smallest element ofA. Since the algorithm will be applied inductively, we will assume that we
are given a subarrayA[p..r] as we did in MergeSort, and we want to find thekth smallest item (where
k ≤ r − p + 1). The initial call will be to the entire arrayA[1..n].

There are two principal algorithms for solving the selection problem, but they differ only in one step,
which involves judiciously choosing an item from the array, called thepivot element, which we will
denote byx. Later we will see how to choosex, but for now just think of it as a random element ofA.
We then partitionA into three parts.A[q] contains the elementx, subarrayA[p..q − 1] will contain all
the elements that are less thanx, andA[q + 1..r], will contain all the element that are greater thanx.
(Recall that we assumed that all the elements are distinct.) Within each subarray, the items may appear
in any order. This is illustrated below.

Before partitioing

After partitioing

2 6 4 1 3 79

pivot

3 51 94 6
x

p r

qp r

A[q+1..r] > x
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5
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Figure 7: Selection Algorithm.

It is easy to see that the rank of the pivotx is q−p+1 in A[p..r]. Letx rnk = q−p+1 . If k = x rnk ,
then the pivot is thekth smallest, and we may just return it. Ifk < x rnk , then we know that we need
to recursively search inA[p..q − 1] and if k > x rnk then we need to recursively searchA[q + 1..r].
In this latter case we have eliminatedq smaller elements, so we want to find the element of rankk− q.
Here is the complete pseudocode.

Selection

Select(array A, int p, int r, int k) { // return kth smallest of A[p..r]
if (p == r) return A[p] // only 1 item left, return it
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else {
x = Choose_Pivot(A, p, r) // choose the pivot element
q = Partition(A, p, r, x) // partition <A[p..q-1], x, A[q+1..r]>
x_rnk = q - p + 1 // rank of the pivot
if (k == x_rnk) return x // the pivot is the kth smallest
else if (k < x_rnk)

return Select(A, p, q-1, k) // select from left subarray
else

return Select(A, q+1, r, k-x_rnk)// select from right subarray
}

}

Notice that this algorithm satisfies the basic form of a sieve algorithm. It analyzes the data (by choosing
the pivot element and partitioning) and it eliminates some part of the data set, and recurses on the rest.
Whenk = x rnk then we get lucky and eliminate everything. Otherwise we either eliminate the pivot
and the right subarray or the pivot and the left subarray.

We will discuss the details of choosing the pivot and partitioning later, but assume for now that they
both takeΘ(n) time. The question that remains is how many elements did we succeed in eliminating?
If x is the largest or smallest element in the array, then we may only succeed in eliminating one element
with each phase. In fact, ifx is one of the smallest elements ofA or one of the largest, then we get
into trouble, because we may only eliminate it and the few smaller or larger elements ofA. Ideallyx
should have a rank that is neither too large nor too small.

Let us suppose for now (optimistically) that we are able to design the procedureChoose Pivot in
such a way that is eliminates exactly half the array with each phase, meaning that we recurse on the
remainingn/2 elements. This would lead to the following recurrence.

T (n) =
{

1 if n = 1,
T (n/2) + n otherwise.

We can solve this either by expansion (iteration) or the Master Theorem. If we expand this recurrence
level by level we see that we get the summation

T (n) = n +
n

2
+

n

4
+ · · · ≤

∞∑
i=0

n

2i
= n

∞∑
i=0

1
2i

.

Recall the formula for the infinite geometric series. For anyc such that|c| < 1,
∑∞

i=0 ci = 1/(1− c).
Using this we have

T (n) ≤ 2n ∈ O(n).

(This only proves the upper bound on the running time, but it is easy to see that it takes at leastΩ(n)
time, so the total running time isΘ(n).)

This is a bit counterintuitive. Normally you would think that in order to design aΘ(n) time algorithm
you could only make a single, or perhaps a constant number of passes over the data set. In this algorithm
we make many passes (it could be as many aslg n). However, because we eliminate a constant fraction
of elements with each phase, we get this convergent geometric series in the analysis, which shows that
the total running time is indeed linear inn. This lesson is well worth remembering. It is often possible
to achieve running times in ways that you would not expect.

Note that the assumption of eliminating half was not critical. If we eliminated even one per cent, then
the recurrence would have beenT (n) = T (99n/100)+n, and we would have gotten a geometric series
involving 99/100, which is still less than 1, implying a convergent series. Eliminatingany constant
fraction would have been good enough.
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Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot
element, and the second is how to partition the array. Both need to be solved inΘ(n) time. The second
problem is a rather easy programming exercise. Later, when we discuss QuickSort, we will discuss
partitioning in detail.

For the rest of the lecture, let’s concentrate on how to choose the pivot. Recall that before we said that
we might think of the pivot as a random element ofA. Actually this is not such a bad idea. Let’s see
why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after
each partitioning step. Let’s consider the top of the recurrence, when we are givenA[1..n]. Suppose
that the pivotx turns out to be of rankq in the array. The partitioning algorithm will split the array into
A[1..q − 1] < x, A[q] = x andA[q + 1..n] > x. If k = q, then we are done. Otherwise, we need
to search one of the two subarrays. They are of sizesq − 1 andn − q, respectively. The subarray that
contains thekth smallest element will generally depend on whatk is, so in the worst case,k will be
chosen so that we have to recurse on the larger of the two subarrays. Thus ifq > n/2, then we may
have to recurse on the left subarray of sizeq − 1, and ifq < n/2, then we may have to recurse on the
right subarray of sizen− q. In either case, we are in trouble ifq is very small, or ifq is very large.

If we could selectq so that it is roughly of middle rank, then we will be in good shape. For example,
if n/4 ≤ q ≤ 3n/4, then the larger subarray will never be larger than3n/4. Earlier we said that we
might think of the pivot as a random element of the arrayA. Actually this works pretty well in practice.
The reason is that roughly half of the elements lie between ranksn/4 and3n/4, so picking a random
element as the pivot will succeed about half the time to eliminate at leastn/4. Of course, we might be
continuously unlucky, but a careful analysis will show that the expected running time is stillΘ(n). We
will return to this later.

Instead, we will describe a rather complicated method for computing a pivot element that achieves the
desired properties. Recall that we are given an arrayA[1..n], and we want to compute an elementx
whose rank is (roughly) betweenn/4 and3n/4. We will have to describe this algorithm at a very high
level, since the details are rather involved. Here is the description for SelectPivot:

Groups of 5: PartitionA into groups of 5 elements, e.g.A[1..5], A[6..10], A[11..15], etc. There will
be exactlym = dn/5e such groups (the last one might have fewer than 5 elements). This can
easily be done inΘ(n) time.

Group medians: Compute the median of each group of 5. There will bem group medians. We do not
need an intelligent algorithm to do this, since each group has only a constant number of elements.
For example, we could just BubbleSort each group and take the middle element. Each will take
Θ(1) time, and repeating thisdn/5e times will give a total running time ofΘ(n). Copy the group
medians to a new arrayB.

Median of medians: Compute the median of the group medians. For this, we will have to call the
selection algorithm recursively onB, e.g. Select(B, 1, m, k) , wherem = dn/5e, and
k = b(m + 1)/2c. Let x be this median of medians. Returnx as the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need
to argue thatx satisfies the desired rank properties.

Lemma: The elementx is of rank at leastn/4 and at most3n/4 in A.

Proof: We will show thatx is of rank at leastn/4. The other part of the proof is essentially sym-
metrical. To do this, we need to show that there are at leastn/4 elements that are less than or
equal tox. This is a bit complicated, due to the floor and ceiling arithmetic, so to simplify things
we will assume thatn is evenly divisible by 5. Consider the groups shown in the tabular form
above. Observe that at least half of the group medians are less than or equal tox. (Becausex is
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Figure 8: Choosing the Pivot. 30 is the final pivot.

their median.) And for each group median, there are three elements that are less than or equal to
this median within its group (because it is the median of its group). Therefore, there are at least
3((n/5)/2 = 3n/10 ≥ n/4 elements that are less than or equal tox in the entire array.

Analysis: The last order of business is to analyze the running time of the overall algorithm. We achieved
the main goal, namely that of eliminating a constant fraction (at least1/4) of the remaining list at each
stage of the algorithm. The recursive call inSelect() will be made to list no larger than3n/4.
However, in order to achieve this, withinSelect Pivot() we needed to make a recursive call to
Select() on an arrayB consisting ofdn/5e elements. Everything else took onlyΘ(n) time. As
usual, we will ignore floors and ceilings, and write theΘ(n) asn for concreteness. The running time
is

T (n) ≤
{

1 if n = 1,
T (n/5) + T (3n/4) + n otherwise.

This is a very strange recurrence because it involves a mixture of different fractions (n/5 and3n/4).
This mixture will make it impossible to use the Master Theorem, and difficult to apply iteration. How-
ever, this is a good place to apply constructive induction. We know we want an algorithm that runs in
Θ(n) time.

Theorem: There is a constantc, such thatT (n) ≤ cn.

Proof: (by strong induction onn)

Basis: (n = 1) In this case we haveT (n) = 1, and soT (n) ≤ cn as long asc ≥ 1.

Step: We assume thatT (n′) ≤ cn′ for all n′ < n. We will then show thatT (n) ≤ cn. By
definition we have

T (n) = T (n/5) + T (3n/4) + n.
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Sincen/5 and3n/4 are both less thann, we can apply the induction hypothesis, giving

T (n) ≤ c
n

5
+ c

3n

4
+ n = cn

(
1
5

+
3
4

)
+ n

= cn
19
20

+ n = n

(
19c
20

+ 1
)

.

This last expression will be≤ cn, provided that we selectc such thatc ≥ (19c/20) + 1.
Solving forc we see that this is true provided thatc ≥ 20.

Combining the constraints thatc ≥ 1, andc ≥ 20, we see that by lettingc = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it
works for any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and
see what happens.)

Lecture 10: Long Integer Multiplication

(Thursday, Feb 26, 1998)
Read: Todays material on integer multiplication is not covered in CLR.

Office hours: The TA, Kyongil, will have extra office hours on Monday before the midterm, from 1:00-2:00.
I’ll have office hours from 2:00-4:00 on Monday.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applica-
tions of divide-and-conquer. The problem that we want to consider is how to perform arithmetic on
long integers, and multiplication in particular. The reason for doing arithmetic on long numbers stems
from cryptography. Most techniques for encryption are based on number-theoretic techniques. For
example, the character string to be encrypted is converted into a sequence of numbers, and encryption
keys are stored as long integers. Efficient encryption and decryption depends on being able to perform
arithmetic on long numbers, typically containing hundreds of digits.

Addition and subtraction on large numbers is relatively easy. Ifn is the number of digits, then these
algorithms run inΘ(n) time. (Go back and analyze your solution to the problem on Homework 1). But
the standard algorithm for multiplication runs inΘ(n2) time, which can be quite costly when lots of
long multiplications are needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It
would seem surprising if there were, since for centuries people have used the same algorithm that we
all learn in grade school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We nor-
mally think of this algorithm as applying on a digit-by-digit basis, but if we partition ann digit number
into two “super digits” with roughlyn/2 each into longer sequences, the same multiplication rule still
applies.

To avoid complicating things with floors and ceilings, let’s just assume that the number of digitsn is
a power of 2. LetA andB be the two numbers to multiply. LetA[0] denote the least significant digit
and letA[n − 1] denote the most significant digit ofA. Because of the way we write numbers, it is
more natural to think of the elements ofA as being indexed in decreasing order from left to right as
A[n− 1..0] rather than the usualA[0..n− 1].

Let m = n/2. Let

w = A[n− 1..m] x = A[m− 1..0] and
y = B[n− 1..m] z = B[m− 1..0].
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Figure 9: Long integer multiplication.

If we think of w, x, y andz asn/2 digit numbers, we can expressA andB as

A = w · 10m + x

B = y · 10m + z,

and their product is

mult(A,B) = mult(w, y)102m + (mult(w, z) + mult(x, y))10m + mult(x, z).

The operation of multiplying by10m should be thought of as simply shifting the number over by
m positions to the right, and so is not really a multiplication. Observe that all the additions involve
numbers involving roughlyn/2 digits, and so they takeΘ(n) time each. Thus, we can express the
multiplication of two long integers as the result of 4 products on integers of roughly half the length of
the original, and a constant number of additions and shifts, each takingΘ(n) time. This suggests that
if we were to implement this algorithm, its running time would be given by the following recurrence

T (n) =
{

1 if n = 1,
4T (n/2) + n otherwise.

If we apply the Master Theorem, we see thata = 4, b = 2, k = 1, anda > bk, implying that Case
1 holds and the running time isΘ(nlg 4) = Θ(n2). Unfortunately, this is no better than the standard
algorithm.

Faster Divide-and-Conquer Algorithm: Even though the above exercise appears to have gotten us nowhere,
it actually has given us an important insight. It shows that the critical element is the number of multi-
plications on numbers of sizen/2. The number of additions (as long as it is a constant) does not affect
the running time. So, if we could find a way to arrive at the same result algebraically, but by trading
off multiplications in favor of additions, then we would have a more efficient algorithm. (Of course,
we cannot simulate multiplication through repeated additions, since the number of additions must be a
constant, independent ofn.)

The key turns out to be a algebraic “trick”. The quantities that we need to compute areC = wy,
D = xz, andE = (wz + xy). Above, it took us four multiplications to compute these. However,
observe that if instead we compute the following quantities, we can get everything we want, using only
three multiplications (but with more additions and subtractions).

C = mult(w, y)
D = mult(x, z)
E = mult((w + x), (y + z))− C −D = (wy + wz + xy + xz)− wy − xz = (wz + xy).
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Finally we have
mult(A,B) = C · 102m + E · 10m + D.

Altogether we perform 3 multiplications, 4 additions, and 2 subtractions all of numbers withn/2
digitis. We still need to shift the terms into their proper final positions. The additions, subtractions, and
shifts takeΘ(n) time in total. So the total running time is given by the recurrence:

T (n) =
{

1 if n = 1,
3T (n/2) + n otherwise.

Now when we apply the Master Theorem, we havea = 3, b = 2 and k = 1, yielding T (n) ∈
Θ(nlg 3) ≈ Θ(n1.585).

Is this really an improvement? This algorithm carries a larger constant factor because of the overhead
of recursion and the additional arithmetic operations. But asymptotics says that ifn is large enough,
then this algorithm will be superior. For example, if we assume that the clever algorithm has overheads
that are 5 times greater than the simple algorithm (e.g.5n1.585 versusn2) then this algorithm beats the
simple algorithm forn ≥ 50. If the overhead was 10 times larger, then the crossover would occur for
n ≥ 260.

Review for the Midterm: Here is a list topics and readings for the first midterm exam. Generally you are
responsible for anything discussed in class, and anything appearing on homeworks. It is a good idea to
check out related chapters in the book, because this is where I often look for ideas on problems.

Worst-case, Average-case:Recall that a worst-case means that we consider the highest running time
over all inputs of sizen, average case means that we average running times over all inputs of size
n (and generally weighting each input by its probability of occuring). (Chapt 1 of CLR.)

General analysis methods:Be sure you understand the induction proofs given in class and on the
homeworks. Also be sure you understand how the constructive induction proofs worked.

Summations: Write down (and practice recognizing) the basic formulas for summations. These in-
clude the arithmetic series

∑
i i, the quadratic series,

∑
i i2, the geometric series

∑
i xi, and the

harmonic series
∑

i 1/i. Practice with simplifying summations. For example, be sure that you
can take something like ∑

i

3i
( n

2i

)2

and simplify it to a geometric series
n2
∑

i

(3/4)i.

Also be sure you can apply the integration rule to summations. (Chapt. 3 of CLR.)

Asymptotics: Know the formal definitions forΘ, O, andΩ, as well as how to use the limit-rule.
Know the what the other forms,o andω, mean informally. There are a number of good sample
problems in the book. I’ll be happy to check any of your answers. Also be able to rank functions
in asymptotic order. For example which is largerlg

√
n or
√

lg n? (It is the former, can you see
why?) Remember the following rule and know how to use it.

lim
n→∞

nb

an
= 0 lim

n→∞
lgb n

nc
= 0.

(Chapt. 2 of CLR.)

Recurrences: Know how to analyze the running time of a recursive program by expressing it as a
recurrence. Review the basic techniques for solving recurrences: guess and verify by induction
(I’ll provide any guesses that you need on the exam), constructive induction, iteration, and the
(simplified) Master Theorem. (You are NOT responsible for the more complex version given in
the text.) (Chapt 4, Skip 4.4.)
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Divide-and-conquer: Understand how to design algorithms by divide-and-conquer. Understand the
divide-and-conquer algorithm for MergeSort, and be able to work an example by hand. Also
understand how the sieve technique works, and how it was used in the selection problem. (Chapt
10 on Medians; skip the randomized analysis. The material on the 2-d maxima and long integer
multiplication is not discussed in CLR.)

Lecture 11: First Midterm Exam

(Tuesday, March 3, 1998)
First midterm exam today. No lecture.

Lecture 12: Heaps and HeapSort

(Thursday, Mar 5, 1998)
Read: Chapt 7 in CLR.

Sorting: For the next series of lectures we will focus on sorting algorithms. The reasons for studying sorting
algorithms in details are twofold. First, sorting is a very important algorithmic problem. Procedures
for sorting are parts of many large software systems, either explicitly or implicitly. Thus the design of
efficient sorting algorithms is important for the overall efficiency of these systems. The other reason is
more pedagogical. There are many sorting algorithms, some slow and some fast. Some possess certain
desirable properties, and others do not. Finally sorting is one of the few problems where there provable
lower bounds on how fast you can sort. Thus, sorting forms an interesting case study in algorithm
theory.

In the sorting problem we are given an arrayA[1..n] of n numbers, and are asked to reorder these
elements into increasing order. More generally,A is of an array of records, and we choose one of these
records as thekey valueon which the elements will be sorted. The key value need not be a number. It
can be any object from atotally ordereddomain. Totally ordered means that for any two elements of
the domain,x, andy, eitherx < y, x =, or x > y.

There are some domains that can be partially ordered, but not totally ordered. For example, sets can
be partially ordered under the subset relation,⊂, but this is not a total order, it is not true that for any
two sets eitherx ⊂ y, x = y or x ⊃ y. There is an algorithm calledtopological sortingwhich can be
applied to “sort” partially ordered sets. We may discuss this later.

Slow Sorting Algorithms: There are a number of well-known slow sorting algorithms. These include the
following:

Bubblesort: Scan the array. Whenever two consecutive items are found that are out of order, swap
them. Repeat until all consecutive items are in order.

Insertion sort: Assume thatA[1..i − 1] have already been sorted. InsertA[i] into its proper position
in this subarray, by shifting all larger elements to the right by one to make space for the new item.

Selection sort: Assume thatA[1..i − 1] contain thei − 1 smallest elements in sorted order. Find the
smallest element inA[i..n], and then swap it withA[i].

These algorithms are all easy to implement, but they run inΘ(n2) time in the worst case. We have
already seen that MergeSort sorts an array of numbers inΘ(n log n) time. We will study two others,
HeapSort and QuickSort.
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Priority Queues: The heapsort algorithm is based on a very nice data structure, called aheap. A heap is
a concrete implementation of an abstract data type called apriority queue. A priority queue stores
elements, each of which is associated with a numeric key value, called itspriority. A simple priority
queue supports three basic operations:

Create: Create an empty queue.

Insert: Insert an element into a queue.

ExtractMax: Return the element with maximum key value from the queue. (Actually it is more
common to extract the minimum. It is easy to modify the implementation (by reversing< and>
to do this.)

Empty: Test whether the queue is empty.

Adjust Priority: Change the priority of an item in the queue.

It is common to support a number of additional operations as well, such as building a priority queue
from an initial set of elements, returning the largest element without deleting it, and changing the
priority of an element that is already in the queueu (either decreasing or increasing it).

Heaps: A heap is a data structure that supports the main priority queue operations (insert and delete max)
in Θ(log n) time. For now we will describe the heap in terms of a binary tree implementation, but we
will see later that heaps can be stored in arrays.

By a binary treewe mean a data structure which is either empty or else it consists of three things: a
root node, a left subtree and a right subtree. The left subtree and right subtrees are each binary trees.
They are called theleft child andright child of the root node. If both the left and right children of a
node are empty, then this node is called aleaf node. A nonleaf node is called aninternalnode.

Complete Binary TreeBinary Tree

Root
Depth:

2

3

4

5

1

0

internal
node

leaf

Figure 10: Binary trees.

Thedepthof a node in a binary tree is its distance from the root. The root is at depth 0, its children
at depth 1, its grandchildren at depth 2, and so on. Theheightof a binary tree is its maximum depth.
Binary tree is said to becompleteif all internal nodes have two (nonempty) children, and all leaves
have the same depth. An important fact about a complete binary trees is that a complete binary tree of
heighth has

n = 1 + 2 + . . . + 2h =
h∑

i=0

2i = 2h+1 − 1

nodes altogether. If we solve forh in terms ofn, we see that the the height of a complete binary tree
with n nodes ish = (lg(n + 1))− 1 ≈ lg n ∈ Θ(log n).
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A heap is represented as anleft-completebinary tree. This means that all the levels of the tree are full
except the bottommost level, which is filled from left to right. An example is shown below. The keys of
a heap are stored in something calledheap order. This means that for each nodeu, other than the root,
key(Parent(u)) ≥ key(u). This implies that as you follow any path from a leaf to the root the keys
appear in (nonstrict) increasing order. Notice that this implies that the root is necessarily the largest
element.

4

Heap orderingLeft−complete Binary Tree

14

3

16

9

10

8 7

12

Figure 11: Heap.

Next time we will show how the priority queue operations are implemented for a heap.

Lecture 13: HeapSort

(Tuesday, Mar 10, 1998)
Read: Chapt 7 in CLR.

Heaps: Recall that a heap is a data structure that supports the main priority queue operations (insert and
extract max) inΘ(log n) time each. It consists of a left-complete binary tree (meaning that all levels of
the tree except possibly the bottommost) are full, and the bottommost level is filled from left to right.
As a consequence, it follows that the depth of the tree isΘ(log n) wheren is the number of elements
stored in the tree. The keys of the heap are stored in the tree in what is calledheap order. This means
that for each (nonroot) node its parent’s key is at least as large as its key. From this it follows that the
largest key in the heap appears at the root.

Array Storage: Last time we mentioned that one of the clever aspects of heaps is that they can be stored in
arrays, without the need for using pointers (as would normally be needed for storing binary trees). The
reason for this is the left-complete nature of the tree.

This is done by storing the heap in an arrayA[1..n]. Generally we will not be using all of the array,
since only a portion of the keys may be part of the current heap. For this reason, we maintain a variable
m ≤ n which keeps track of the current number of elements that are actually stored actively in the
heap. Thus the heap will consist of the elements stored in elementsA[1..m].

We store the heap in the array by simply unraveling it level by level. Because the binary tree is left-
complete, we know exactly how many elements each level will supply. The root level supplies 1 node,
the next level 2, then 4, then 8, and so on. Only the bottommost level may supply fewer than the
appropriate power of 2, but then we can use the value ofm to determine where the last element is. This
is illustrated below.

We should emphasize that thisonly worksbecause the tree is left-complete. This cannot be used for
general trees.
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Figure 12: Storing a heap in an array.

We claim that to access elements of the heap involves simple arithmetic operations on the array indices.
In particular it is easy to see the following.

Left(i) : return2i.

Right(i) : return2i + 1.

Parent(i) : returnbi/2c.
IsLeaf (i) : returnLeft(i) > m. (That is, ifi’s left child is not in the tree.)

IsRoot(i) : returni == 1.

For example, the heap ordering property can be stated as “for alli, 1 ≤ i ≤ n, if (not IsRoot(i)) then
A[Parent(i)] ≥ A[i]”.

So is a heap a binary tree or an array? The answer is that from a conceptual standpoint, it is a binary
tree. However, it is implemented (typically) as an array for space efficiency.

Maintaining the Heap Property: There is one principal operation for maintaining the heap property. It is
calledHeapify . (In other books it is sometimes calledsifting down.) The idea is that we are given an
element of the heap which we suspect may not be in valid heap order, but we assume that all of other
the elements in the subtree rooted at this element are in heap order. In particular this root element may
be too small. To fix this we “sift” it down the tree by swapping it with one of its children. Which child?
We should take the larger of the two children to satisfy the heap ordering property. This continues
recursively until the element is either larger than both its children or until its falls all the way to the
leaf level. Here is the pseudocode. It is given the heap in the arrayA, and the indexi of the suspected
element, andm the current active size of the heap. The elementA[max ] is set to the maximum ofA[i]
and it two children. Ifmax 6= i then we swapA[i] andA[max ] and then recurse onA[max ].

Heapify

Heapify(array A, int i, int m) { // sift down A[i] in A[1..m]
l = Left(i) // left child
r = Right(i) // right child
max = i
if (l <= m and A[l] > A[max]) max = l // left child exists and larger
if (r <= m and A[r] > A[max]) max = r // right child exists and larger
if (max != i) { // if either child larger

swap A[i] with A[max] // swap with larger child
Heapify(A, max, m) // and recurse

}
}
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See Figure 7.2 on page 143 of CLR for an example of how Heapify works (in the case wherem = 10).
We show the execution on a tree, rather than on the array representation, since this is the most natural
way to conceptualize the heap. You might try simulating this same algorithm on the array, to see how
it works at a finer details.

Note that the recursive implementation of Heapify is not the most efficient. We have done so because
many algorithms on trees are most naturally implemented using recursion, so it is nice to practice this
here. It is possible to write the procedure iteratively. This is left as an exercise.

The HeapSort algorithm will consist of two major parts. First building a heap, and then extracting the
maximum elements from the heap, one by one. We will see how to use Heapify to help us do both of
these.

How long does Hepify take to run? Observe that we perform a constant amount of work at each level
of the tree until we make a call to Heapify at the next lower level of the tree. Thus we doO(1) work
for each level of the tree which we visit. Since there areΘ(log n) levels altogether in the tree, the total
time for Heapify isO(log n). (It is notΘ(log n) since, for example, if we call Heapify on a leaf, then
it will terminate inΘ(1) time.)

Building a Heap: We can use Heapify to build a heap as follows. First we start with a heap in which the
elements are not in heap order. They are just in the same order that they were given to us in the array
A. We build the heap by starting at the leaf level and then invoke Heapify on each node. (Note: We
cannot start at the top of the tree. Why not? Because the precondition which Heapify assumes is that
the entire tree rooted at nodei is already in heap order, except fori.) Actually, we can be a bit more
efficient. Since we know that each leaf is already in heap order, we may as well skip the leaves and
start with the first nonleaf node. This will be in positionbn/2c. (Can you see why?)

Here is the code. Since we will work with the entire array, the parameterm for Heapify, which indicates
the current heap size will be equal ton, the size of arrayA, in all the calls.

BuildHeap

BuildHeap(int n, array A[1..n]) { // build heap from A[1..n]
for i = n/2 downto 1 {

Heapify(A, i, n)
}

}

An example of BuildHeap is shown in Figure 7.3 on page 146 of CLR. Since each call to Heapify
takesO(log n) time, and we make roughlyn/2 calls to it, the total running time isO((n/2) log n) =
O(n log n). Next time we will show that this actually runs faster, and in fact it runs inΘ(n) time.

HeapSort: We can now give the HeapSort algorithm. The idea is that we need to repeatedly extract the
maximum item from the heap. As we mentioned earlier, this element is at the root of the heap. But
once we remove it we are left with a hole in the tree. To fix this we will replace it with the last leaf in
the tree (the one at positionA[m]). But now the heap order will very likely be destroyed. So we will
just apply Heapify to the root to fix everything back up.

HeapSort

HeapSort(int n, array A[1..n]) { // sort A[1..n]
BuildHeap(n, A) // build the heap
m = n // initially heap contains all
while (m >= 2) {

swap A[1] with A[m] // extract the m-th largest
m = m-1 // unlink A[m] from heap
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Heapify(A, 1, m) // fix things up
}

}

An example of HeapSort is shown in Figure 7.4 on page 148 of CLR. We maken− 1 calls to Heapify,
each of which takesO(log n) time. So the total running time isO((n− 1) log n) = O(n log n).

Lecture 14: HeapSort Analysis and Partitioning

(Thursday, Mar 12, 1998)
Read: Chapt 7 and 8 in CLR. The algorithm we present for partitioning is different from the texts.

HeapSort Analysis: Last time we presented HeapSort. Recall that the algorithm operated by first building a
heap in a bottom-up manner, and then repeatedly extracting the maximum element from the heap and
moving it to the end of the array. One clever aspect of the data structure is that it resides inside the
array to be sorted.

We argued that the basic heap operation of Heapify runs inO(log n) time, because the heap has
O(log n) levels, and the element being sifted moves down one level of the tree after a constant amount
of work.

Based on this we can see that (1) that it takesO(n log n) time to build a heap, because we need
to apply Heapify roughlyn/2 times (to each of the internal nodes), and (2) that it takesO(n log n)
time to extract each of the maximum elements, since we need to extract roughlyn elements and each
extraction involves a constant amount of work and one Heapify. Therefore the total running time of
HeapSort isO(n log n).

Is this tight? That is, is the running timeΘ(n log n)? The answer is yes. In fact, later we will see that it
is not possible to sort faster thanΩ(n log n) time, assuming that you use comparisons, which HeapSort
does. However, it turns out that the first part of the analysis is not tight. In particular, the BuildHeap
procedure that we presented actually runs inΘ(n) time. Although in the wider context of the HeapSort
algorithm this is not significant (because the running time is dominated by theΘ(n log n) extraction
phase).

Nonetheless there are situations where you might not need to sort all of the elements. For example, it
is common to extract some unknown number of the smallest elements until some criterion (depending
on the particular application) is met. For this reason it is nice to be able to build the heap quickly since
you may not need to extract all the elements.

BuildHeap Analysis: Let us consider the running time of BuildHeap more carefully. As usual, it will make
our lives simple by making some assumptions aboutn. In this case the most convenient assumption is
thatn is of the formn = 2h+1 − 1, whereh is the height of the tree. The reason is that a left-complete
tree with this number of nodes is a complete tree, that is, its bottommost level is full. This assumption
will save us from worrying about floors and ceilings.

With this assumption, level 0 of the tree has 1 node, level 1 has 2 nodes, and up to levelh, which has
2h nodes. All the leaves reside on levelh.

Recall that when Heapify is called, the running time depends on how far an element might sift down
before the process terminates. In the worst case the element might sift down all the way to the leaf
level. Let us count the work done level by level.

At the bottommost level there are2h nodes, but we do not call Heapify on any of these so the work is
0. At the next to bottommost level there are2h−1 nodes, and each might sift down 1 level. At the 3rd
level from the bottom there are2h−2 nodes, and each might sift down 2 levels. In general, at levelj
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Figure 13: Analysis of BuildHeap.

from the bottom there are2h−j nodes, and each might sift downj levels. So, if we count from bottom
to top, level-by-level, we see that the total time is proportional to

T (n) =
h∑

j=0

j2h−j =
h∑

j=0

j
2h

2j
.

If we factor out the2h term, we have

T (n) = 2h
h∑

j=0

j

2j
.

This is a sum that we have never seen before. We could try to approximate it by an integral, which
would involve integration by parts, but it turns out that there is a very cute solution to this particular
sum. We’ll digress for a moment to work it out. First, write down the infinite general geometric series,
for any constantx < 1.

∞∑
j=0

xj =
1

1− x
.

Then take the derivative of both sides with respect tox, and multiply byx giving:

∞∑
j=0

jxj−1 =
1

(1− x)2

∞∑
j=0

jxj =
x

(1− x)2
,

and if we plugx = 1/2, then voila! we have the desired formula:

∞∑
j=0

j

2j
=

1/2
(1− (1/2))2

=
1/2
1/4

= 2.

In our case we have a bounded sum, but since the infinite series is bounded, we can use it instead as an
easy approximation.

Using this we have

T (n) = 2h
h∑

j=0

j

2j
≤ 2h

∞∑
j=0

j

2j
≤ 2h · 2 = 2h+1.

Now recall thatn = 2h+1 − 1, so we haveT (n) ≤ n + 1 ∈ O(n). Clearly the algorithm takes at least
Ω(n) time (since it must access every element of the array at least once) so the total running time for
BuildHeap isΘ(n).
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It is worthwhile pausing here a moment. This is the second time we have seen a relatively complex
structured algorithm, with doubly nested loops, come out with a running time ofΘ(n). (The other
example was the median algorithm, based on the sieve technique. Actually if you think deeply about
this, there is a sense in which a parallel version of BuildHeap can be viewed as operating like a sieve,
but maybe this is getting too philosophical.) Perhaps a more intuitive way to describe what is happening
here is to observe an important fact about binary trees. This is that the vast majority of nodes are at the
lowest level of the tree. For example, in a complete binary tree of heighth there is a total ofn ≈ 2h+1

nodes in total, and the number of nodes in the bottom 3 levels alone is

2h + 2h−1 + 2h−2 =
n

2
+

n

4
+

n

8
=

7n

8
= 0.875n.

That is, almost 90% of the nodes of a complete binary tree reside in the 3 lowest levels. Thus the lesson
to be learned is that when designing algorithms that operate on trees, it is important to be most efficient
on the bottommost levels of the tree (as BuildHeap is) since that is where most of the weight of the tree
resides.

Partitioning: Our next sorting algorithm is QuickSort. QuickSort is interesting in a number of respects.
First off, (as we will present it) it is arandomized algorithm, which means that it makes use of a ran-
dom number generator. We will show that in the worst case its running time isO(n2), its expected
case running time isO(n log n). Moreover, this expected case running time occurs withhigh proba-
bility, in that the probability that the algorithm takes significantly more thanO(n log n) time is rapidly
decreasing function ofn. In addition, QuickSort has a better locality-of-reference behavior than either
MergeSort or HeapSort, and thus it tends to run fastest of all three algorithms. This is how it got its
name. QuickSort (and its variants) are considered the methods of choice for most standard library
sorting algorithms.

Next time we will discuss QuickSort. Today we will discuss one aspect of QuickSort, namely the
partitioning algorithm. This is the same partitioning algorithm which we discussed when we talked
about the selection (median) problem. We are given an arrayA[p..r], and a pivot elementx chosen
from the array. Recall that the partitioning algorithm is suppose to partitionA into three subarrays:
A[p..q − 1] whose elements are all less than or equal tox, A[q] = x, andA[q + 1..r] whose elements
are greater than or equal tox. We will assume thatx is the first element of the subarray, that is,
x = A[p]. If a different rule is used for selectingx, this is easily handled by swapping this element
with A[p] before calling this procedure.

We will present a different algorithm from the one given in the text (in Section 8.1). This algorithm is
a little easier to verify the correctness, and a little easier to analyze. (But I suspect that the one in the
text is probably a bit for efficient for actual implementation.)

This algorithm works by maintaining the followinginvariant condition. The subarray is broken into
four segments. The boundaries between these items are indicated by the indicesp, q, s, andr.

(1) A[p] = x is the pivot value,

(2) A[p + 1..q] contains items that are less thanx,

(3) A[q + 1..s− 1] contains items that are greater than or equal tox, and

(4) A[s..r] contains items whose values are currently unknown.

This is illustrated below.

The algorithm begins by settingq = p ands = p+1. With each step through the algorithm we test the
value ofA[s] againstx. If A[s] ≥ x, then we can simply increments. Otherwise we incrementq, swap
A[s] with A[q], and then increments. Notice that in either case, the invariant is still maintained. In the
first case this is obvious. In the second case,A[q] now holds a value that is less thanx, andA[s − 1]
now holds a value that is greater than or equal tox. The algorithm ends whens = r, meaning that
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Figure 14: Partitioning intermediate structure.

all of the elements have been processed. To finish things off we swapA[p] (the pivot) withA[q], and
return the value ofq. Here is the complete code:

Partition

Partition(int p, int r, array A) { // 3-way partition of A[p..r]
x = A[p] // pivot item in A[p]
q = p
for s = p+1 to r do {

if (A[s] < x) {
q = q+1
swap A[q] with A[s]

}
}
swap A[p] with A[q] // put the pivot into final position
return q // return location of pivot

}

An example is shown below.

Lecture 15: QuickSort

(Tuesday, Mar 17, 1998)
Revised:March 18. Fixed a bug in the analysis.

Read: Chapt 8 in CLR. My presentation and analysis are somewhat different than the text’s.

QuickSort and Randomized Algorithms: Early in the semester we discussed the fact that we usually study
the worst-case running times of algorithms, but sometimes average-case is a more meaningful measure.
Today we will study QuickSort. It is a worst-caseΘ(n2) algorithm, whose expected-case running time
is Θ(n log n).

We will present QuickSort as arandomizedalgorithm, that is, an algorithm which makes random
choices. There are two common types of randomized algorithms:

Monte Carlo algorithms: These algorithms may produce the wrong result, but the probability of this
occurring can be made arbitrarily small by the user. Usually the lower you make this probability,
the longer the algorithm takes to run.
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Figure 15: Partitioning example.

Las Vegas algorithms: These algorithms always produce the correct result, but the running time is a
random variable. In these cases the expected running time, averaged over all possible random
choices is the measure of the algorithm’s running time.

The most well known Monte Carlo algorithm is one for determining whether a number is prime. This
is an important problem in cryptography. The QuickSort algorithm that we will discuss today is an ex-
ample of a Las Vegas algorithm. Note that QuickSort does not need to be implemented as a randomized
algorithm, but as we shall see, this is generally considered the safest implementation.

QuickSort Overview: QuickSort is also based on the divide-and-conquer design paradigm. Unlike Merge-
Sort where most of the work is done after the recursive call returns, in QuickSort the work is done
before the recursive call is made. Here is an overview of QuickSort. Note the similarity with the selec-
tion algorithm, which we discussed earlier. LetA[p..r] be the (sub)array to be sorted. The initial call
is toA[1..n].

Basis: If the list contains 0 or 1 elements, then return.

Select pivot: Select a random elementx from the array, called thepivot.

Partition: Partition the array in three subarrays, those elementsA[1..q − 1] ≤ x, A[q] = x, and
A[q + 1..n] ≥ x.

Recurse: Recursively sortA[1..q − 1] andA[q + 1..n].

The pseudocode for QuickSort is given below. The initial call is QuickSort(1,n, A). The Partition
routine was discussed last time. Recall that Partition assumes that the pivot is stored in the first element
of A. Since we want a random pivot, we pick a random indexi from p to r, and then swapA[i] with
A[p].

QuickSort

QuickSort(int p, int r, array A) { // Sort A[p..r]
if (r <= p) return // 0 or 1 items, return
i = a random index from [p..r] // pick a random element
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swap A[i] with A[p] // swap pivot into A[p]
q = Partition(p, r, A) // partition A about pivot
QuickSort(p, q-1, A) // sort A[p..q-1]
QuickSort(q+1, r, A) // sort A[q+1..r]

}

QuickSort Analysis: The correctness of QuickSort should be pretty obvious. However its analysis is not
so obvious. It turns out that the running time of QuickSort depends heavily on how good a job we
do in selecting the pivot. In particular, if the rank of the pivot (recall that this means its position in
the final sorted list) is very large or very small, then the partition will be unbalanced. We will see that
unbalanced partitions (like unbalanced binary trees) are bad, and result is poor running times. However,
if the rank of the pivot is anywhere near the middle portion of the array, then the split will be reasonably
well balanced, and the overall running time will be good. Since the pivot is chosen at random by our
algorithm, we may do well most of the time and poorly occasionally. We will see that the expected
running time isO(n log n).

Worst-case Analysis: Let’s begin by considering the worst-case performance, because it is easier than the
average case. Since this is a recursive program, it is natural to use a recurrence to describe its running
time. But unlike MergeSort, where we had control over the sizes of the recursive calls, here we do
not. It depends on how the pivot is chosen. Suppose that we are sorting an array of sizen, A[1..n],
and further suppose that the pivot that we select is of rankq, for someq in the range 1 ton. It takes
Θ(n) time to do the partitioning and other overhead, and we make two recursive calls. The first is to
the subarrayA[1..q − 1] which hasq − 1 elements, and the other is to the subarrayA[q + 1..n] which
hasr − (q + 1) + 1 = r − q elements. So if we ignore theΘ (as usual) we get the recurrence:

T (n) = T (q − 1) + T (n− q) + n.

This depends on the value ofq. To get the worst case, we maximize over all possible values ofq. As a
basis we have thatT (0) = T (1) = Θ(1). Putting this together we have

T (n) =
{

1 if n ≤ 1
max1≤q≤n(T (q − 1) + T (n− q) + n) otherwise.

Recurrences that have max’s and min’s embedded in them are very messy to solve. The key is deter-
mining which value ofq gives the maximum. (A rule of thumb of algorithm analysis is that the worst
cases tends to happen either at the extremes or in the middle. So I would plug in the valueq = 1, q = n,
andq = n/2 and work each out.) In this case, the worst case happens at either of the extremes (but see
the book for a more careful analysis based on an analysis of the second derivative). If we expand the
recurrence in the caseq = 1 we get:

T (n) ≤ T (0) + T (n− 1) + n = 1 + T (n− 1) + n

= T (n− 1) + (n + 1)
= T (n− 2) + n + (n + 1)
= T (n− 3) + (n− 1) + n + (n + 1)
= T (n− 4) + (n− 2) + (n− 1) + n + (n + 1)
= . . .

= T (n− k) +
k−2∑
i=−1

(n− i).
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For the basis,T (1) = 1 we setk = n− 1 and get

T (n) ≤ T (1) +
n−3∑
i=−1

(n− i)

= 1 + (3 + 4 + 5 + . . . + (n− 1) + n + (n + 1))

≤
n+1∑
i=1

i =
(n + 1)(n + 2)

2
∈ O(n2).

In fact, a more careful analysis reveals that it isΘ(n2) in this case.

Average-case Analysis:Next we show that in the average case QuickSort runs inΘ(n log n) time. When
we talked about average-case analysis at the beginning of the semester, we said that it depends on some
assumption about the distribution of inputs. However, in this case, the analysis does not depend on
the input distribution at all—it only depends on the random choices that the algorithm makes. This is
good, because it means that the analysis of the algorithm’s performance is the same for all inputs. In
this case the average is computed over all possible random choices that the algorithm might make for
the choice of the pivot index in the second step of the QuickSort procedure above.

To analyze the average running time, we letT (n) denote the average running time of QuickSort on a list
of sizen. It will simplify the analysis to assume that all of the elements are distinct. The algorithm has
n random choices for the pivot element, and each choice has an equal probability of1/n of occuring.
So we can modify the above recurrence to compute an average rather than a max, giving:

T (n) =
{

1 if n ≤ 1
1
n

∑n
q=1(T (q − 1) + T (n− q) + n) otherwise.

This is not a standard recurrence, so we cannot apply the Master Theorem. Expansion is possible, but
rather tricky. Instead, we will attempt a constructive induction to solve it. We know that we want a
Θ(n log n) running time, so let’s tryT (n) ≤ an lg n + b. (Properly we should writedlg ne because
unlike MergeSort, we cannot assume that the recursive calls will be made on array sizes that are powers
of 2, but we’ll be sloppy because things will be messy enough anyway.)

Theorem: There exist a constantc such thatT (n) ≤ cn ln n, for all n ≥ 2. (Notice that we have
replacedlg n with lnn. This has been done to make the proof easier, as we shall see.)

Proof: The proof is by constructive induction onn. For the basis casen = 2 we have

T (2) =
1
2

2∑
q=1

(T (q − 1) + T (2− q) + 2)

=
1
2
((T (0) + T (1) + 2) + (T (1) + T (0) + 2) =

8
2

= 4.

We want this to be at mostc2 ln 2 implying thatc ≥ 4/(2 ln 2) ≈ 2.885.
For the induction step, we assume thatn ≥ 3, and the induction hypothesis is that for anyn′ < n,
we haveT (n′) ≤ cn′ lnn′. We want to prove it is true forT (n). By expanding the definition of
T (n), and moving the factor ofn outside the sum we have:

T (n) =
1
n

n∑
q=1

(T (q − 1) + T (n− q) + n)

=
1
n

n∑
q=1

(T (q − 1) + T (n− q)) + n.
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Observe that if we split the sum into two sums, they both add the same valuesT (0) + T (1) +
. . . + T (n− 1), just that one counts up and the other counts down. Thus we can replace this with
2
∑n−1

q=0 T (q). Because they don’t follow the formula, we’ll extractT (0) andT (1) and treat them
specially. If we make this substitution and apply the induction hypothesis to the remaining sum
we have (which we can becauseq < n) we have

T (n) =
2
n

(
n−1∑
q=0

T (q)

)
+ n =

2
n

(
T (0) + T (1) +

n−1∑
q=2

T (q)

)
+ n

≤ 2
n

(
1 + 1 +

n−1∑
q=2

(cq lg q)

)
+ n

=
2c

n

(
n−1∑
q=2

(cq ln q)

)
+ n +

4
n

.

We have never seen this sum before. Later we will show that

S(n) =
n−1∑
q=2

q ln q ≤ n2

2
lnn− n2

4
.

Assuming this for now, we have

T (n) =
2c

n

(
n2

2
lnn− n2

4

)
+ n +

4
n

= cn ln n− cn

2
+ n +

4
n

= cn ln n + n
(
1− c

2

)
+

4
n

.

To finish the proof, we want all of this to be at mostcn ln n. If we cancel the commoncn ln n we
see that this will be true if we selectc such that

n
(
1− c

2

)
+

4
n
≤ 0.

After some simple manipulations we see that this is equivalent to:

0 ≥ n− cn

2
+

4
n

cn

2
≥ n +

4
n

c ≥ 2 +
8
n2

.

Sincen ≥ 3, we only need to selectc so thatc ≥ 2 + 8
9 , and so selectingc = 3 will work. From

the basis case we havec ≥ 2.885, so we may choosec = 3 to satisfy both the constraints.

The Leftover Sum: The only missing element to the proof is dealing with the sum

S(n) =
n−1∑
q=2

q ln q.
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To bound this, recall the integration formula for bounding summations (which we paraphrase
here). For any monotonically increasing functionf(x)

b−1∑
i=a

f(i) ≤
∫ b

a

f(x)dx.

The functionf(x) = x lnx is monotonically increasing, and so we have

S(n) ≤
∫ n

2

x lnxdx.

If you are a calculus macho man, then you can integrate this by parts, and if you are a calculus
wimp (like me) then you can look it up in a book of integrals∫ n

2

x lnxdx =
x2

2
lnx− x2

4

∣∣∣∣
n

x=2

=
(

n2

2
lnn− n2

4

)
− (2 ln 2− 1) ≤ n2

2
lnn− n2

4
.

This completes the summation bound, and hence the entire proof.

Summary: So even though the worst-case running time of QuickSort isΘ(n2), the average-case running
time is Θ(n log n). Although we did not show it, it turns out that this doesn’t just happen much of
the time. For large values ofn, the running time isΘ(n log n) with high probability. In order to get
Θ(n2) time the algorithm must make poor choices for the pivot at virtually every step. Poor choices are
rare, and so continuously making poor choices are very rare. You might ask, could we make QuickSort
deterministicΘ(n log n) by calling the selection algorithm to use the median as the pivot. The answer
is that this would work, but the resulting algorithm would be so slow practically that no one would ever
use it.

QuickSort (like MergeSort) is not formally an in-place sorting algorithm, because it does make use of a
recursion stack. In MergeSort and in the expected case for QuickSort, the size of the stack isO(log n),
so this is not really a problem.

QuickSort is the most popular algorithm for implementation because its actual performance (on typical
modern architectures) is so good. The reason for this stems from the fact that (unlike Heapsort) which
can make large jumps around in the array, the main work in QuickSort (in partitioning) spends most of
its time accessing elements that are close to one another. The reason it tends to outperform MergeSort
(which also has good locality of reference) is that most comparisons are made against the pivot element,
which can be stored in a register. In MergeSort we are always comparing two array elements against
each other. The most efficient versions of QuickSort uses the recursion for large subarrays, but once
the sizes of the subarray falls below some minimum size (e.g. 20) it switches to a simple iterative
algorithm, such as selection sort.

Lecture 16: Lower Bounds for Sorting

(Thursday, Mar 19, 1998)
Read: Chapt. 9 of CLR.

Review of Sorting: So far we have seen a number of algorithms for sorting a list of numbers in ascending
order. Recall that anin-placesorting algorithm is one that uses no additional array storage (however,
we allow QuickSort to be called in-place even though they need a stack of sizeO(log n) for keeping
track of the recursion). A sorting algorithm isstableif duplicate elements remain in the same relative
position after sorting.
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Slow Algorithms: Include BubbleSort, InsertionSort, and SelectionSort. These are all simpleΘ(n2)
in-place sorting algorithms. BubbleSort and InsertionSort can be implemented as stable algo-
rithms, but SelectionSort cannot (without significant modifications).

Mergesort: Mergesort is a stableΘ(n log n) sorting algorithm. The downside is that MergeSort is
the only algorithm of the three that requires additional array storage, implying that it is not an
in-place algorithm.

Quicksort: Widely regarded as thefastestof the fast algorithms. This algorithm isO(n log n) in the
expected case, andO(n2) in the worst case. The probability that the algorithm takes asymptoti-
cally longer (assuming that the pivot is chosen randomly) is extremely small for largen. It is an
(almost) in-place sorting algorithm but is not stable.

Heapsort: Heapsort is based on a nice data structure, called aheap, which is a fast priority queue.
Elements can be inserted into a heap inO(log n) time, and the largest item can be extracted in
O(log n) time. (It is also easy to set up a heap for extracting the smallest item.) If you only want
to extract thek largest values, a heap can allow you to do this isO(n + k log n) time. It is an
in-place algorithm, but it is not stable.

Lower Bounds for Comparison-Based Sorting: Can we sort faster thanO(n log n) time? We will give an
argument that if the sorting algorithm is based solely on making comparisons between the keys in the
array, then it is impossible to sort more efficiently thanΩ(n log n) time. Such an algorithm is called a
comparison-basedsorting algorithm, and includes all of the algorithms given above.

Virtually all known general purpose sorting algorithms are based on making comparisons, so this is
not a very restrictive assumption. This does not preclude the possibility of a sorting algorithm whose
actions are determined by other types of operations, for example, consulting the individual bits of
numbers, performing arithmetic operations, indexing into an array based on arithmetic operations on
keys.

We will show that anycomparison-basedsorting algorithm for a input sequence〈a1, a2, . . . , an〉must
make at leastΩ(n log n) comparisons in the worst-case. This is still a difficult task if you think about it.
It is easy to show that a problemcanbe solved fast (just give an algorithm). But to show that a problem
cannotbe solved fast you need to reason in some way about all the possible algorithms that might ever
be written. In fact, it seems surprising that you could even hope to prove such a thing. The catch here
is that we are limited to using comparison-based algorithms, and there is a clean mathematical way of
characterizing all such algorithms.

Decision Tree Argument: In order to prove lower bounds, we need an abstract way of modeling “any pos-
sible” comparison-based sorting algorithm, we model such algorithms in terms of an abstract model
called adecision tree.

In a comparison-basedsorting algorithm only comparisons between the keys are used to determine
the action of the algorithm. Let〈a1, a2, . . . , an〉 be the input sequence. Given two elements,ai and
aj , their relative order can only be determined by the results of comparisons likeai < aj , ai ≤ aj ,
ai = aj , ai ≥ aj , andai > aj .

A decision tree is a mathematical representation of a sorting algorithm (for a fixed value ofn). Each
node of the decision tree represents a comparison made in the algorithm (e.g.,a4 : a7), and the two
branches represent the possible results, for example, the left subtree consists of the remaining compar-
isons made under the assumption thata4 ≤ a7 and the right subtree fora4 > a7. (Alternatively, one
might be labeled witha4 < a7 and the other witha4 ≥ a7.)

Observe that once we know the value ofn, then the “action” of the sorting algorithm is completely
determined by the results of its comparisons. This action may involve moving elements around in the
array, copying them to other locations in memory, performing various arithmetic operations on non-key
data. But the bottom-line is that at the end of the algorithm, the keys will be permuted in the final array
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in some way. Each leaf in the decision tree is labeled with the final permutation that the algorithm
generates after making all of its comparisons.

To make this more concrete, let us assume thatn = 3, and let’s build a decision tree for SelectionSort.
Recall that the algorithm consists of two phases. The first finds the smallest element of the entire list,
and swaps it with the first element. The second finds the smaller of the remaining two items, and swaps
it with the second element. Here is the decision tree (in outline form). The first comparison is between
a1 anda2. The possible results are:

a1 ≤ a2: Thena1 is the current minimum. Next we comparea1 with a3 whose results might be either:

a1 ≤ a3: Then we know thata1 is the minimum overall, and the elements remain in their original
positions. Then we pass to phase 2 and comparea2 with a3. The possible results are:

a2 ≤ a3: Final output is〈a1, a2, a3〉.
a2 > a3: These two are swapped and the final output is〈a1, a3, a2〉.

a1 > a3: Then we know thata3 is the minimum is the overall minimum, and it is swapped with
a1. The we pass to phase 2 and comparea2 with a1 (which is now in the third position of
the array) yielding either:

a2 ≤ a1: Final output is〈a3, a2, a1〉.
a2 > a1: These two are swapped and the final output is〈a3, a1, a2〉.

a1 > a2: Thena2 is the current minimum. Next we comparea2 with a3 whose results might be either:

a2 ≤ a3: Then we know thata2 is the minimum overall. We swapa2 with a1, and then pass to
phase 2, and compare the remaining itemsa1 anda3. The possible results are:

a1 ≤ a3: Final output is〈a2, a1, a3〉.
a1 > a3: These two are swapped and the final output is〈a2, a3, a1〉.

a2 > a3: Then we know thata3 is the minimum is the overall minimum, and it is swapped with
a1. We pass to phase 2 and comparea2 with a1 (which is now in the third position of the
array) yielding either:

a2 ≤ a1: Final output is〈a3, a2, a1〉.
a2 > a1: These two are swapped and the final output is〈a3, a1, a2〉.

The final decision tree is shown below. Note that there are some nodes that are unreachable. For exam-
ple, in order to reach the fourth leaf from the left it must be thata1 ≤ a2 anda1 > a2, which cannot
both be true. Can you explain this? (The answer is that virtually all sorting algorithms, especially
inefficient ones like selection sort, may make comparisons that are redundant, in the sense that their
outcome has already been determined by earlier comparisons.) As you can see, converting a complex
sorting algorithm like HeapSort into a decision tree for a large value ofn will be very tedious and
complex, but I hope you are convinced by this exercise that it can be done in a simple mechanical way.
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Figure 16: Decision Tree for SelectionSort on 3 keys.
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Using Decision Trees for Analyzing Sorting: Consider any sorting algorithm. LetT (n) be the maximum
number of comparisons that this algorithm makes on any input of sizen. Notice that the running time
fo the algorithm must be at least as large asT (n), since we are not counting data movement or other
computations at all. The algorithm defines a decision tree. Observe that the height of the decision
tree is exactly equal toT (n), because any path from the root to a leaf corresponds to a sequence of
comparisons made by the algorithm.

As we have seen earlier, any binary tree of heightT (n) has at most2T (n) leaves. This means that this
sorting algorithm candistinguishbetween at most2T (n) different final actions. Let’s call this quantity
A(n), for the number of different final actions the algorithm can take. Each action can be thought of as
a specific way of permuting the oringinal input to get the sorted output.

How many possible actions must any sorting algorithm distinguish between? If the input consists ofn
distinct numbers, then those numbers could be presented in any ofn! different permutations. For each
different permutation, the algorithm must “unscramble” the numbers in an essentially different way,
that is it must take a different action, implying thatA(n) ≥ n!. (Again, A(n) is usually not exactly
equal ton! because most algorithms contain some redundant unreachable leaves.)

SinceA(n) ≤ 2T (n) we have2T (n) ≥ n!, implying that

T (n) ≥ lg(n!).

We can useStirling’s approximationfor n! (see page 35 in CLR) yielding:

n! ≥
√

2πn
(n

e

)n

T (n) ≥ lg
(√

2πn
(n

e

)n)
= lg

√
2πn + n lg n− n lg e ∈ Ω(n log n).

Thus we have, the following theorem.

Theorem: Any comparison-based sorting algorithm has worst-case running timeΩ(n log n).

This can be generalized to show that theaverage-casetime to sort is alsoΩ(n log n) (by arguing about
the average height of a leaf in a tree with at leastn! leaves). The lower bound on sorting can be
generalized to provide lower bounds to a number of other problems as well.

Lecture 17: Linear Time Sorting

(Tuesday, Mar 31, 1998)
Read: Chapt. 9 of CLR.

Linear Time Sorting: Last time we presented a proof that it is not possible to sort faster thanΩ(n log n)
time assuming that the algorithm is based on making 2-way comparisons. Recall that the argument
was based on showing that any comparison-based sorting could be represented as a decision tree, the
decision tree must have at leastn! leaves, to distinguish between then! different permutations in which
the keys could be input, and hence its height must be at leastlg(n!) ∈ Ω(n lg n).

This lower bound implies that if we hope to sort numbers faster than inO(n log n) time, we cannot
do it by making comparisons alone. Today we consider the question of whether it is possible to sort
without the use of comparisons. They answer is yes, but only under very restrictive circumstances.
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Many applications involve sorting small integers (e.g. sorting characters, exam scores, last four digits
of a social security number, etc.). We present three algorithms based on the theme of speeding up
sorting in special cases, bynotmaking comparisons.

Counting Sort: Counting sort assumes that each input is an integer in the range from 1 tok. The algorithm
sorts inΘ(n + k) time. If k is known to beΘ(n), then this implies that the resulting sorting algorithm
is Θ(n) time.

The basic idea is to determine, for each element in the input array, itsrank in the final sorted array.
Recall that the rank of a item is the number of elements in the array that are less than or equal to it.
Notice that once you know the rank of every element, you sort by simply copying each element to the
appropriate location of the final sorted output array. The question is how to find the rank of an element
without comparing it to the other elements of the array? Counting sort uses the following three arrays.
As usualA[1..n] is the input array. Recall that although we usually think ofA as just being a list of
numbers, it is actually a list of records, and the numeric value is thekeyon which the list is being
sorted. In this algorithm we will be a little more careful to distinguish the entire recordA[j] from the
keyA[j].key .

We use three arrays:

A[1..n] : Holds the initial input.A[j] is a record.A[j].key is the integer key value on which to sort.

B[1..n] : Array of records which holds the sorted output.

R[1..k] : An array of integers.R[x] is the rank ofx in A, wherex ∈ [1..k].

The algorithm is remarkably simple, but deceptively clever. The algorithm operates by first construct-
ing R. We do this in two steps. First we setR[x] to be the number of elements ofA[j] whose key
is equal tox. We can do this initializingR to zero, and then for eachj, from 1 ton, we increment
R[A[j].key ] by 1. Thus, ifA[j].key = 5, then the 5th element ofR is incremented, indicating that we
have seen one more 5. To determine the number of elements that are less than or equal tox, we replace
R[x] with the sum of elements in the subarrayR[1..x]. This is done by just keeping a running total of
the elements ofR.

Now R[x] now contains the rank ofx. This means that ifx = A[j].key then the final position ofA[j]
should be at positionR[x] in the final sorted array. Thus, we setB[R[x]] = A[j]. Notice that this
copies the entire record, not just the key value. There is a subtlety here however. We need to be careful
if there are duplicates, since we do not want them to overwrite the same location ofB. To do this, we
decrementR[i] after copying.

Counting Sort

CountingSort(int n, int k, array A, array B) { // sort A[1..n] to B[1..n]
for x = 1 to k do R[x] = 0 // initialize R
for j = 1 to n do R[A[j].key]++ // R[x] = #(A[j] == x)
for x = 2 to k do R[x] += R[x-1] // R[x] = rank of x
for j = n downto 1 do { // move each element of A to B

x = A[j].key // x = key value
B[R[x]] = A[j] // R[x] is where to put it
R[x]-- // leave space for duplicates

}
}

There are four (unnested) loops, executedk times,n times,k − 1 times, andn times, respectively,
so the total running time isΘ(n + k) time. If k = O(n), then the total running time isΘ(n). The
figure below shows an example of the algorithm. You should trace through a few examples, to convince
yourself how it works.
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Figure 17: Counting Sort.

Obviously this not an in-place sorting algorithm (we need two additional arrays). However it is a stable
sorting algorithm. I’ll leave it as an exercise to prove this. (As a hint, notice that the last loop runs
down fromn to 1. It would not be stable if the loop were running the other way.)

Radix Sort: The main shortcoming of counting sort is that it is only really (due to space requirements) for
small integers. If the integers are in the range from 1 to 1 million, we may not want to allocate an
array of a million elements. Radix sort provides a nice way around this by sorting numbers one digit
at a time. Actually, what constitutes a “digit” is up to the implementor. For example, it is typically
more convenient to sort by bytes rather than digits (especially for sorting character strings). There is a
tradeoff between the space and time.

The idea is very simple. Let’s think of our list as being composed ofn numbers, each havingd decimal
digits (or digits in any base). Let’s suppose that we have access to a stable sorting algorithm, like
Counting Sort. To sort these numbers we can simply sort repeatedly, starting at the lowest order digit,
and finishing with the highest order digit. Since the sorting algorithm is stable, we know that if the
numbers are already sorted with respect to low order digits, and then later we sort with respect to high
order digits, numbers having the same high order digit will remain sorted with respect to their low
order digit. As usual, letA[1..n] be the array to sort, and letd denote the number of digits inA. We
will not discuss how it is thatA is broken into digits, but this might be done through bit manipulations
(shifting and masking off bits) or by accessing elements byte-by-byte, etc.

Radix Sort

RadixSort(int n, int d, array A) { // sort A[1..n] with d digits
for i = 1 to d do {

Sort A (stably) with respect to i-th lowest order digit;
}

}
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Here is an example.

576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
296 =⇒ 57[6] =⇒ 2[7]8 =⇒ [2]96 =⇒ 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

The running time is clearlyΘ(d(n + k)) whered is the number of digits,n is the length of the list, and
k is the number of values a digit can have. This is usually a constant, but the algorithm’s running time
will be Θ(dn) as long ask ∈ O(n).

Notice that we can be quite flexible in the definition of what a “digit” is. It can be any number in the
range from 1 tocn for some constantc, and we will still have anΘ(n) time algorithm. For example,
if we haved = 2 and setk = n, then we can sort numbers in the rangen ∗ n = n2 in Θ(n) time. In
general, this can be used to sort numbers in the range from 1 tond in Θ(dn) time.

At this point you might ask, since a computer integer word typically consists of 32 bits (4 bytes), then
doesn’t this imply that we can sort any array of integers inO(n) time (by applying radix sort on each
of the d = 4 bytes)? The answer is yes, subject to this word-length restriction. But you should be
careful about attempting to make generalizations when the sizes of the numbers are not bounded. For
example, suppose you haven keys and there are no duplicate values. Then it follows that you need
at leastB = dlg ne bits to store these values. The number of bytes isd = dB/8e. Thus, if you were
to apply radix sort in this situation, the running time would beΘ(dn) = Θ(n log n). So there is no
real asymptotic savings here. Furthermore, the locality of reference behavior of Counting Sort (and
hence of RadixSort) is not as good as QuickSort. Thus, it is not clear whether it is really faster to use
RadixSort over QuickSort. This is at a level of similarity, where it would probably be best to implement
both algorithms on your particular machine to determine which is really faster.

Lecture 18: Review for Second Midterm

(Thursday, Apr 2, 1998)

General Remarks: Up to now we have covered the basic techniques for analyzing algorithms (asymptotics,
summations, recurrences, induction), have discussed some algorithm design techniques (divide-and-
conquer in particular), and have discussed sorting algorithm and related topics. Recall that our goal is
to provide you with the necessary tools for designing and analyzing efficient algorithms.

Material from Text: You are only responsible for material that has been covered in class or on class assign-
ments. However it is always a good idea to see the text to get a better insight into some of the topics
we have covered. The relevant sections of the text are the following.

• Review Chapts 1: InsertionSort and MergeSort.

• Chapt 7: Heaps, HeapSort. Look at Section 7.5 on priority queues, even though we didn’t cover
it in class.

• Chapt 8: QuickSort. You are responsible for the partitioning algorithm which we gave in class,
not the one in the text. Section 8.2 gives some good intuition on the analysis of QuickSort.

• Chapt 9 (skip 9.4): Lower bounds on sorting, CountingSort, RadixSort.
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• Chapt. 10 (skip 10.1): Selection. Read the analysis of the average case of selection. It is similar
to the QuickSort analysis.

You are also responsible for anything covered in class.

Cheat Sheets:The exam is closed-book, closed-notes, but you are allowed two sheets of notes (front and
back). You should already have the cheat sheet from the first exam with basic definitions of asymp-
totics, important summations, Master theorem. Also add Stirling’s approximation (page 35), and the
integration formula for summations (page 50). You should be familiar enough with each algorithm
presented in class that you could work out an example by hand, without refering back to your cheat
sheet. But it is a good idea to write down a brief description of each algorithm. For example, you might
be asked to show the result of BuildHeap on an array, or show how to apply the Partition algorithm
used in QuickSort.

Keep track of algorithm running times and their limitations. For example, if you need an efficient
stable sorting algorithm, MergeSort is fine, but both HeapSort and QuickSort are not stable. You
can sort short integers inΘ(n) time through CountingSort, but you cannot use this algorithm to sort
arbitrary numbers, such as reals.

Sorting issues: We discussed the following issues related to sorting.

Slow Algorithms: BubbleSort, InsertionSort, SelectionSort are all simpleΘ(n2) algorithm. They are
fine for small inputs. They are all in-place sorting algorithms (they use no additional array stor-
age), and BubbleSort and InsertionSort are stable sorting algorithms (if implemented carefully).

MergeSort: A divide-and-conquerΘ(n log n) algorithm. It is stable, but requires additional array
storage for merging, and so it is not an in-place algorithm.

HeapSort: A Θ(n log n) algorithm which uses a clever data structure, called a heap. Heaps are a
nice way of implementing a priority queue data structure, allowing insertions, and extracting the
maximum inΘ(log n) time, wheren is the number of active elements in the heap. Remember that
a heap can be built inΘ(n) time. HeapSort is not stable, but it is an in-place sorting algorithm.

QuickSort: The algorithm is based on selecting a pivot value. If chosen randomly, then the expected
time is Θ(n log n), but the worst-case isΘ(n2). However the worst-case occurs so rarely that
people usually do not worry about it. This algorithm is not stable, but it is considered an in-place
sorting algorithm even though it does require some additional array storage. It implicitly requires
storage for the recursion stack, but the expected depth of the recursion isO(log n), so this is not
too bad.

Lower bounds: Assuming comparisons are used, you cannot sort faster thanΩ(n log n) time. This is
because any comparison-based algorithm can be written as a decision tree, and because there are
n! possible outcomes to sorting, even a perfectly balanced tree would require height of at least
O(log n!) = O(n log n).

Counting sort: If you are sortingn small integers (in the range of 1 tok) then this algorithm will sort
them inΘ(n + k) time. Recall that the algorithm is based on using the elements as indices to an
array. In this way it circumvents the lower bound argument.

Radix sort: If you are sortingn integers that have been broken intod digits (each of constant size),
you can sort them inO(dn) time.

What sort of questions might there be? Some will ask you to about the properties of these sorting
algorithms, or asking which algorithm would be most appropriate to use in a certain circumstance.
Others will ask you to either reason about the internal operations of the algorithms, or ask you to extend
these algorithms for other purposes. Finally, there may be problems asking you to devise algorithms to
solve some sort of novel sorting problem.
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Lecture 19: Second Midterm Exam

(Tuesday, April 7, 1998)
Second midterm exam today. No lecture.

Lecture 20: Introduction to Graphs

(Thursday, April 9, 1998)
Read: Sections 5.4, 5.5.

Graph Algorithms: For the next few weeks, we will be discussing a number of various topics. One involves
algorithms ongraphs. Intuitively, a graph is a collection of vertices or nodes, connected by a collection
of edges. Graphs are very important discrete structures because they are a very flexible mathematical
model for many application problems. Basically, any time you have a set of objects, and there is some
“connection” or “relationship” or “interaction” between pairs of objects, a graph is a good way to model
this. Examples of graphs in application includecommunicationandtransportation networks, VLSIand
other sorts oflogic circuits, surface meshesused for shape description in computer-aided design and
geographic information systems,precedence constraintsin scheduling systems. The list of application
is almost too long to even consider enumerating it.

Most of the problems in computational graph theory that we will consider arise because they are of
importance to one or more of these application areas. Furthermore, many of these problems form the
basic building blocks from which more complex algorithms are then built.

Graphs and Digraphs: A directed graph(or digraph)G = (V,E) consists of a finite set ofverticesV (also
callednodes) andE is a binary relation onV (i.e. a set oforderedpairs fromV ) called theedges.

For example, the figure below (left) shows a directed graph. Observe thatself-loopsare allowed by
this definition. Some definitions of graphs disallow this. Multiple edges are not permitted (although
the edges(v, w) and(w, v) are distinct). This shows the graphG = (V,E) whereV = {1, 2, 3} and
E = {(1, 1), (1, 2), (2, 3), (3, 2), (1, 3)}.

GraphDigraph

2 4

3

2

1

3

1

Figure 18: Digraph and graph example.

In anundirected graph(or justgraph) G = (V,E) the edge set consists of unordered pairs of distinct
vertices (thus self-loops are not allowed). The figure above (right) shows the graphG = (V,E), where
V = {1, 2, 3, 4} and the edge set isE = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}}.
We say that vertexw is adjacentto vertexv if there is an edge fromv to w. In an undirected graph, we
say that an edge isincidenton a vertex if the vertex is an endpoint of the edge. In a directed graph we
will often say that an edge eitherleavesor entersa vertex.

A digraph or undirected graph is said to beweightedif its edges are labelled with numeric weights. The
meaning of the weight is dependent on the application, e.g. distance between vertices or flow capacity
through the edge.
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Observe that directed graphs and undirected graphs are different (but similar) objects mathematically.
Certain notions (such as path) are defined for both, but other notions (such as connectivity) are only
defined for one.

In a digraph, the number of edges coming out of a vertex is called theout-degreeof that vertex, and
the number of edges coming in is called thein-degree. In an undirected graph we just talk about the
degreeof a vertex, as the number of edges which areincidenton this vertex. By thedegreeof a graph,
we usually mean the maximum degree of its vertices.

In a directed graph, each edge contributes 1 to the in-degree of a vertex and contributes one to the
out-degree of each vertex, and thus we have

Observation: For a digraphG = (V,E),∑
v∈V

in-deg(v) =
∑
v∈V

out-deg(v) = |E|.

(|E| means the cardinality of the setE, i.e. the number of edges).

In an undirected graph each edge contributes once to the outdegree of two different edges and thus we
have

Observation: For an undirected graphG = (V,E),∑
v∈V

deg(v) = 2|E|.

Lecture 21: More on Graphs

(Tuesday, April 14, 1998)
Read: Sections 5.4, 5.5.

Graphs: Last time we introduced the notion of a graph (undirected) and a digraph (directed). We defined
vertices, edges, and the notion of degrees of vertices. Today we continue this discussion. Recall that
graphs and digraphs both consist of two objects, a set of vertices and a set of edges. For graphs edges
are undirected and for graphs they are directed.

Paths and Cycles:Let’s concentrate on directed graphs for the moment. Apath in a directed graph is a
sequence of vertices〈v0, v1, . . . , vk〉 such that(vi−1, vi) is an edge fori = 1, 2, . . . , k. The lengthof
the path is the number of edges,k. We say thatw is reachablefrom u if there is a path fromu to w.
Note that every vertex is reachable from itself by a path that uses zero edges. A path issimpleif all
vertices (except possibly the first and last) are distinct.

A cyclein a digraph is a path containing at least one edge and for whichv0 = vk. A cycle issimpleif,
in addition,v1, . . . , vk are distinct. (Note: A self-loop counts as a simple cycle of length 1).

In undirected graphs we define path and cycle exactly the same, but for asimple cyclewe add the
requirement that the cycle visit at least three distinct vertices. This is to rule out the degenerate cycle
〈u,w, u〉, which simply jumps back and forth along a single edge.

There are two interesting classes cycles. AHamiltonian cycleis a cycle that visits every vertex in a
graph exactly once. AEulerian cycleis a cycle (not necessarily simple) that visits every edge of a
graph exactly once. (By the way, this is pronounced “Oiler-ian” and not “Yooler-ian”.) There are also
“path” versions in which you need not return to the starting vertex.
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One of the early problems which motivated interest in graph theory was theKönigsberg Bridge Prob-
lem. This city sits on the Pregel River as is joined by 7 bridges. The question is whether it is possible
to cross all 7 bridges without visiting any bridge twice. Leonard Euler showed that it is not possible, by
showing that this question could be posed as a problem of whether the multi-graph shown below has
an Eulerian path, and then proving necessary and sufficient conditions for a graph to have such a path.

 4

 1

 3

 2

 2

 4 3

 1

Figure 19: Bridge’s at K̈onigsberg Problem.

Euler proved that for a graph to have an Eulerian path, all but at most two of the vertices must have
even degree. In this graph, all 4 of the vertices have odd degree.

Connectivity and acyclic graphs: A graph is said to beacyclic if it contains no simple cycles. A graph is
connectedif every vertex can reach every other vertex. An acyclic connected graph is called afree tree
or simply tree for short. The term “free” is intended to emphasize the fact that the tree has no root, in
contrast to arooted tree, as is usually seen in data structures.

Observe that a free tree is a minimally connected graph in the sense that the removal of any causes the
resulting graph to be disconnected. Furthermore, there is a unique path between any two vertices in a
free tree. The addition of any edge to a free tree results in the creation of a single cycle.

The “reachability” relation is an equivalence relation on vertices, that is, it is reflexive (a vertex is
reachable from itself), symmetric (ifu is reachable fromv, thenv is reachable fromu), and transitive
(if u is reachable fromv andv is reachable fromw, thenu is reachable fromw). This implies that
the reachability relation partitions the vertices of the graph in equivalence classes. These are called
connected components.

A connected graph has a single connected component. An acyclic graph (which is not necessarily
connected) consists of many free trees, and is called (what else?) aforest.

A digraph isstrongly connectedif for any two verticesu andv, u can reachv andv can reachu. (There
is another type of connectivity in digraphs calledweak connectivity, but we will not consider it.) As
with connected components in graphs, strongly connectivity defines an equivalence partition on the
vertices. These are called thestrongly connected componentsof the digraph.

A directed graph that is acyclic is called aDAG, for directed acyclic graph. Note that it is different
from a directed tree.

Isomorphism: Two graphsG = (V,E) andG′ = (V ′, E′) are said to beisomorphicif there is a bijection
(that is, a 1–1 and onto) functionf : V → V ′, such that(u, v) ∈ E if and only if (f(u), f(v)) ∈ E′.
Isomorphic graphs are essentially “equal” except that their vertices have been given different names.

Determining whether graphs are isomorphic is not as easy as it might seem at first. For example,
consider the graphs in the figure. Clearly (a) and (b) seem to appear more similar to each other than to
(c), but in fact looks are deceiving. Observe that in all three cases all the vertices have degree 3, so that
is not much of a help. Observe there are simple cycles of length 4 in (a), but the smallest simple cycles
in (b) and (c) are of length 5. This implies that (a) cannot be isomorphic to either (b) or (c). It turns
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Figure 20: Graph isomorphism.

out that (b) and (c) are isomorphic. One possible isomorphism mapping is given below. The notation
(u → v) means that vertexu from graph (b) is mapped to vertexv in graph (c). Check that each edge
from (b) is mapped to an edge of (c).

{(1→ 1), (2→ 2), (3→ 3), (4→ 7), (5→ 8), (6→ 5), (7→ 10), (8→ 4), (9→ 6), (10→ 9)}.

Subgraphs and special graphs:A graphG′ = (V ′, E′) is a subgraphof G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. Given a subsetV ′ ⊆ V , the subgraphinducedby V ′ is the graphG′ = (V ′, E′) where

E′ = {(u, v) ∈ E | u, v ∈ V ′}.
In other words, take all the edges ofG that join pairs of vertices inV ′.

An undirected graph that has the maximum possible number of edges is called acomplete graph.
Complete graphs are often denoted with the letterK. For example,K5 is the complete graph on 5
vertices. Given a graphG, a subset of verticesV ′ ⊆ V is said to form aclique if the subgraph induced
by V ′ is complete. In other words, all the vertices ofV ′ are adjacent to one another. A subset of
verticesV ′ forms anindependent setif the subgraph induced byV ′ has no edges. For example, in the
figure below (a), the subset{1, 2, 4, 6} is a clique, and{3, 4, 7, 8} is an independent set.

(a) (b)

 9

 8

 7

 3

 6

 5

 4

 2

 1

Figure 21: Cliques, Independent set, Bipartite graphs.

A bipartite graphis an undirected graph in which the vertices can be partitioned into two setsV1 andV2

such that all the edges go between a vertex inV1 andV2 (never within the same group). For example,
the graph shown in the figure (b), is bipartite.
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The complementof a graphG = (V,E), often denoted̄G is a graph on the same vertex set, but in
which the edge set has been complemented. Thereversalof a directed graph, often denotedGR is a
graph on the same vertex set in which all the edge directions have been reversed. This may also be
called thetransposeand denotedGT .

A graph isplanar if it can be drawn on the plane such that no two edges cross over one another. Planar
graphs are important special cases of graphs, since they arise in applications of geographic information
systems (as subdivisions of region into smaller subregions), circuits (where wires cannot cross), solid
modeling (for modeling complex surfaces as collections of small triangles). In general there may
be many different ways to draw a planar graph in the plane. For example, the figure below shows
two essentially different drawings of the same graph. Such a drawing is called aplanar embedding.
The neighborsof a vertex are the vertices that it is adjacent to. An embedding is determined by the
counterclockwise cyclic ordering of the neighbors about all the vertices. For example, in the embedding
on the left, the neighbors of vertex 1 in counterclockwise order are〈2, 3, 4, 5〉, but on the right the order
is 〈2, 5, 4, 3〉. Thus the two embeddings are different.

 5

 4  3

 2

 1 1

 5

 4  3

 2

Figure 22: Planar Embeddings.

An important fact about planar embeddings of graphs is that they naturally subdivide the plane into
regions, calledfaces. For example, in the figure on the left, the triangular region bounded by vertices
〈1, 2, 5〉 is a face. There is always one face, called theunbounded facethat surrounds the whole graph.
This embedding has 6 faces (including the unbounded face). Notice that the other embedding also has
6 faces. Is it possible that two different embeddings have different numbers of faces? The answer is
no. The reason stems from an important observation calledEuler’s formula, which relates the numbers
of vertices, edges, and faces in a planar graph.

Euler’s Formula: A connected planar embedding of a graph withV vertices,E edges, andF faces,
satisfies:

V − E + F = 2.

In the examples above, both graphs have 5 vertices, and 9 edges, and so by Euler’s formula they have
F = 2− V + E = 2− 5 + 9 = 6 faces.

Size Issues:When referring to graphs and digraphs we will always letn = |V | ande = |E|. (Our textbook
usually uses the abuse of notationV = |V | andE = |E|. Beware, the sometimesV is a set, and
sometimes it is a number. Some authors usem = |E|.)
Because the running time of an algorithm will depend on the size of the graph, it is important to know
hown ande relate to one another.
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Observation: For a digraphe ≤ n2 = O(n2). For an undirected graphe ≤ (n2) = n(n − 1)/2 =
O(n2).

A graph or digraph is allowed to have no edges at all. One interesting question is what the minimum
number of edges that a connected graph must have.

We say that a graph issparseif e is much less thann2.

For example, the important class ofplanar graphs(graphs which can be drawn on the plane so that no
two edges cross over one another)e = O(n). In most application areas, very large graphs tend to be
sparse. This is important to keep in mind when designing graph algorithms, because whenn is really
large andO(n2) running time is often unacceptably large for real-time response.

Lecture 22: Graphs Representations and BFS

(Thursday, April 16, 1998)
Read: Sections 23.1 through 23.3 in CLR.

Representations of Graphs and Digraphs:We will describe two ways of representing graphs and digraphs.
First we show how to represent digraphs. LetG = (V,E) be a digraph withn = |V | and lete = |E|.
We will assume that the vertices ofG are indexed{1, 2, . . . , n}.

Adjacency Matrix: An n× n matrix defined for1 ≤ v, w ≤ n.

A[v, w] =
{

1 if (v, w) ∈ E
0 otherwise.

If the digraph has weights we can store the weights in the matrix. For example if(v, w) ∈ E then
A[v, w] = W (v, w) (the weight on edge(v, w)). If (v, w) /∈ E then generallyW (v, w) need
not be defined, but often we set it to some “special” value, e.g.A(v, w) = −1, or∞. (By∞
we mean (in practice) some number which is larger than any allowable weight. In practice, this
might be some machine dependent constant likeMAXINT.)

Adjacency List: An arrayAdj[1 . . . n] of pointers where for1 ≤ v ≤ n, Adj[v] points to a linked list
containing the vertices which are adjacent tov (i.e. the vertices that can be reached fromv by a
single edge). If the edges have weights then these weights may also be stored in the linked list
elements.
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Figure 23: Adjacency matrix and adjacency list for digraphs.

We can represent undirected graphs using exactly the same representation, but we will store each edge
twice. In particular, we representing the undirected edge{v, w} by the two oppositely directed edges
(v, w) and(w, v). Notice that even though we represent undirected graphs in the same way that we
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represent digraphs, it is important to remember that these two classes of objects are mathematically
distinct from one another.

This can cause some complications. For example, suppose you write an algorithm that operates by
marking edges of a graph. You need to be careful when you mark edge(v, w) in the representation
that you also mark(w, v), since they are both the same edge in reality. When dealing with adjacency
lists, it may not be convenient to walk down the entire linked list, so it is common to includecross links
between corresponding edges.
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Figure 24: Adjacency matrix and adjacency list for graphs.

An adjacency matrix requiresΘ(n2) storage and an adjacency list requiresΘ(n+e) storage (one entry
for each vertex inAdj and each list hasoutdeg(v) entries, which when summed isΘ(e). For sparse
graphs the adjacency list representation is more cost effective.

Shortest Paths: To motivate our first algorithm on graphs, consider the following problem. You are given
an undirected graphG = (V,E) (by the way, everything we will be saying can be extended to directed
graphs, with only a few small changes) and asource vertexs ∈ V . The lengthof a path in a graph
(without edge weights) is the number of edges on the path. We would like to find the shortest path from
s to each other vertex inG. If there are ties (two shortest paths of the same length) then either path
may be chosen arbitrarily.

The final result will be represented in the following way. For each vertexv ∈ V , we will stored[v]
which is thedistance(length of the shortest path) froms to v. Note thatd[s] = 0. We will also store a
predecessor (or parent) pointerπ[v], which indicates the first vertex along the shortest path if we walk
from v backwards tos. We will let π[s] = NIL.

It may not be obvious at first, but these single predecessor pointers are sufficient to reconstruct the
shortest path to any vertex. Why? We make use of a simple fact which is an example of a more general
principal of many optimization problems, called theprincipal of optimality. For a path to be a shortest
path, every subpath of the path must be a shortest path. (If not, then the subpath could be replaced with
a shorter subpath, implying that the original path was not shortest after all.)

Using this observation, we know that the last edge on the shortest path froms to v is the edge(u, v),
then the first part of the pathmustconsist of a shortest path froms to u. Thus by following the
predecessor pointers we will construct thereverseof the shortest path froms to v.

Obviously, there is simple brute-force strategy for computing shortest paths. We could simply start
enumerating all simple paths starting ats, and keep track of the shortest path arriving at each vertex.
However, since there can be as many asn! simple paths in a graph (consider a complete graph), then
this strategy is clearly impractical.

Here is a simple strategy that is more efficient. Start with the source vertexs. Clearly, the distance to
each ofs’s neighbors is exactly 1. Label all of them with this distance. Now consider the unvisited
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Figure 25: Breadth-first search for shortest paths.

neighbors of these neighbors. They will be at distance 2 froms. Next consider the unvisited neighbors
of the neighbors of the neighbors, and so on. Repeat this until there are no more unvisited neighbors left
to visit. This algorithm can bevisualizedas simulating a wave propagating outwards froms, visiting
the vertices in bands at ever increasing distances froms.

Breadth-first search: Given an graphG = (V,E), breadth-first search starts at some source vertexs and
“discovers” which vertices are reachable froms. Define thedistancebetween a vertexv ands to be the
minimum number of edges on a path froms to v. Breadth-first search discovers vertices in increasing
order of distance, and hence can be used as an algorithm for computing shortest paths. At any given
time there is a “frontier” of vertices that have been discovered, but not yet processed. Breadth-first
search is named because it visits vertices across the entire “breadth” of this frontier.

Initially all vertices (except the source) are colored white, meaning that they have not been seen. When
a vertex has first been discovered, it is colored gray (and is part of the frontier). When a gray vertex is
processed, then it becomes black.

Breadth-First Search

BFS(graph G=(V,E), vertex s) {
int d[1..size(V)] // vertex distances
int color[1..size(V)] // vertex colors
vertex pred[1..size(V)] // predecessor pointers
queue Q = empty // FIFO queue

for each u in V { // initialization
color[u] = white
d[u] = INFINITY
pred[u] = NULL

}
color[s] = gray // initialize source s
d[s] = 0
enqueue(Q, s) // put source in the queue
while (Q is nonempty) {

u = dequeue(Q) // u is the next vertex to visit
for each v in Adj[u] {

if (color[v] == white) { // if neighbor v undiscovered
color[v] = gray // ...mark it discovered
d[v] = d[u]+1 // ...set its distance
pred[v] = u // ...and its predecessor
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enqueue(Q, v) // ...put it in the queue
}

}
color[u] = black // we are done with u

}
}

The search makes use of aqueue, a first-in first-out list, where elements are removed in the same order
they are inserted. The first item in the queue (the next to be removed) is called theheadof the queue.
We will also maintain arrayscolor [u] which holds the color of vertexu (either white, gray or black),
pred[u] which points to the predecessor ofu (i.e. the vertex who first discoveredu, andd[u], the
distance froms to u. Only the color is really needed for the search, but the others are useful depending
on the application.
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Figure 26: Breadth-first search: Example.

Observe that the predecessor pointers of the BFS search define an inverted tree. If we reverse these
edges we get a rooted unordered tree called aBFS treefor G. (Note that there are many potential BFS
trees for a given graph, depending on where the search starts, and in what order vertices are placed on
the queue.) These edges ofG are calledtree edgesand the remaining edges ofG are calledcross edges.
It is not hard to prove that ifG is an undirected graph, then cross edges always go between two nodes
that are at most one level apart in the BFS tree. The reason is that if any cross edge spanned two or
more levels, then when the vertex at the higher level (closer to the root) was being processed, it would
have discovered the other vertex, implying that the other vertex would appear on the very next level of
the tree, a contradiction. (In a directed graph cross edges will generally go down at most 1 level, but
they may come up an arbitrary number of levels.)

Analysis: The running time analysis of BFS is similar to the running time analysis of many graph traversal
algorithms. Letn = |V | ande = |E|. Observe that the initialization portion requiresΘ(n) time.
The real meat is in the traversal loop. Since we never visit a vertex twice, the number of times we go
through the while loop is at mostn (exactlyn assuming each vertex is reachable from the source). The
number of iterations through the inner for loop is proportional todeg(u) + 1. (The+1 is because even
if deg(u) = 0, we need to spend a constant amount of time to set up the loop.) Summing up over all
vertices we have the running time

T (n) = n +
∑
u∈V

(deg(u) + 1) = n +
∑
u∈V

deg(u) + n = 2n + 2e ∈ Θ(n + e).

68



Lecture Notes CMSC 251

0

1

22

3

1

t

u w

xv

s

Figure 27: BFS tree.

For an directed graph the analysis is essentially the same.

Lecture 23: All-Pairs Shortest Paths

(Tuesday, April 21, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

All-Pairs Shortest Paths: Last time we showed how to compute shortest paths starting at a designated
source vertex, and assuming that there are no weights on the edges. Today we talk about a consid-
erable generalization of this problem. First, we compute shortest paths not from a single vertex, but
from every vertex in the graph. Second, we allow edges in the graph to have numericweights.

Let G = (V,E) be a directed graph with edge weights. If(u, v) E, is an edge ofG, then the weight of
this edge is denotedW (u, v). Intuitively, this weight denotes the distance of the road fromu to v, or
more generally the cost of traveling fromu to v. For now, let us think of the weights as being positive
values, but we will see that the algorithm that we are about to present can handle negative weights as
well, in special cases. Intuitively a negative weight means that you get paid for traveling fromu to v.
Given a pathπ = 〈u0, u1, . . . , uk〉, thecostof this path is the sum of the edge weights:

cost(π) = W (u0, u1) + W (u1, u2) + · · ·W (uk−1, uk) =
k∑

i=1

W (ui−1, ui).

(We will avoid using the termlength, since it can be confused with the number of edges on the path.)
Thedistancebetween two vertices is the cost of the minimum cost path between them.

We consider the problem of determining the cost of the shortest path between all pairs of vertices
in a weighted directed graph. We will present two algorithms for this problem. The first is a rather
naiveΘ(n4) algorithm, and the second is aΘ(n3) algorithm. The latter is called theFloyd-Warshall
algorithm. Both algorithms is based on a completely different algorithm design technique, called
dynamic programming.

For these algorithms, we will assume that the digraph is represented as an adjacency matrix, rather than
the more common adjacency list. Recall that adjacency lists are generally more efficient for sparse
graphs (and large graphs tend to be sparse). However, storing all the distance information between
each pair of vertices, will quickly yield a dense digraph (since typically almost every vertex can reach
almost every other vertex). Therefore, since the output will be dense, there is no real harm in using the
adjacency matrix.

Because both algorithms are matrix-based, we will employ common matrix notation, usingi, j andk
to denote vertices rather thanu, v, andw as we usually do. LetG = (V,E,w) denote the input digraph
and its edge weight function. The edge weights may be positive, zero, or negative, but we assume that
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there are no cycles whose total weight is negative. It is easy to see why this causes problems. If the
shortest path ever enters such a cycle, it would never exit. Why? Because by going round the cycle
over and over, the cost will become smaller and smaller. Thus, the shortest path would have a weight
of−∞, and would consist of an infinite number of edges. Disallowing negative weight cycles will rule
out the possibility this absurd situation.

Input Format: The input is ann×n matrixW of edge weights, which are based on the edge weights in the
digraph. We letwij denote the entry in rowi and columnj of W .

wij =




0 if i = j,
W (i, j) if i 6= j and(i, j) ∈ E,
+∞ if i 6= j and(i, j) /∈ E.

Settingwij = ∞ if there is no edge, intuitively means that there is no direct link between these two
nodes, and hence the direct cost is infinite. The reason for settingwii = 0 is that intuitively the cost
of getting from any vertex to should be 0, since we have no distance to travel. Note that in digraphs
it is possible to have self-loop edges, and soW (i, j) may generally be nonzero. Notice that it cannot
be negative (otherwise we would have a negative cost cycle consisting of this single edge). If it is
positive, then it never does us any good to follow this edge (since it increases our cost and doesn’t take
us anywhere new).

The output will be ann × n distance matrixD = dij wheredij = δ(i, j), the shortest path cost from
vertex i to j. Recovering the shortest paths will also be an issue. To help us do this, we will also
compute an auxiliary matrixpred [i, j]. The value ofpred [i, j] will be a vertex that is somewhere along
the shortest path fromi to j. If the shortest path travels directly fromi to j without passing through
any other vertices, thenpred [i, j] will be set tonull. We will see later than using these values it will be
possible to reconstruct any shortest path inΘ(n) time.

Dynamic Programming for Shortest Paths: The algorithm is based on a technique calleddynamic pro-
gramming. Dynamic programming problems are typically optimization problems (find the smallest or
largest solution, subject to various constraints). The technique is related to divide-and-conquer, in the
sense that it breaks problems down into smaller problems that it solves recursively. However, because
of the somewhat different nature of dynamic programming problems, standard divide-and-conquer
solutions are not usually efficient. The basic elements that characterize a dynamic programming algo-
rithm are:

Substructure: Decompose the problem into smaller subproblems.

Optimal substructure: Each of the subproblems should be solved optimally.

Bottom-up computation: Combine solutions on small subproblems to solve larger subproblems, and
eventually to arrive at a solution to the complete problem.

The question is how to decompose the shortest path problem into subproblems in a meaningful way.
There is one very natural way to do this. What is remarkable, is that this doesnot lead to the best solu-
tion. First we will introduce the natural decomposition, and later present the Floyd-Warshall algorithm
makes use of a different, but more efficient dynamic programming formulation.

Path Length Formulation: We will concentrate just on computing thecostof the shortest path, not the path
itself. Let us first sketch the natural way to break the problem into subproblems. We want to find some
parameter, which constrains the estimates to the shortest path costs. At first the estimates will be crude.
As this parameter grows, the shortest paths cost estimates should converge to their correct values. A
natural way to do this is to restrict the number of edges that are allowed to be in the shortest path.

For 0 ≤ m ≤ n − 1, defined
(m)
ij to be the cost of the shortest path from vertexi to vertexj that

contains at mostm edges. LetD(m) denote the matrix whose entries are these values. The idea is to
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computeD(0) thenD(1), and so on, up toD(n−1). Since we know that no shortest path can use more
thann − 1 edges (for otherwise it would have to repeat a vertex), we know thatD(n−1) is the final
distance matrix. This is illustrated in the figure (a) below.

d    = 9
(2)

1,3d    = 4
(3)

4

9

2

1

1

4

d    = INF

1,3

(1)
1,3 (no path)

(using: 1,2,3)

(unsing: 1,4,2,3)

(a) (b)

2
8

 i

 j

k

(m−1)

(m−1)

kjw

d

d

ik

ij

1

3

Figure 28: Dynamic Programming Formulation.

The question is, how do we compute these distance matrices? As a basis, we could start with paths of
containing 0 edges,D(0) (as our text does). However, observe thatD(1) = W , since the edges of the
digraph are just paths of length 1. It is just as easy to start withD(1), since we are givenW as input.
So as our basis case we have

d
(1)
ij = wij .

Now, to make the induction go, we claim that it is possible to computeD(m) from D(m−1), for m ≥ 2.
Consider how to compute the quantityd

(m)
ij . This is the length of the shortest path fromi to j using at

mostm edges. There are two cases:

Case 1: If the shortest path uses strictly fewer thanm edges, then its cost is justd
(m−1)
ij .

Case 2: If the shortest path uses exactlym edges, then the path usesm − 1 edges to go fromi to
some vertexk, and then follows a single edge(k, j) of weightwkj to get toj. The path from
i to k should be shortest (by the principle of optimality) so the length of the resulting path is
d
(m−1)
ik + wij . But we do not know whatk is. So we minimize over all possible choices.

This is illustrated in the figure (b) above.

This suggests the following rule:

d
(m)
ij = min

{
d
(m−1)
ij

min1≤k≤n

(
d
(m−1)
ik + wkj

) } .

Notice that the two terms of the main min correspond to the two cases. In the second case, we consider
all verticesk, and consider the length of the shortest path fromi to k, usingm− 1 edges, and then the
single edge length cost fromk to j.

We can simplify this formula a bit by observing that sincewjj = 0, we haved(m−1)
ij = d

(m−1)
ij + wjj .

This term occurs in the second case (whenk = j). Thus, the first term is redundant. This gives

d
(m)
ij = min

1≤k≤n

(
d
(m−1)
ik + wkj

)
,

The next question is how shall we implement this rule. One way would be to write a recursive procedure
to do it. Here is a possible implementation. To compute the shortest path fromi to j, the initial call
would beDist(n− 1, i, j). The array of weights
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Recursive Shortest Paths

Dist(int m, int i, int j) {
if (m == 1) return W[i,j] // single edge case
best = INF
for k = 1 to n do

best = min(best, Dist(m-1, i, k) + w[k,j]) // apply the update rule
return best

}

Unfortunately this will bevery slow. LetT (m,n) be the running time of this algorithm on a graph with
n vertices, where the first argument ism. The algorithm makesn calls to itself with the first argument
of m− 1. Whenm = 1, the recursion bottoms out, and we haveT (1, n) = 1. Otherwise, we maken
recursive calls toT (m− 1, n). This gives the recurrence:

T (m,n) =
{

1 if m = 1,
nT (m− 1, n) + 1 otherwise.

The total running time isT (n− 1, n). It is a straightforward to solve this by expansion. The result will
beO(nn), a huge value. It is not hard to see why. If you unravel the recursion, you will see that this
algorithm is just blindly trying all possible paths fromi to j. There are exponentially many such paths.

So how do we make this faster? The answer is to usetable-lookup. This is the key to dynamic
programming. Observe that there are onlyO(n3) different possible numbersd(m)

ij that we have to
compute. Once we compute one of these values, we will store it in a table. Then if we want this value
again, rather than recompute it, we will simply look its value up in the table.

The figure below gives an implementation of this idea. The main procedureShortestPath(n,w) is
given the number of verticesn and the matrix of edge weightsW . The matrixD(m) is stored asD[m],
for 1 ≤ m ≤ n− 1. For eachm, D[m] is a 2-dimensional matrix, implying thatD is a 3-dimensional
matrix. We initializeD(1) by copyingW . Then each call toExtendPaths() computesD(m) from
D(m−1), from the above formula.

Dynamic Program Shortest Paths

ShortestPath(int n, int W[1..n, 1..n]) {
array D[1..n-1][1..n, 1..n]
copy W to D[1] // initialize D[1]
for m = 2 to n-1 do

D[m] = ExtendPaths(n, D[m-1], W) // comput D[m] from D[m-1]
return D[n-1]

}

ExtendShortestPath(int n, int d[1..n, 1..n], int W[1..n, 1..n]) {
matrix dd[1..n, 1..n] = d[1..n, 1..n] // copy d to temp matrix
for i = 1 to n do // start from i

for j = 1 to n do // ...to j
for k = 1 to n do // ...passing through k

dd[i,j] = min(dd[i,j], d[i,k] + W[k,j])
return dd // return matrix of distances

}

The procedureExtendShortestPath() consists of 3 nested loops, and so its running time isΘ(n3). It
is calledn− 2 times by the main procedure, and so the total running time isΘ(n4). Next time we will
see that we can improve on this. This is illustrated in the figure below.

72



Lecture Notes CMSC 251

1

5
4

1

4

3

2

1

4  12    0    5
5    0    1    ?
0    3    9    1

(2)
D  =

3
4

7

5 7

2 3

1

5
4

1

4

3

3

(1)

13

7    2    3    0
4    7    0    5

6

?    2    9    0
4    ?    0    ?
?    0    1    ?
0    8    ?    1

? = infinity

W  =

9 1

2

4 81

4

3

2

1

13  2    3    0
3

9
5 12

2
2

1

5    0    1    6
0    3    4    1

(3)
D  =

=  D

Figure 29: Shortest Path Example.

Lecture 24: Floyd-Warshall Algorithm

(Thursday, April 23, 1998)
Read: Chapt 26 (up to Section 26.2) in CLR.

Floyd-Warshall Algorithm: We continue discussion of computing shortest paths between all pairs of ver-
tices in a directed graph. The Floyd-Warshall algorithm dates back to the early 60’s. Warshall was
interested in the weaker question of reachability: determine for each pair of verticesu andv, whether
u can reachv. Floyd realized that the same technique could be used to compute shortest paths with
only minor variations.

The Floyd-Warshall algorithm improves upon this algorithm, running inΘ(n3) time. The genius of the
Floyd-Warshall algorithm is in finding a different formulation for the shortest path subproblem than
the path length formulation introduced earlier. At first the formulation may seem most unnatural, but
it leads to a faster algorithm. As before, we will compute a set of matrices whose entries ared

(k)
ij . We

will change themeaningof each of these entries.

For a pathp = 〈v1, v2, . . . , v`〉 we say that the verticesv2, v3, . . . , v`−1 are theintermediate vertices

of this path. Note that a path consisting of a single edge has no intermediate vertices. We defined
(k)
ij

to be the shortest path fromi to j such that any intermediate vertices on the path are chosen from the
set{1, 2, . . . , k}. In other words, we consider a path fromi to j which either consists of the single
edge(i, j), or it visits some intermediate vertices along the way, but these intermediate can only be
chosen from{1, 2, . . . , k}. The path is free to visit any subset of these vertices, and to do so in any
order. Thus, the difference between Floyd’s formulation and the previous formulation is that here
the superscript(k) restricts the set of vertices that the path is allowed to pass through, and there the
superscript(m) restricts the number of edges the path is allowed to use. For example, in the digraph

shown in the following figure, notice how the value ofd
(k)
32 changes ask varies.

Floyd-Warshall Update Rule: How do we computed(k)
ij assuming that we have already computed the pre-

vious matrixd(k−1)? As before, there are two basic cases, depending on the ways that we might get
from vertexi to vertexj, assuming that the intermediate vertices are chosen from{1, 2, . . . , k}:
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Figure 30: Floyd-Warshall Formulation.

We don’t go through k at all: Then the shortest path fromi to j uses only intermediate vertices
{1, . . . , k − 1} and hence the length of the shortest path isd

(k−1)
ij .

We do go throughk: First observe that a shortest path does not pass through the same vertex twice, so
we can assume that we pass throughk exactly once. (The assumption that there are no negative
cost cycles is being used here.) That is, we go fromi to k, and then fromk to j. In order
for the overall path to be as short as possible we should take the shortest path fromi to k, and
the shortest path fromk to j. (This is the principle of optimality.) Each of these paths uses
intermediate vertices only in{1, 2, . . . , k − 1}. The length of the path isd(k−1)

ik + d
(k−1)
kj .

This suggests the following recursive rule for computingd(k):

d
(0)
ij = wij ,

d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
for k ≥ 1.

The final answer isd(n)
ij because this allows all possible vertices as intermediate vertices. Again, we

could write a recursive program to computed
(k)
ij , but this will be prohibitively slow. Instead, we

compute it by storing the values in a table, and looking the values up as we need them. Here is the
complete algorithm. We have also included predecessor pointers,pred [i, j] for extracting the final
shortest paths. We will discuss them later.

Floyd-Warshall Algorithm

Floyd_Warshall(int n, int W[1..n, 1..n]) {
array d[1..n, 1..n]
for i = 1 to n do { // initialize

for j = 1 to n do {
d[i,j] = W[i,j]
pred[i,j] = null

}
}
for k = 1 to n do // use intermediates {1..k}

for i = 1 to n do // ...from i
for j = 1 to n do // ...to j

if (d[i,k] + d[k,j]) < d[i,j]) {
d[i,j] = d[i,k] + d[k,j] // new shorter path length
pred[i,j] = k // new path is through k
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}
return d // matrix of final distances

}

Clearly the algorithm’s running time isΘ(n3). The space used by the algorithm isΘ(n2). Observe
that we deleted all references to the superscript(k) in the code. It is left as an exercise that this does
not affect the correctness of the algorithm. An example is shown in the following figure.
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Figure 31: Floyd-Warshall Example.

Extracting Shortest Paths: The predecessor pointerspred [i, j] can be used to extract the final path. Here
is the idea, whenever we discover that the shortest path fromi to j passes through an intermediate
vertexk, we setpred [i, j] = k. If the shortest path does not pass through any intermediate vertex,
thenpred [i, j] = null . To find the shortest path fromi to j, we consultpred [i, j]. If it is null, then
the shortest path is just the edge(i, j). Otherwise, we recursively compute the shortest path fromi to
pred [i, j] and the shortest path frompred [i, j] to j.

Printing the Shortest Path

Path(i,j) {
if pred[i,j] = null // path is a single edge

output(i,j)
else { // path goes through pred

Path(i, pred[i,j]); // print path from i to pred
Path(pred[i,j], j); // print path from pred to j

}
}
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Lecture 25: Longest Common Subsequence

(April 28, 1998)
Read: Section 16.3 in CLR.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are
a number of important problems here. Among the most important has to do with efficiently searching
for a substring or generally a pattern in large piece of text. (This is what text editors and functions
like ”grep” do when you perform a search.) In many instances you do not want to find a piece of text
exactly, but rather something that is ”similar”. This arises for example in genetics research. Genetic
codes are stored as long DNA molecules. The DNA strands can be broken down into a long sequences
each of which is one of four basic types: C, G, T, A.

But exact matches rarely occur in biology because of small changes in DNA replication. Exact sub-
string search will only find exact matches. For this reason, it is of interest to compute similarities
between strings that do not match exactly. The method of string similarities should be insensitive to
random insertions and deletions of characters from some originating string. There are a number of
measures of similarity in strings. The first is theedit distance, that is, the minimum number of single
character insertions, deletions, or transpositions necessary to convert one string into another. The other,
which we will study today, is that of determining the length of the longest common subsequence.

Longest Common Subsequence:Let us think of character strings as sequences of characters. Given two
sequencesX = 〈x1, x2, . . . , xm〉 andZ = 〈z1, z2, . . . , zk〉, we say thatZ is a subsequenceof X if
there is a strictly increasing sequence ofk indices〈i1, i2, . . . , ik〉 (1 ≤ i1 < i2 < . . . < ik ≤ n) such
thatZ = 〈Xi1 , Xi2 , . . . , Xik

〉. For example, letX = 〈ABRACADABRA〉 and letZ = 〈AADAA〉,
thenZ is a subsequence ofX.

Given two stringsX andY , the longest common subsequenceof X andY is a longest sequenceZ
which is both a subsequence ofX andY .

For example, letX be as before and letY = 〈YABBADABBADOO〉. Then the longest common
subsequence isZ = 〈ABADABA〉.
The Longest Common Subsequence Problem (LCS) is the following. Given two sequencesX =
〈x1, . . . , xm〉 andY = 〈y1, . . . , yn〉 determine a longest common subsequence. Note that it is not
always unique. For example the LCS of〈ABC〉 and〈BAC〉 is either〈AC〉 or 〈BC〉.

Dynamic Programming Solution: The simple brute-force solution to the problem would be to try all pos-
sible subsequences from one string, and search for matches in the other string, but this is hopelessly
inefficient, since there are an exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the
problem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem
that considering all pairs ofprefixeswill suffice for us. Aprefixof a sequence is just an initial string of
values,Xi = 〈x1, x2, . . . , xi〉. X0 is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let
c[i, j] denote the length of the longest common subsequence ofXi andYj . Eventually we are interested
in c[m,n] since this will be the LCS of the two entire strings. The idea is to computec[i, j] assuming
that we already know the values ofc[i′, j′] for i′ ≤ i andj′ ≤ j (but not both equal). We begin with
some observations.

Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is
empty.
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Last characters match: Supposexi = yj . Example: LetXi = 〈ABCA〉 and letYj = 〈DACA〉.
Since both end inA, we claim that the LCS must also end inA. (We will explain why later.)
Since theA is part of the LCS we may find the overall LCS by removingA from both sequences
and taking the LCS ofXi−1 = 〈ABC〉 andYj−1 = 〈DAC〉 which is〈AC〉 and then addingA
to the end, giving〈ACA〉 as the answer. (At first you might object: But how did you know that
these twoA’s matched with each other. The answer is that we don’t, but it will not make the LCS
any smaller if we do.)

Thus, ifxi = yj thenc[i, j] = c[i− 1, j − 1] + 1.

Last characters do not match: Suppose thatxi 6= yj . In this casexi andyj cannot both be in the
LCS (since they would have to be the last character of the LCS). Thus eitherxi is not part of the
LCS, oryj is notpart of the LCS (and possiblybothare not part of the LCS).

In the first case the LCS ofXi andYj is the LCS ofXi−1 andYj , which isc[i − 1, j]. In the
second case the LCS is the LCS ofXi andYj−1 which isc[i, j − 1]. We do not know which is
the case, so we try both and take the one that gives us the longer LCS.

Thus, ifxi 6= yj thenc[i, j] = max(c[i− 1, j], c[i, j − 1]).

We left undone the business of showing that if both strings end in the same character, then the LCS
must also end in this same character. To see this, suppose by contradiction that both characters end in
A, and further suppose that the LCS ended in a different characterB. BecauseA is the last character
of both strings, it follows that this particular instance of the characterA cannot be used anywhere else
in the LCS. Thus, we can add it to the end of the LCS, creating a longer common subsequence. But
this would contradict the definition of the LCS as being longest.

Combining these observations we have the following rule:

c[i, j] =




0 if i = 0 or j = 0,
c[i− 1, j − 1] + 1 if i, j > 0 andxi = yj ,
max(c[i, j − 1], c[i− 1, j]) if i, j > 0 andxi 6= yj .

Implementing the Rule: The task now is to simply implement this rule. As with other DP solutions, we
concentrate on computing the maximum length. We will store some helpful pointers in a parallel array,
b[0..m, 0..n].

Longest Common Subsequence

LCS(char x[1..m], char y[1..n]) {
int c[0..m, 0..n]
for i = 0 to m do {

c[i,0] = 0 b[i,0] = SKIPX // initialize column 0
}
for j = 0 to n do {

c[0,j] = 0 b[0,j] = SKIPY // initialize row 0
}
for i = 1 to m do {

for j = 1 to n do {
if (x[i] == y[j]) {

c[i,j] = c[i-1,j-1]+1 // take X[i] and Y[j] for LCS
b[i,j] = ADDXY

}
else if (c[i-1,j] >= c[i,j-1]) { // X[i] not in LCS

c[i,j] = c[i-1,j]
b[i,j] = SKIPX

}
else { // Y[j] not in LCS
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c[i,j] = c[i,j-1]
b[i,j] = SKIPY

}
}

}
return c[m,n];

}

LCS Length Table with back pointers included
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Figure 32: Longest common subsequence example.

The running time of the algorithm is clearlyO(mn) since there are two nested loops withm andn
iterations, respectively. The algorithm also usesO(mn) space.

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers stored in
b[0..m, 0..n]. Intuitively b[i, j] = ADDXY means thatX[i] andY [j] together form the last character
of the LCS. So we take this common character, and continue with entryb[i− 1, j − 1] to the northwest
(↖). If b[i, j] = SKIPX , then we know thatX[i] is not in the LCS, and so we skip it and go to
b[i − 1, j] above us (↑). Similarly, if b[i, j] = SKIPY , then we know thatY [j] is not in the LCS,
and so we skip it and go tob[i, j − 1] to the left (←). Following these back pointers, and outputting a
character with each diagonal move gives the final subsequence.

Print Subsequence

getLCS(char x[1..m], char y[1..n], int b[0..m,0..n]) {
LCS = empty string
i = m
j = n
while(i != 0 && j != 0) {

switch b[i,j] {
case ADDXY:

add x[i] (or equivalently y[j]) to front of LCS
i--; j--; break

case SKIPX:
i--; break

case SKIPY:
j--; break

}
}
return LCS

}
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Lecture 26: Chain Matrix Multiplication

(Thursday, April 30, 1998)
Read: Section 16.1 of CLR.

Chain Matrix Multiplication: This problem involves the question of determining the optimal sequence for
performing a series of operations. This general class of problem is important in compiler design for
code optimization and in databases for query optimization. We will study the problem in a very re-
stricted instance, where the dynamic programming issues are easiest to see.

Suppose that we wish to multiply a series of matrices

A1A2 . . . An

Matrix multiplication is an associative but not a commutative operation. This means that we are free to
parenthesize the above multiplication however we like, but we are not free to rearrange the order of the
matrices. Also recall that when two (nonsquare) matrices are being multiplied, there are restrictions on
the dimensions. Ap× q matrix hasp rows andq columns. You can multiply ap× q matrixA times a
q × r matrixB, and the result will be ap× r matrixC. (The number of columns ofA must equal the
number of rows ofB.) In particular for1 ≤ i ≤ p and1 ≤ j ≤ r,

C[i, j] =
q∑

k=1

A[i, k]B[k, j].

Observe that there arepr total entries inC and each takesO(q) time to compute, thus the total time
(e.g. number of multiplications) to multiply these two matrices isp · q · r.

B C

=

A

p

q

q

r
p

r

Multiplication
pqrtime = 

=*

Figure 33: Matrix Multiplication.

Note that although any legal parenthesization will lead to a valid result, not all involve the same number
of operations. Consider the case of 3 matrices:A1 be5× 4, A2 be4× 6 andA3 be6× 2.

mult[((A1A2)A3)] = (5 · 4 · 6) + (5 · 6 · 2) = 180,
mult[(A1(A2A3))] = (4 · 6 · 2) + (5 · 4 · 2) = 88.

Even for this small example, considerable savings can be achieved by reordering the evaluation se-
quence. The Chain Matrix Multiplication problem is: Given a sequence of matricesA1, A2, . . . , An

and dimensionsp0, p1, . . . , pn whereAi is of dimensionpi−1 × pi, determine the multiplication se-
quence that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications, it just figures out the best order
in which to perform the multiplications.
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Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the
number of ways of parenthesizing an expression is very large. If you have just one item, then there is
only one way to parenthesize. If you haven items, then there aren− 1 places where you could break
the list with the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item,
etc., and just after the(n − 1)st item. When we split just after thekth item, we create two sublists to
be parenthesized, one withk items, and the other withn − k items. Then we could consider all the
ways of parenthesizing these. Since these are independent choices, if there areL ways to parenthesize
the left sublist andR ways to parenthesize the right sublist, then the total isL · R. This suggests the
following recurrence forP (n), the number of different ways of parenthesizingn items:

P (n) =
{

1 if n = 1,∑n−1
k=1 P (k)P (n− k) if n ≥ 2.

This is related to a famous function in combinatorics called theCatalan numbers(which in turn is
related to the number of different binary trees onn nodes). In particularP (n) = C(n− 1) and

C(n) =
1

n + 1

(
2n

n

)
.

Applying Stirling’s formula, we find thatC(n) ∈ Ω(4n/n3/2). Since4n is exponential andn3/2 is just
polynomial, the exponential will dominate, and this grows very fast. Thus, this will not be practical
except for very smalln.

Dynamic Programming Solution: This problem, like other dynamic programming problems involves de-
termining a structure (in this case, a parenthesization). We want to break the problem into subproblems,
whose solutions can be combined to solve the global problem.

For convenience we can writeAi..j to be the product of matricesi throughj. It is easy to see that
Ai..j is a pi−1 × pj matrix. In parenthesizing the expression, we can consider the highest level of
parenthesization. At this level we are simply multiplying two matrices together. That is, for anyk,
1 ≤ k ≤ n− 1,

A1..n = A1..kAk+1..n.

Thus the problem of determining the optimal sequence of multiplications is broken up into 2 questions:
how do we decide where to split the chain (what isk?) and how do we parenthesize the subchains
A1..k andAk+1..n? The subchain problems can be solved by recursively applying the same scheme.
The former problem can be solved by just considering all possible values ofk. Notice that this problem
satisfies the principle of optimality, because if we want to find the optimal sequence for multiplying
A1..n we must use the optimal sequences forA1..k andAk+1..n. In other words, the subproblems must
be solved optimally for the global problem to be solved optimally.

We will store the solutions to the subproblems in a table, and build the table in a bottom-up manner.
For 1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum number of multiplications needed to compute
Ai..j . The optimum cost can be described by the following recursive definition. As a basis observe that
if i = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing to multiply.)
Thus,m[i, i] = 0. If i < j, then we are asking about the productAi..j . This can be split by considering
eachk, i ≤ k < j, asAi..k timesAk+1..j .

The optimum time to computeAi..k is m[i, k], and the optimum time to computeAk+1..j is m[k+1, j].
We may assume that these values have been computed previously and stored in our array. SinceAi..k

is api−1 × pk matrix, andAk+1..j is apk × pj matrix, the time to multiply them ispi−1 · pk · pj . This
suggests the following recursive rule for computingm[i, j].

m[i, i] = 0
m[i, j] = min

i≤k<j
(m[i, k] + m[k + 1, j] + pi−1pkpj) for i < j.
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It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging
the order in which to compute the values. In the process of computingm[i, j] we will need to access
valuesm[i, k] andm[k+1, j] for k lying betweeni andj. This suggests that we should organize things
our computation according to the number of matrices in the subchain. LetL = j − i + 1 denote the
length of the subchain being multiplied. The subchains of length 1 (m[i, i]) are trivial. Then we build
up by computing the subchains of lengths2, 3, . . . , n. The final answer ism[1, n]. We need to be a
little careful in setting up the loops. If a subchain of lengthL starts at positioni, thenj = i + L − 1.
Since we wantj ≤ n, this means thati + L − 1 ≤ n, or in other words,i ≤ n − L + 1. So our loop
for i runs from 1 ton− L + 1 (to keepj in bounds).

Chain Matrix Multiplication

Matrix-Chain(array p[1..n], int n) {
array s[1..n-1,2..n]
for i = 1 to n do m[i,i] = 0 // initialize
for L = 2 to n do { // L = length of subchain

for i = 1 to n-L+1 do {
j = i + L - 1
m[i,j] = INFINITY
for k = i to j-1 do {

q = m[i, k] + m[k+1, j] + p[i-1]*p[k]*p[j]
if (q < m[i, j]) { m[i,j] = q; s[i,j] = k }

}
}

}
return m[1,n] and s

}

The arrays[i, j] will be explained later. It is used to extract the actual sequence. The running time of
the procedure isΘ(n3). We’ll leave this as an exercise in solving sums, but the key is that there are
three nested loops, and each can iterate at mostn times.

Extracting the final Sequence: To extract the actual sequence is a fairly easy extension. The basic idea is
to leave asplit markerindicating what the best split is, that is, what value ofk lead to the minimum
value ofm[i, j]. We can maintain a parallel arrays[i, j] in which we will store the value ofk providing
the optimal split. For example, suppose thats[i, j] = k. This tells us that the best way to multiply
the subchainAi..j is to first multiply the subchainAi..k and then multiply the subchainAk+1..j , and
finally multiply these together. Intuitively,s[i, j] tells us what multiplication to performlast. Note that
we only need to stores[i, j] when we have at least two matrices, that is, ifj > i.

The actual multiplication algorithm uses thes[i, j] value to determine how to split the current sequence.
Assume that the matrices are stored in an array of matricesA[1..n], and thats[i, j] is global to this
recursive procedure. The procedure returns a matrix.

Extracting Optimum Sequence

Mult(i, j) {
if (i > j) {

k = s[i,j]
X = Mult(i, k) // X = A[i]...A[k]
Y = Mult(k+1, j) // Y = A[k+1]...A[j]
return X*Y; // multiply matrices X and Y

}
else

return A[i];
}
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Figure 34: Chain Matrix Multiplication.

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace
through this example (and the one given in the text). The initial set of dimensions are〈5, 4, 6, 2, 7〉
meaning that we are multiplyingA1 (5× 4) timesA2 (4× 6) timesA3 (6× 2) timesA4 (2× 7). The
optimal sequence is((A1(A2A3))A4).

Lecture 27: NP-Completeness: General Introduction

(Tuesday, May 5, 1998)
Read: Chapt 36, up through section 36.4.

Easy and Hard Problems: At this point of the semester hopefully you have learned a few things of what
it means for an algorithm to be efficient, and how to design algorithms and determine their efficiency
asymptotically. All of this is fine if it helps you discover an acceptably efficient algorithm to solve
your problem. The question that often arises in practice is that you have tried every trick in the book,
and still your best algorithm is not fast enough. Although your algorithm can solve small problems
reasonably efficiently (e.g.n ≤ 20) the really large applications that you want to solve (e.g.n ≥ 100)
your algorithm does not terminate quickly enough. When you analyze its running time, you realize that
it is running inexponential time, perhapsn

√
n, or 2n, or 2(2n), or n!, or worse.

Towards the end of the 60’s and in the eary 70’s there were great strides made in finding efficient
solutions to many combinatorial problems. But at the same time there was also a growing list of
problems for which there seemed to be no known efficient algorithmic solutions. The best solutions
known for these problems required exponential time. People began to wonder whether there was some
unknown paradigm that would lead to a solution to these problems, or perhaps some proof that these
problems are inherently hard to solve and no algorithmic solutions exist that run under exponential
time.

Around this time a remarkable discovery was made. It turns out that many of these “hard” problems
were interrelated in the sense that if you could solve any one of them in polynomial time, then you
could solve all of them in polynomial time. The next couple of lectures we will discuss some of these
problems and introduce the notion of P, NP, and NP-completeness.

Polynomial Time: We need some way to separate the class of efficiently solvable problems from ineffi-
ciently solvable problems. We will do this by considering problems that can be solved in polynomial
time.
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We have measured the running time of algorithms using worst-case complexity, as a function ofn, the
size of the input. We have defined input size variously for different problems, but the bottom line is the
number of bits (or bytes) that it takes to represent the input using anyreasonably efficient encoding. (By
a reasonably efficient encoding, we assume that there is not some significantly shorter way of providing
the same information. For example, you could write numbers in unary notation111111111 = 1002 = 8
rather than binary, but that would be unacceptably inefficient.)

We have also assumed that operations on numbers can be performed in constant time. From now on,
we should be more careful and assume that arithmetic operations require at least as much time as there
are bits of precision in the numbers being stored.

Up until now all the algorithms we have seen have had the property that their worst-case running times
are bounded above by somepolynomial in the input size,n. A polynomial time algorithmis any
algorithm that runs in timeO(nk) wherek is some constant that is independent ofn. A problem is said
to besolvable in polynomial timeif there is a polynomial time algorithm that solves it.

Some functions that do not “look” like polynomials but are. For example, a running time ofO(n log n)
does not look like a polynomial, but it is bounded above by a the polynomialO(n2), so it is considered
to be in polynomial time.

On the other hand, some functions that do “look” like polynomials are not. For example, a running time
of O(nk) is not considered in polynomial time ifk is an input parameter that could vary as a function
of n. The important constraint is that the exponent in a polynomial function must be aconstantthat is
independent ofn.

Decision Problems: Many of the problems that we have discussed involveoptimizationof one form or
another: find the shortest path, find the minimum cost spanning tree, find the knapsack packing of
greatest value. For rather technical reasons, most NP-complete problems that we will discuss will be
phrased as decision problems. A problem is called adecision problemif its output is a simple “yes” or
“no” (or you may think of this as True/False, 0/1, accept/reject).

We will phrase many optimization problems in terms of decision problems. For example, rather than
asking, what is the minimum number of colors needed to color a graph, instead we would phrase this
as a decision problem: Given a graphG and an integerk, is it possible to colorG with k colors. Of
course, if you could answer this decision problem, then you could determine the minimum number of
colors by trying all possible values ofk (or if you were more clever, you would do a binary search on
k).

One historical artifact of NP-completeness is that problems are stated in terms oflanguage-recognition
problems. This is because the theory of NP-completeness grew out of automata and formal language
theory. We will not be taking this approach, but you should be aware that if you look in the book, it
will often describe NP-complete problems as languages.

Definition: DefineP to be the set of all decision problems that can be solved in polynomial time.

NP and Polynomial Time Verification: Before talking about the class of NP-complete problems, it is im-
portant to introduce the notion of a verification algorithm. Many language recognition problems that
may be very hard to solve, but they have the property that it is easy toverify whether its answer is
correct.

Consider the following problem, called theundirected Hamiltonian cycle problem(UHC). Given an
undirected graphG, doesG have a cycle that visits every vertex exactly once.

An interesting aspect of this problems is thatif the graph did contain a Hamiltonian cycle, then
it would be easy for someone toconvinceyou that it did. They would simply say “the cycle is
〈v3, v7, v1, . . . , v13〉”. We could then inspect the graph, and check that this is indeed a legal cycle
and that it visits all the vertices of the graph exactly once. Thus, even though we know of no efficient
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Nonhamiltonian Hamiltonian

Figure 35: Undirected Hamiltonian cycle.

way tosolvethe Hamiltonian cycle problem, there is a very efficient way toverify that a given graph is
Hamiltonian. The given cycle is called acertificate. This is some piece of information which allows us
to verify that a given string is in a language. If it is possible to verify the accuracy of a certificate for a
problem in polynomial time , we say that the problem ispolynomial time verifiable.

Note that not all languages have the property that they are easy to verify. For example, consider the
problem of determining whether a graph hasexactly oneHamiltonian cycle. It would be easy for
someone to convince that it has at least one, but it is not clear what someone (no matter how smart)
would say to you to convince you that there is not another one.

Definition: DefineNP to be the set of all decision problems that can be verified by a polynomial time
algorithm.

Beware that polynomial time verification and polynomial time solvable are two very different concepts.
The Hamiltonian cycle problem is NP-complete, and so it is widely believed that there is no polynomial
time solution to the problem.

Why is the set called “NP” rather than “VP”? The original term NP stood for “nondeterministic polyno-
mial time”. This referred to a program running on anondeterministic computerthat can make guesses.
Basically, such a computer could nondeterministically guess the value of certificate, and then verify
that the string is in the language in polynomial time. We have avoided introducing nondeterminism
here. It would be covered in a course on complexity theory or formal language theory.

Like P, NP is a set of languages based on some complexity measure (the complexity of verification).
Observe that P⊆ NP. In other words, if we can solve a problem in polynomial time, then we can
certainly verify that an answer is correct in polynomial time. (More formally, we do not even need to
see a certificate to solve the problem, we can solve it in polynomial time anyway).

However it is not known whether P= NP. It seems unreasonable to think that this should be so. In
other words, just being able to verify that you have a correct solution does not help you in finding the
actual solution very much. Most experts believe that P6= NP, but no one has a proof of this.

NP-Completeness:We will not give a formal definition of NP-completeness. (This is covered in the text,
and higher level courses such as 451). For now, think of the set ofNP-completeproblems as the
“hardest” problems to solve in the entire class NP. There may be even harder problems to solve that are
not in the class NP. These are calledNP-hardproblems.

One question is how can we the notion of “hardness” mathematically formal. This is where the concept
of a reduction comes in. We will describe this next.

Reductions: Before discussing reductions, let us first consider the following example. Suppose that there
are two problems,A andB. You know (or you strongly believe at least) that it is impossible to solve
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Figure 36: Relationship between P, NP, and NP-complete.

problemA in polynomial time. You want to prove thatB cannot be solved in polynomial time. How
would you do this?

We want to show that
(A /∈ P)⇒ (B /∈ P).

To do this, we could prove the contrapositive,

(B ∈ P)⇒ (A ∈ P).

In other words, to show thatB is not solvable in polynomial time, we will suppose that there is an
algorithm that solvesB in polynomial time, and then derive a contradiction by showing thatA can be
solved in polynomial time.

How do we do this? Suppose that we have a subroutine that can solve any instance of problemB in
polynomial time. Then all we need to do is to show that we can use this subroutine to solve problemA
in polynomial time. Thus we have “reduced” problemA to problemB.

It is important to note here that this supposed subroutine is really afantasy. We know (or strongly
believe) thatA cannot be solved in polynomial time, thus we are essentially proving that the subroutine
cannot exist, implying thatB cannot be solved in polynomial time.

Let us consider an example to make this clearer. It is a fact that the problem of determining whether an
undirected graph has a Hamiltonian cycle (UHC) is an NP-complete problem. Thus, there is no known
polynomial time algorithm, and in fact experts widely believe that no such polynomial time algorithm
exists.

Suppose your boss of yours tells you that he wants you to find a polynomial solution to a different
problem, namely the problem of finding a Hamiltonian cycle in adirected graph(DHC). You think
about this for a few minutes, and you convince yourself that this is not a reasonable request. After all,
would allowing directions on the edges make this problem any easier? Suppose you and your boss both
agree that the UHC problem (for undirected graphs) is NP-complete, and so it would be unreasonable
for him to expect you to solve this problem. But he tells you that the directed version is easier. After
all, by adding directions to the edges you eliminate the ambiguity of which direction to travel along
each edge. Shouldn’t that make the problem easier? The problem is, how do you convince your boss
that he is making an unreasonable request (assuming your boss is willing to listen to logic).

You explain to your boss: “Suppose I could find an efficient (i.e., polynomial time) solution to the
DHC problem, then I’ll show you that it would then be possible to solve UHC in polynomial time.” In
particular, you will use the efficient algorithm for DHC (which you still haven’t written) as a subroutine
to solve UHC. Since you both agree that UHC is not efficiently solvable, this means that this efficient
subroutine for DHC must not exist. Therefore your boss agrees that he has given you an unreasonable
task.
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Here is how you might do this. Given an undirected graphG, create a directed graphG′ by just
replacing each undirected edge{u, v} with two directed edges,(u, v) and(v, u). Now, every simple
path in theG is a simple path inG′, and vice versa. Therefore,G has a Hamiltonian cycle if and only
if G′ does. Now, if you could develop an efficient solution to the DHC problem, you could use this
algorithm and this little transformation solve the UHC problem. Here is your algorithm for solving the
undirected Hamiltonian cycle problem. You take the undirected graphG, convert it to an equivalent
directed graphG′ (by edge-doubling), and then call your (supposed) algorithm for directed Hamiltonian
cycles. Whatever answer this algorithm gives, you return as the answer for the Hamiltonian cycle.

UHC to DHC Reduction

bool Undir_Ham_Cycle(graph G) {
create digraph G’ with the same number of vertices as G
for each edge {u,v} in G {

add edges (u,v) and (v,u) to G’
}
return Dir_Ham_Cycle(G’)

}

You would now have a polynomial time algorithm for UHC. Since you and your boss both agree that
this is not going to happen soon, he agrees to let you off.

Nonhamiltonian Hamiltonian

Figure 37: Directed Hamiltonian cycle reduction.

Notice that neither problem UHC or DHC has been solved. You have just shown how to convert a
solution to DHC into a solution for UHC. This is called areductionand is central to NP-completeness.

Lecture 28: NP-Completeness and Reductions

(Thursday, May 7, 1998)
Read: Chapt 36, through Section 36.4.

Summary: Last time we introduced a number of concepts, on the way to defining NP-completeness. In
particular, the following concepts are important.

Decision Problems: are problems for which the answer is either “yes” or “no.” The classes P and NP
problems are defined as classes of decision problems.

P: is the class of all decisions problems that can be solved in polynomial time (that is,O(nk) for some
constantk).
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NP: is defined to be the class of all decision problems that can beverified in polynomial time. This
means that if the answer to the problem is “yes” then it is possible give some piece of information
that would allow someone to verify that this is the correct answer in polynomial time. (If the
answer is “no” then no such evidence need be given.)

Reductions: Last time we introduced the notion of a reduction. Given two problemsA andB, we say that
A is polynomially reducibleto B, if, given a polynomial time subroutine forB, we can use it to solve
A in polynomial time. (Note: This definition differs somewhat from the definition in the text, but it is
good enough for our purposes.) When this is so we will express this as

A ≤P B.

The operative word in the definition is “if”. We will usually apply the concept of reductions to problems
for which we strongly believe that there is no polynomial time solution.

Some important facts about reductions are:

Lemma: If A ≤P B andB ∈ P thenA ∈ P.

Lemma: If A ≤P B andA /∈ P thenB /∈ P.

Lemma: (Transitivity) If A ≤P B andB ≤P C thenA ≤P C.

The first lemma is obvious from the definition. To see the second lemma, observe thatB cannot be in
P, since otherwiseA would be in P by the first lemma, giving a contradiction. The third lemma takes a
bit of thought. It says that if you can use a subroutine forB to solveA in polynomial time, and you can
use a subroutine forC to solveB in polynomial time, then you can use the subroutine forC to solve
A in polynomial time. (This is done by replacing each call toB with its appropriate subroutine calls to
C).

NP-completeness:Last time we gave the informal definition that the NP-complete problems are the “hard-
est” problems in NP. Here is a more formal definition in terms of reducibility.

Definition: A decision problemB ∈ NP isNP-completeif

A ≤P B for all A ∈ NP.

In other words, if you could solveB in polynomial time, then every other problemA in NP would
be solvable in polynomial time.

We can use transitivity to simplify this.

Lemma: B is NP-complete if

(1) B ∈ NP and

(2) A ≤P B for some NP-complete problemA.

Thus, if you can solveB in polynomial time, then you could solveA in polynomial time. SinceA is
NP-complete, you could solve every problem in NP in polynomial time.

Example: 3-Coloring and Clique Cover: Let us consider an example to make this clearer. Consider the
following two graph problems.

3-coloring (3COL): Given a graphG, can each of its vertices be labeled with one of 3 different “col-
ors”, such that no two adjacent vertices have the same label.

Clique Cover (CC): Given a graphG and an integerk, can the vertices ofG be partitioned intok
subsets,V1, V2, . . . , Vk, such that

⋃
i Vi = V , and that eachVi is a clique ofG.

87



Lecture Notes CMSC 251

k=3

Clique cover3−colorable Not 3−colorable

Figure 38: 3-coloring and Clique Cover.

Recall that theclique is a subset of vertices, such that every pair of vertices in the subset are adjacent
to each other.

3COL is a known NP-complete problem. Your boss tells you that he wants you to solve the CC
problem. You suspect that the CC problem is also NP-complete. How do you prove this to your boss?

There are two things to be shown, first that the CC problem is in NP. We won’t worry about this, but it
is pretty easy. (In particular, to convince someone that a graph has a clique cover of sizek, just specify
what thek subsets are. Then it is an easy matter to verify that they form a clique cover.)

The second item is to show that a known NP-complete problem (we will choose 3COL) is polynomially
reducible to CC. To do this, you assume that you have access to a subroutineCliqueCover(G,
k) . Given a graphG and an integerk, this subroutine returns true ifG has a clique cover of sizek
and false otherwise, and furthermore, this subroutine runs in polynomial time. How can we use this
“alleged” subroutine to solve the well-known hard 3COL problem? We want to write a polynomial time
subroutine for 3COL, and this subroutine is allowed to call the subroutineCliqueCover(G,k) for
any graphG and any integerk.

Let’s see in what respect the two problems are similar. Both problems are dividing the vertices up into
groups. In the clique cover problem, for two vertices to be in the same group they must be adjacent to
each other. In the 3-coloring problem, for two vertices to be in the same color group, they must not be
adjacent. In some sense, the problems are almost the same, but the requirement adjacent/non-adjacent
is exactly reversed.

Recall that ifG is a graph, thenG is thecomplementgraph, that is, a graph with the same vertex set, but
in which edges and nonedge have been swapped. The main observation is that a graphG is 3-colorable,
if and only if its complementG, has a clique-cover of sizek = 3. We’ll leave the proof as an exercise.

Using this fact, we can reduce the the 3-coloring problem to the clique cover problem as follows.
Remember that this means that, if we had a polynomial time procedure for the clique cover problem
then we could use it as a subroutine to solve the 3-coloring problem Given the graph we want to
compute the 3-coloring for, we take its complement and then invoke the clique cover, settingk = 3.

3COL to CC Reduction

bool 3Colorable(graph G) {
let G’ = complement(G)
return CliqueCover(G’,3)

}

There are a few important things to observe here. First, we never needed to implement theClique-
Cover() procedure. Remember, these are all “what if” games. If we could solve CC in polynomial
time, then we could solve 3COL. But since we know that 3COL is hard to solve, this means that CC is
also hard to solve.
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3−colorable Not 3−colorable

Clique cover No clique cover

Figure 39: Clique covers in the complement.

A second thing to observe that is the direction of the reduction. In normal reductions, you reduce the
problem that you do not know how to solve to one that you do know how to solve. But in NP-complete,
we do not know how to solve either problem (and indeed we are trying to show that an efficient solution
does not exist). Thus the direction of the reduction is naturally backwards. You reduce the known
problem to the problem you want to show is NP-complete. Remember this! It is quite counterintuitive.

Remember: Always reduce the known NP-complete problem to the problem you want to prove
is NP-complete.

The final thing to observe is that the reduction really didn’t attempt to solve the problem at all. It just
tried to make one problem look more like the other problem. A reductionist might go so far as to say
that there really isonly oneNP-complete problem. It has just been dressed up to look differently.

Example: Hamiltonian Path and Hamiltonian Cycle: Let’s consider another example. We have seen the
Hamiltonian Cycle (HC) problem (Given a graph, does it have a cycle that visits every vertex exactly
once?). Another variant is the Hamiltonian Path (HP) problem (Given a graph, does it have a simple
path that visits every vertex exactly once?)

Suppose that we know that the HC problem is NP-complete, and we want to show that the HP problem
is NP-complete. How would we do this. First, remember what we have to show, that a known NP-
complete problem is reducible to our problem. That is,HC ≤P HP. In other words, suppose that
we had a subroutine that could solve HP in polynomial time. How could we use it to solve HC in
polynomial time?

Here is a first attempt (that doesn’t work). First, if a graph has’t a Hamiltonian cycle, then it certainly
must have a Hamiltonian path (by simply deleting any edge on the cycle). So if we just invoke the
HamPath subroutine on the graph and it returns “no” then we can safely answer “no” for HamCycle.
However, if it answers “yes” then what can we say? Notice, that there are graphs that have Hamiltonian
path but no Hamiltonian cycle (as shown in the figure below). Thus this will not do the job.

Here is our second attempt (but this will also have a bug). The problem is that cycles and paths are
different things. We can convert a cycle to a path by deleting any edge on the cycle. Suppose that the

89



Lecture Notes CMSC 251

graphG has a Hamiltonian cycle. Then this cycle starts at some first vertexu then visits all the other
vertices until coming to some final vertexv, and then comes back tou. There must be an edge{u, v}
in the graph. Let’s delete this edge so that the Hamiltonian cycle is now a Hamiltonian path, and then
invoke the HP subroutine on the resulting graph. How do we know which edge to delete? We don’t so
we could try them all. Then if the HP algorithm says “yes” for any deleted edge we would say “yes”
as well.

However, there is a problem here as well. It was our intention that the Hamiltonian path start atu
and end atv. But when we call the HP subroutine, we have no way to enforce this condition. If HP
says “yes”, we do not know that the HP started withu and ended withv. We cannot look inside the
subroutine or modify the subroutine. (Remember, it doesn’t really exist.) We can only call it and check
its answer.

Correct ReductionSecond Attempt

Both HC and HP exist There is both HC and HP

First Attempt

v

u

No HC and no HPNo HC, but after deletingNo HC but

there is HP

u

v y

x

There is HC, and after

deleting {u,v} there is HP

{u,v} there is HP

x

v

u
u

v y

Figure 40: Hamiltonian cycle to Hamiltonian path attempts.

So is there a way to force the HP subroutine to start the path atu and end it atv? The answer is yes,
but we will need to modify the graph to make this happen. In addition to deleting the edge fromu to
v, we will add an extra vertexx attached only tou and an extra vertexy attached only tov. Because
these vertices have degree one, if a Hamiltonian path exists, it must start atx and end aty.

This last reduction is the one that works. Here is how it works. Given a graphG for which we want to
determine whether it has a Hamiltonian cycle, we go through all the edges one by one. For each edge
{u, v} (hoping that it will be the last edge on a Hamiltonian cycle) we create a new graph by deleting
this edge and adding vertexx ontou and vertexy ontov. Let the resulting graph be calledG′. Then
we invoke our Hamiltonian Path subroutine to see whetherG′ has a Hamiltonian path. If it does, then
it must start atx to u, and end withv to y (or vice versa). Then we know that the original graph had
a Hamiltonian cycle (starting atu and ending aty). If this fails for all edges, then we report that the
original graph has no Hamiltonian cycle.
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HC to HP Reduction

bool HamCycle(graph G) {
for each edge {u,v} in G {

copy G to a new graph G’
delete edge {u,v} from G’
add new vertices x and y to G’
add new edges {x,u} and {y,v} to G’
if (HamPath(G’)) return true

}
return false // failed for every edge

}

This is a rather inefficient reduction, but it does work. In particular it makesO(e) calls to theHam-
Path() procedure. Can you see how to do it with fewer calls? (Hint: Consider applying this to the
edges coming out of just one vertex.) Can you see how to do it with only one call? (Hint: This is
trickier.)

As before, notice that we didn’t really attempt to solve either problem. We just tried to figure out how
to make a procedure for one problem (Hamiltonian path) work to solve another problem (Hamiltonian
cycle). Since HC is NP-complete, this means that there is not likely to be an efficient solution to HP
either.

Lecture 29: Final Review

(Tuesday, May 12, 1998)

Final exam: As mentioned before, the exam will be comprehensive, but it will stress material since the
second midterm exam. I would estimate that about 50–70% of the exam will cover material since the
last midterm, and the remainder will be comprehensive. The exam will be closed book/closed notes
with three sheets of notes (front and back).

Overview: This semester we have discussed general approaches to algorithm design. The goal of this course
is to improve your skills in designing good programs, especially on complex problems, where it is not
obvious how to design a good solution. Finding good computational solutions to problems involves
many skills. Here we have focused on the higher level aspects of the problem: what approaches to use
in designing good algorithms, how generate a rough sketch the efficiency of your algorithm (through
asymptotic analysis), how to focus on the essential mathematical aspects of the problem, and strip away
the complicating elements (such as data representations, I/O, etc.)

Of course, to be a complete programmer, you need to be able to orchestrate all of these elements. The
main thrust of this course has only been on the initial stages of this design process. However, these are
important stages, because a poor initial design is much harder to fix later. Still, don’t stop with your
first solution to any problem. As we saw with sorting, there may be many ways of solving a problem.
Even algorithms that are asymptotically equivalent (such as MergeSort, HeapSort, and QuickSort) have
advantages over one another.

The intent of the course has been to investigate basic techniques for algorithm analysis, various algo-
rithm design paradigms: divide-and-conquer graph traversals, dynamic programming, etc. Finally we
have discussed a class of very hard problems to solve, called NP-complete problems, and how to show
that problems are in this class. Here is an overview of the topics that we covered this semester.

Tools of Algorithm Analysis:
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Asymptotics: O, Ω, Θ. General facts about growth rates of functions.
Summations: Analysis of looping programs, common summations, solving complex summa-

tions, integral approximation, constructive induction.
Recurrences: Analysis of recursive programs, strong induction, expansion, Master Theorem.

Sorting:

Mergesort: Stable,Θ(n log n) sorting algorithm.
Heapsort: Nonstable,Θ(n log n), in-place algorithm. A heap is an important data structure for

implementation of priority queues (a queue in which the highest priority item is dequeued
first).

Quicksort: Nonstable,Θ(n log n) expected case, (almost) in-place sorting algorithm. This is
regarded as the fastest of these sorting algorithms, primarily because of its pattern of locality
of reference.

Sorting lower bounds: Any sorting algorithm that is based on comparisons requiresΩ(n log n)
steps in the worst-case. The argument is based on a decision tree. Considering the number
of possible outcomes, and observe that they form the leaves of the decision tree. The height
of the decision tree isΩ(lg N), whereN is the number of leaves. In this case,N = n!, the
number of different permutations ofn keys.

Linear time sorting: If you are sorting small integers in the range from 1 tok, then you can
applying counting sort inΘ(n + k) time. If k is too large, then you can try breaking the
numbers up into smaller digits, and apply radix sort instead. Radix sort just applies counting
sort to each digit individually. If there ared digits, then its running time isΘ(d(n + k)),
wherek is the number of different values in each digit.

Graphs: We presented basic definitions of graphs and digraphs. A graph (digraph) consists of a set
of vertices and a set of undirected (directed) edges. Recall that the number of edges in a graph
can generally be as large asO(n2), but is often smaller (closer toO(n)). A graph issparseif the
number of edges iso(n2), and dense otherwise.
We discussed two representations:

Adjacency matrix: A[u, v] = 1 if (u, v) ∈ E. These are simple, but requireΘ(n2) storage.
Good for dense graphs.

Adjacency list: Adj [u] is a pointer to a linked list containing the neighbors ofu. These are better
for sparse graphs, since they only requireΘ(n + e) storage.

Breadth-first search: We discussed one graph algorithm:breadth first search. This is a way of
traversing the vertices of a graph in increasing order of distance from a source vertex. Recall
that it colors vertices (white, gray, black) to indicate their status in the search, and it also uses a
FIFO queue to determine which order it will visit the vertices. When we process the next vertex,
we simply visit (that is, enqueue) all of its unvisited neighbors. This runs inΘ(n + e) time. (If
the queue is replaced by a stack, then we get a different type of search algorithm, called depth-
first search.) We showed that breadth-first search could be used to compute shortest paths from a
single source vertex in an (unweighted) graph or digraph.

Dynamic Programming: Dynamic programming is an important design technique used in many op-
timization problems. Its basic elements are those of subdividing large complex problems into
smaller subproblems, solving subproblems in a bottom-up manner (going from smaller to larger).
An important idea in dynamic programming is that of the principal of optimality: For the global
problem to be solved optimally, the subproblems should be solved optimally. This is not always
the case (e.g., when there is dependence between the subproblems, it might be better to do worse
and one to get a big savings on the other).

Floyd-Warshall Algorithm: (Section 26.2) Shortest paths in a weighted digraph between all
pairs of vertices. This algorithm allows negative cost edges, provided that there are no neg-
ative cost cycles. We gave two algorithms. The first was based on a DP formulation of
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building up paths based on the number of edges allowed (takingΘ(n4) time). The second
(the Floyd-Warshall algorithm) uses a DP formulation based on considering which vertices
you are allowed to pass through. It takesO(n3) time.

Longest Common Subsequence:(Section 16.3) Find the longest subsequence of common char-
acters between two character strings. We showed that the LCS of two sequences of lengths
n andm could be computed inΘ(nm).

Chain-Matrix Multiplication: (Section 16.1) Given a chain of matrices, determine the opti-
mum order in which to multiply them. This is an important problem, because many DP
formulations are based on deriving an optimum binary tree given a set of leaves.

NP-completeness:(Chapt 36.)

Basic concepts:Decision problems, polynomial time, the class P, certificates and the class NP,
polynomial time reductions, NP-completeness.

NP-completeness reductions:We showed that to prove that a problem is NP-complete you need
to show (1) that it is in NP (by showing that it is possible to verify correctness if the answer is
“yes”) and (2) show that some known NP-complete problem can be reduced to your problem.
Thus, if there was a polynomial time algorithm for your problem, then you could use it to
solve a known NP-complete problem in polynomial time.
We showed how to reduce 3-coloring to clique cover, and how to reduce Hamiltonian cycle
to Hamiltonian path.
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