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1 INTRODUCTION 

  In this report we consider the implementation of an efficient algorithm for 
computing Euclidean minimum spanning trees, which will be based in part on the 
well-separated pair decomposition, introduced by Callahan and Kosaraju. In order 
to compute the Euclidean Minimum Spanning Tree of n points in the space, one 
can naively link each pair of edges to build the complete Euclidean graph G=(P,E),  
where P stands for the vertex set, and E stands for set of edges, which consist of 
all pairs (p, q) ∀ p, q ϵ P. For such a graph we have |E|=�𝑛𝑛2�, which is Ѳ(𝑛𝑛2), and 
combining this with the Ο(ElogV)=Ο(𝑛𝑛2logn) running time for the execution of 
Kruskal’s Algorithm, would result in an overall running time of Ο(𝑛𝑛2logn). In this 
paper we present a more efficient solution. 

  Our algorithm for computing the Euclidean minimum spanning tree will be based 
on a number of components. More specifically, the program provides the 
construction of a point region quadtree, which used to store input set of data 
points. We then implemented the well-separated decomposition upon the 
constructed point region quadtree to store each well-separated pair of cells as 
cross links in the tree. The next procedure is to implement projections for each 
pair of well-separated cells in order to find (approximately) the closest pair of 
points and build the graph G. Finally, we implement Kruskal’s Algorithm to obtain 
the Minimum Spanning Tree from G.  

  This paper is organized as follows. Section 2 defines the basic concepts of the 
well-separated decomposition, as well as how it is applied in this program. 



Section 3 presents a projection method for approximating the closest pair of 
points between each well-separated pair and how this is used in Kruskal’s 
algorithm. Section 4 provides a pseudo-code description of the complete method 
an evaluation of merits of this application of well-separated decomposition 
theorem, along with the graph showing the ultimate Euclidean minimum 
spanning tree built from several combined procedures.  Section 5 make a 
conclusion about this newly-tested approximation algorithm. 

    

2 CONCEPTS OF WELL-SEPARATED DECOMPOSITION  

  From [1, p. 88], let P be a given set of n points in the Euclidean space, for any 
factor s ≥ 1, two non-overlapping subsets A and B of P are said to be well-
separated if both A and B can be enclosed within two Euclidean balls of radius r 
such that the minimum distance between 𝑆𝑆𝑎𝑎 and 𝑆𝑆𝑏𝑏 is at least sr.  

 

Figure 1: cell A and B are well-separated by the factor s 

  From [1, p.90], for a given point set P and a separation factor s, the well-
separated decomposition is defined to be a collection of pairs of subsets of P, 
denoted {{𝐴𝐴1,𝐵𝐵1}, {𝐴𝐴2,𝐵𝐵2}, … , {𝐴𝐴𝑚𝑚,𝐵𝐵𝑚𝑚}}, such that 

(1) 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 ⊆ P, for 1 ≤ i ≤ m  
(2) 𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖 = ∅, for 1 ≤ i ≤ m 
(3) ⋃ (𝐴𝐴𝑖𝑖⨂𝐵𝐵𝑖𝑖)m

i=1  = P ⨂ P 



(4) 𝐴𝐴𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑖𝑖 are s-well-separated, for 1 ≤ i ≤ m  

In order to construct the well-separated pair decomposition, we build a point 
quadtree in which to store input set data points. The quadtree is based on a 
recursive subdivision of two dimensional space which is based on repeatedly 
splitting a square into four quadrants. The result is a decomposition of space into 
squares, called cells, each of which contains a set of points. For the construction 
of WSPD, we make some modifications to the existing quadtree structure. In the 
general version of quadtree structure, each internal node serves as a placeholder, 
but does not store any data points, and each leaf node stores either zero or one 
data points in its associated cell.  

 

Figure 2: Point region quadtree partitions data points into cells. 

  

    In our augmented version of quadtree structure, we add an associated 
representative for each node u, which we denote by rep(u). As a leaf node, if it 
contains a point p, then rep(u)={𝑢𝑢}; otherwise it contains no point, then rep(u)=∅. 
For the internal node, the case is different from that of the traditional version. 
Since each internal node contains more than one data point within its associated 



cell, it must have two or more nonempty leaf nodes descended from it. In this 
case, we may randomly select one of such leaf children node v, and set 
rep(u)=rep(v) (see [1] for more detail)). Also, we associate each node with its 
depth in the tree, which we call its level. In my program, in order to compare 
levels among different nodes, we can first calculate the side-length of cell 
associated with each node, then determine the result by the key feature that the 
side length of a cell associated with u is no smaller than that of a cell associated 
with v if and only if level(u)≤level(v). The side length of a cell of is generated by 
the formula below. Let x be the side length of the cell associated with root node, 
each time we partition the cell, we divide  the side length of the cell by 2. 
Accumulatively, the cell that is partitioned i times from the original cell, is smaller 
by the factor 1/2𝑖𝑖. Thus, letting x denote the side length of the root cell, the side 
length of the associated cell of a node at level i is x/2𝑖𝑖.  

  Let us next consider the implementation of well-separated pair decomposition. 
The general idea of this algorithm is that each execution we check the pair of 
nonempty nodes if they can be decomposed into well-separated pairs, then that 
pair will be stored, otherwise we compare the level of this pair of nonempty nodes 
and decide which has larger cell size. We subdivide the node containing cell with 
larger size into its children nodes and recursively call that function for each child 
with the other node. (See [1] for more detail). 



 

Figure 3: Some of the s-separated cells generated from the WSPD. 

3 MINIMUM PROJECTION OF EACH WELL-SEPARATED PAIR 

AND KRUSKAL’S ALGORITHM 

 After we constructed each pair of well- separated pairs, the next step is to 
construct for each well separated pair 𝑃𝑃1 and 𝑃𝑃2 the closest pair of points in these 
two sets. We do this through an approximation. Consider the line segment joining 
the centers of the Euclidean balls containing 𝑃𝑃1 and 𝑃𝑃2, and let 𝑝𝑝1 ∈ 𝑃𝑃1 and 𝑝𝑝2 ∈
𝑃𝑃2 be points with closet projections along this line. The essence of mathematical 
formula used in [2]. Let 𝑢𝑢1 and 𝑢𝑢2 be the two nodes defining any of the well-
separated pairs each containing a set of data points and let (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) be the 
center points of the cells associated with 𝑢𝑢1 and 𝑢𝑢2, respectively. First, define the 
vector between two center points by 𝑉𝑉�⃗ = (𝑥𝑥2−𝑥𝑥1, 𝑦𝑦2−𝑦𝑦1). Then for each data 
point (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝), we create another vector 𝑤𝑤𝑝𝑝 = (𝑥𝑥𝑝𝑝 − 𝑥𝑥1, 𝑦𝑦𝑝𝑝 − 𝑦𝑦1). In order to 
calculate the projection distance from (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) to (𝑥𝑥1,𝑦𝑦1), we create the distance 
vector 𝑑𝑑𝑝𝑝 by the inner product of 𝑣⃗𝑣 and 𝑤𝑤𝑝𝑝 such that 𝑑𝑑𝑝𝑝=𝑣⃗𝑣 ∙ 𝑤𝑤𝑝𝑝 = (𝑣𝑣𝑥𝑥 ∙ 𝑤𝑤𝑝𝑝𝑥𝑥 +  𝑣𝑣𝑦𝑦 ∙



𝑤𝑤𝑝𝑝𝑦𝑦). After recursively executing the above calculation for each data point p= 

(𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦) ϵ u2, where 𝑝𝑝𝑥𝑥 ∈ �𝑥𝑥2 − 𝑟𝑟𝑢𝑢2𝑥𝑥 , 𝑥𝑥2 +  𝑟𝑟𝑢𝑢2𝑥𝑥�,𝑝𝑝𝑦𝑦 ∈ �𝑦𝑦2 − 𝑟𝑟𝑢𝑢2𝑦𝑦 ,𝑦𝑦2 + 𝑟𝑟𝑢𝑢2𝑦𝑦�, we 
can find the minimum projection value among all calculated vector values 𝑤𝑤𝑝𝑝 and 
store the according 𝑝𝑝2 = (𝑝𝑝𝑥𝑥2 ,𝑝𝑝𝑦𝑦2) ∈ 𝑢𝑢2. We repeat the above steps with 
swapped 𝑢𝑢1 and 𝑢𝑢2 to obtain another data point 𝑝𝑝1 = (𝑝𝑝𝑥𝑥1 ,𝑝𝑝𝑦𝑦1) ∈  𝑢𝑢1. The 
ultimate step for each separated pair is to add the edge (𝑝𝑝1,𝑝𝑝2) into the graph G 
with its weight w=distance (𝑝𝑝1,𝑝𝑝2). Following the above calculation method of 
finding minimum projections, we have added one edge into the graph G for each 
well-separated pair. Altogether, the number of edges |E| in the graph G is the 
same as the number of well-separated pairs.  

  Now, we just have one more step left to obtain the minimum spanning tree from 
this graph G. Among the best known algorithms for computing the minimum 
spanning tree of a graph are Kruskal’s algorithm and Prim’s algorithm. In my 
program, I chose the former.  

Kruskal’s algorithm is a greedy algorithm in the goal of building a subset tree 
which includes each vertex in the original graph with the minimized weight of all 
edges connected within (see details in [3]). In my version of the application of 
Kruskal’s algorithm, I built a priority queue to sort the set of edges in graph G 
based on its associated weight. In that way, each stage of the while loop within 
the Kruskal’s algorithm, the program will make the local decision of selecting the 
edge with the lowest weight among the set of all input edges with the hope of 
finding global optimal solution in a reasonable time (See detail in [4]).  

There are two standard methods for implementing adding edge process: one is 
the union-find data structure, the other is the labeling method. In my program, I 
chose the latter. The structure I wrapped with this method is the treemap, the 
key of which has the type Integer, each index of the labeling, maps to a sequence 
of vertices in a cycle. During the execution of the loop, when we try to add a new 
edge into the minimum spanning tree, we check that if both vertices have not 
been added to any of the cycle yet, we create a new key, and map this Integer 
value to the new cycle containing just one edge. In the case that one vertex has 
been added to one of the cycles with other vertex not, we just add this new 
vertex into the cycle containing the other vertex. Another situation is that both 
vertices have been added to the same cycle, in which case this edge is redundant 



for the new minimum spanning tree; hence, we do nothing. The last condition is 
bit complicated that both vertices are added to the treemap data structure but 
within different cycles. In this case, we will compare the labels associated with 
two different vertices and merge the cycle with larger label into the cycle with 
smaller label, removing larger key from the treemap. Finally, we will get the 
output of approximation minimum spanning tree, the sequence of edges. 

 

Figure 4: A sample of the minimum spanning tree built by Kruskal’s Algorithm 

4 ALGORITHM IN THE FORM OF PSEUDOCODE   

  Two algorithms, Well-Separated Pair Decomposition and Kruskal’s algorithm, are 
presented in the following code block, each describing how the data structures 
are wrapped in the associated implementation.  

   

Algorithm 1: Well-Separated Pair Decomposition Algorithm (from [1, p93]) 

1. WS-pairs(u, v, s) { 
2.           if (rep(u) or rep(v) is empty) return ∅;  
3.           else if (u and v are s-well separated)  
4.                   return {{u, v}};  
5.           else {  
6.                   if (level(u) > level(v))  



7.                   Let u1, . . . , u𝑚𝑚 denote the children of u; 
8.                   return ∪𝑖𝑖=1𝑚𝑚  WS-pairs(𝑢𝑢𝑖𝑖, v, s);  
9.           } 
10. } 

 

 

 

  

Algorithm 2: Kruskal’s Algorithm (from [3]) 

  My implementation of this algorithm is based on the treemap data structure 
and the labeling method for maintaining connected components, each key in 
the map is the index of a label, and it maps to a sequence of vertices forming a 
cycle. At the beginning of execution, we initialize each label associated with the 
vertex with value -1. 

 

1. A=∅ 
2. For each e ∈ G. E; 
3. Make-set (E) 
4. For each (u, v) ∈ E, ordered by weight (u,v), increasing, and stored in the 

priority queue 
5. If Label(u)=-1 and Label(v)=-1, we add a new key that maps to this new 

edge, and put this pair into the treemap. A=A ∪ { (u, v)} 
6. Else if Label(u)=-1 and Label(v)≠-1 we put u into the sequence of vertices 

that  Label(v) maps to      A=A ∪ {(u,v)} 
7. Else if Label(u)≠-1 and Label(v)=-1, we put v into the sequence of vertices 

that Label(u) maps to       A=A ∪ {(u, v)} 
8. Else if Label(u)=Label(v), we continue to the next iteration 
9. Else we compare the value of Label (u) and Label (v), and merge the 

sequence of vertices that larger key value maps to into the sequence of 
vertices that smaller key value maps to. Remove the larger key value from 
the treemap.   A=A ∪ {(u,v)} 



10. Return A  

                                                                                                                      

  In this program, the algorithms described above are all linked with one another. 
The well-separated decomposition theorem provides a list of well-separated pairs 
served as the prerequisite of the minimum projection method. Compared with 
the naive way of building �𝑛𝑛2� pairs of edges from the input set of n data points, 
this method makes local comparisons for each pair and construct the graph which 
contains the number of edges equal to that of the well-separated pairs. Such 
partially linked graph structure greatly saves space. The above two algorithms 
combined take time Ο(nlogn), which might also perform better for the efficiency 
concern. The last step is identical for either the traditional method or the newly 
application of well-separated decomposition theorem in my program. The 
Kruskal’s algorithm executed on two different graphs with different size of edges.  
During the loop of this algorithm, it will check whether each existing edge should 
be added into the newly created minimum spanning tree, obviously, in our 
program, the graph G with fewer edges will have the great probability to save the 
total running time of minimum spanning tree algorithm, which costs  Ο(𝑛𝑛2) in the 
naïve way of building the graph.  

 



 

Figure 5: A minimum spanning tree generated from my program: the PR quadtree 
partitions data points, well-separated decomposition separates pairs, minimum 
projection method build edges, Kruskal’s Algorithm find ultimately minimum 
spanning tree. 

                         

5 CONCLUSION 

  Well-separated decomposition theorem is widely applied in several fields such as 
astronomy, molecular dynamics, fluid dynamics, plasma physics, and even surface 
reconstruction. We present an algorithm that uses this concept to efficiently 
construct an approximation to the minimum spanning tree. This shows how 
geometry can be exploited to obtain algorithms that greatly improve the storage 
space and running time efficiency over traditional approaches.  
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