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Overview 
 

The project presented here is a real-time 3D rigid body physics engine, and is the result of an 
Independent Study on collision detection and response in the context of rigid body dynamics. The 
simulation produces realistic motion, collisions, friction and resting contact between multiple bodies.  

This paper briefly discusses the spectrum of ideas and algorithms that were needed to implement 
the engine. 

• The engine works mostly with convex polyhedra, and employs several tools in order to 
efficiently perform convexity-based queries and calculations. A few of these, such as the 
Quickhull algorithm, are examined in the first section.  

• The collision detection system consists of a broad phase and narrow phase. The broad phase 
uses a uniform grid and bounding spheres, and the narrow phase includes the Separating Axis 
Test for determining intersection between convex polyhedra. The second section deals with 
collision detection. 

• Finally, the dynamics system employs a velocity-based constraint model for contact and friction 
constraints, resolves the constraints using an iterative Sequential Impulse solver, and calculates 
the motion of the rigid bodies. These topics are covered in the third section. 

 

About the Engine 
 

 The project was implemented in C++ with Visual Studio 2010. The graphics uses OpenGL and 
FreeGLUT, an open-source alternative to the GL Utility Toolkit. No other outside code or programs were 
used. All algorithms and functionality in this paper are implemented as described, barring details or 
efficiency-related improvements 
not mentioned. The engine is 
intended to be used as a 
practical 3D physics engine in 
upcoming projects, and will be 
extended to support more 
shapes and constraint types in 
the near future. 

 

 

 



 

1. Convex Polyhedra 
 

A polyhedron is convex if every line segment between two points on its surface is entirely 
contained in the polyhedron. This simple property makes convex polyhedra extremely useful in many 
areas of real-time simulation. They are able to approximate any convex shape arbitrarily well, but still 
allow for relatively efficient geometric queries and computations. For instance, finding a vertex that is 
farthest in some given direction can be done in logarithmic time, rather than the expected linear time 
from iterating over each vertex.  

Every rigid body in the physics engine is a convex polyhedron. Each polyhedron is stored as a 
Doubly Connected Edge List (DCEL), and is constructed from a point set using a 3D implementation of 
Quickhull. The engine also implements several typical convex polyhedra-related algorithms, such as 
testing for point containment, finding supporting vertices, and testing for intersection with primitives 
such as rays and planes, although these topics are not discussed further here. 

 

Doubly Connected Edge Lists 
 

 Efficiently solving convexity-based problems requires a data structure that exploits the 
connected nature of the polyhedron. The DCEL can represent general polygonal meshes, and is well-
suited for traversing the features of the mesh.   

A general DCEL consists of three sets of structures – vertices, half-edges, and faces. Each edge 
on the polyhedron is represented as two directed half-edges in the DCEL. A vertex structure contains its 
coordinates, and a reference to some half-edge that is incident to it. A face structure contains a 
reference to a half-edge bordering it, where the face is on the half-edge’s left. Finally, a half-edge 
structure contains a reference to its origin vertex, its twin half-edge, the face to its left, and the next and 
previous edges on that face’s border.  

Using a DCEL, many convexity-based algorithms can be improved. The farthest vertex query 
mentioned earlier, for example, can be found with a simple hill climbing algorithm, avoiding the need to 
check many of the polyhedron’s vertices. 

 The engine’s implementation sacrificed a bit of space for clarity of code by including a few more 
references in the structures. The polyhedra always have triangular faces, primarily to simplify calculating 
their inertia tensor. Therefore, each face holds a reference to all three of its edges and vertices. Each 
face also stores its normal vector to reduce run-time computations. 

 



Quickhull 
 

 In order to construct a convex polyhedron from an arbitrary set of points, the engine computes 
the convex hull of the set using the Quickhull algorithm. The central idea of the algorithm is that if a 
point is the farthest point in some direction (it is an extreme point) then it must be on the convex hull. 
Conversely, any point inside the current hull is certainly not on it, and can therefore be discarded.  

The algorithm starts by selecting four extreme vertices from the input set, initializing the hull to 
the tetrahedron defined by those points, and discarding any points inside. It then repeatedly extends 
the polyhedron by finding an extreme point in some direction, adding it to the hull, and discarding any 
points now contained in the hull. Once there are no points left outside the hull, it is returned.  

 Extra care was needed when extending the 2D version of Quickhull into 3D. In the 2D version, 
extreme points are found by iterating over the edges of the current hull. If an extreme point V is found 
for some edge E, the hull is easily updated by replacing E with two edges from V to each of E’s vertices. 
The same approach does not work in 3D – when an extreme point is added, multiple adjacent faces may 
need to be deleted, and only the outer edges should be connected to the extreme point to form new 
faces. The DCEL structure comes in handy here. It provides an easy way to both find all the faces that 
need to be discarded, and construct a loop of the edges that need to be connected to the new extreme 
point.  

 One iteration of Quickhull is shown in Figure 1. The blue faces and red points make up the 
current hull, and the white points are those still in the input list. The green point was found as the next 
extreme vertex. The two faces in gray will be discarded, and the green triangles will become new faces. 
Input points that were found to be inside the new hull and can be discarded are black. 

 

 

 

 

 

 

 

Figure 1 - One iteration of Quickhull 



2. Collision Detection 
 

 The central task of a collision detection system is to find all intersecting pairs of objects in a 
system. In order to avoid testing O(n2) object-pairs for intersection in a system of n bodies, most 
collision systems split the process into a broad phase and narrow phase. The broad phase is responsible 
for pruning the number of object-pairs that need to be tested, and makes use of various tools such as 
spatial partitioning structures and bounding volumes in order to discard as many pairs as quickly as 
possible. The narrow phase then tests each object pair, and generates contact information for any pair 
of objects that are actually intersecting. 

 

Broad phase – Bounding Spheres and Uniform Grids 
  

 To efficiently find all intersecting object-pairs, the broad phase must minimize the number of 
pairs that get tested in the narrow phase. There are two general strategies for this task. The first is to 
construct simple bounding volumes for each object. A bounding volume can be any simple shape – 
popular choices include boxes, spheres, cylinders, and capsules – that encloses a more complicated 
object, and provides a very cheap approximate intersection test. Only if the bounding volumes of a 
potential pair of objects are intersecting would the pair be passed on to the narrow phase for more 
expensive tests. 

 For this project, the convex polyhedra are enclosed in spheres, which are in many ways the 
simplest bounding volume. They are defined only by a center and a radius. The spheres are somewhat 
trivially calculated by using the centroid of the polyhedra as the center of the sphere, and the maximal 
distance from any point on the polyhedra to its centroid as the radius. While spheres sometimes provide 
poor fits for certain object shapes (thereby reducing the effectiveness of the bounding volume) they 
have the cheapest intersection test. Two spheres intersect simply if their centers are closer together 
than the sum of their radii. 

 The second general broad phase strategy is to keep all the objects in a spatial partitioning data 
structure that allows the system to quickly find all other objects that are near a given object. Again, 
there are several popular structures, each with their pros and cons. Here, the collision system uses a 
uniform grid. World space is split into a regular grid of 2D cells, and each cell contains a reference to 
objects that overlap it. Adding an object to the grid requires adding it to each cell that it overlaps, and a 
query for nearby objects returns the objects contained in all of those cells. The efficiency of these 
operations is maximized by using a cell size at least as large as the largest object in the grid, but not 
much larger. The lower bound ensures that an object only overlaps at most four cells, while the upper 
bound minimizes the number of objects per cell. 

 Uniform grids have extremely low time cost. Given a point in space, its corresponding grid cell 
can be found in constant time with respect to the number of objects in the grid. Given a radius, the 



neighboring cells that are overlapped can also be found in constant time. Because of this, insertion, 
deletion, and queries for nearby objects can all be done in constant time. The drawback (at least in this 
straightforward implementation) is the memory cost – a grid that splits space into n cells by n cells 
stores n2 cells, even if many of them are empty.  Very parse systems therefore would benefit from a 
more dynamic partitioning, such as a quad-tree. 

 Figure 2 illustrates the effectiveness of the broad phase. The 15 bodies in free fall would require 
210 expensive convex-convex intersection tests with a brute force approach. Using bounding spheres, 
the 210 approximate sphere-sphere tests lowered the number of expensive tests needed this frame to 
only 22. Storing the bodies in a uniform grid, only 38 object pairs were close enough to require a sphere-
sphere test in the first place. A more spread out system of bodies would result in even greater savings. 

 

Figure 2 - The broad phase reduces the number of convex tests needed here by almost 90% 

 

Narrow phase – The Separating Axis Test 
 

 Once two objects have been determined to be sufficiently close to each other, the collision 
system must check if they actually intersect. The exact test used for intersection depends on the 
combination of shapes being tested, resulting in a large number of possible tests for even a moderate 
number of shapes. In fact, the wide variety of shapes supported by a commercial physics engine makes 
collision dispatch, the task of finding the correct algorithm for a given object pair, a nontrivial problem. 

The intersection test of interest here is the one for two convex polyhedra. The algorithm 
implemented for this project is the Separating Axis Test (SAT).  The SAT relies on another important 



theorem regarding convex shapes – two convex shapes do not intersect if and only if there is a plane 
that separates them. If a separating plane exists, its normal vector is called a separating axis, and so 
finding whether two convex shapes intersect is equivalent to finding whether a separating axis exists 
between the two shapes. 

 A given axis can easily be tested to see if it is a separating axis. The projection of a convex 
polyhedron onto an axis is a line segment, the endpoints of which are determined by the polyhedron’s 
extreme vertices in each direction of the axis. If the projected segments of the two polyhedra do not 
overlap, then the axis is a separating axis, and the test can return no intersection. 

 The problem that remains is to find such an axis, if it exists. It turns out that there are only a 
limited set of possible axes that need to be tested. If a separating axis exists, then either the normal 
vector of one of the faces of one of the polyhedra will provide one, or the cross product of an edge 
vector from one polyhedron with an edge vector of the other will. The SAT iterates through each 
possible axis, and returns no intersection if a separating axis is found. If none of the axes work, then the 
two polyhedra intersect. 

 This algorithm is not very efficient for large polyhedra – it needs to check 2F + E2 axes. It is 
possible to improve the running time by using the temporal coherence usually present in real-time 
simulations. If a particular axis serves as a separating axis between two objects in one frame, it will very 
likely still be a separating axis next frame. By caching the result of each SAT, and checking the cache 
before testing a pair of objects from scratch, the test becomes much more efficient. This optimization 
was not implemented, but the algorithm runs well at least for moderately small polyhedra. 

 

Contact Manifold Generation 
 

 Accurately handling the collision of two objects requires more than just the simple fact that they 
are indeed colliding. The collision response system needs information about the contact between the 
objects, including the points or areas of contact, and the penetration depth. The collision detection 
system is responsible for producing this information – the contact manifold – for each pair of 
intersecting objects. 

 The implemented engine produces somewhat simplified contact manifolds. They contain a 
reference to the two colliding objects, a normal vector for the contact, a list of contact points, and the 
approximate penetration depth of the intersection. The SAT from the previous section is extended to 
produce the manifold for intersecting objects. 

 If two intersecting convex polyhedra are projected onto an axis, the amount of overlap of the 
projections is the distance the two polyhedra would need to be pushed away from each other along that 
axis to not be intersecting.  As the SAT tests each axis for separation, it keeps track of the axis that has 
the smallest overlap. If no separating axis is found, then the direction of the axis producing the minimal 



overlap – the “contact axis” – is used as the contact normal. By convention, the contact normal in an 
intersection between objects A and B is chosen to point towards A and away from B. The minimal 
overlap is used as the penetration depth. The method for finding contact points depends on the type of 
the contact axis. If it was formed from the cross product of two edges, the intersection of those edges is 
used as the single contact point. Otherwise, the axis corresponds to a face on one of the polyhedra, and 
the points are found by examining the “contact plane” defined by that face. Any vertex in one 
polyhedron that is both within a small tolerance of the contact plane and a small tolerance of being 
contained in the other polyhedron is included as a contact point. The tolerances serve to improve 
performance in the physical simulation, by making the contact manifold more consistent from frame to 
frame. Requiring exact intersection can cause points to count as intersecting one frame, not intersecting 
the next, and so on, which leads to jitter. 

 The current scheme for generating manifolds is possibly the weak link of the current collision 
detection implementation. No matter how good an engine’s constraint solver is, inaccurate contacts 
have a tendency to cause weird behavior. One possible improvement would be to give each contact 
point its own penetration depth. Alternatively, rather than a set of points, a contact region could be 
computed – a point, line segment, or polygon, depending on the configuration of the intersecting 
polyhedra.  

         Figures 3 and 4 depict the two types of contact points, shown as black points. On the left, the two 
tetrahedrons were found to intersect along two edges, and the intersection of those edges is used as 
the contact point. The figure on the right shows two manifolds resulting from face intersections – one 
between the box and tetrahedron, and one between the box and the ground.  

 

 

 

 

 

 

 

 

Figure 4 - Single edge-edge contact point Figure 3 - Multiple face contact points 



3. Rigid Body Simulation 
  

 The other half of the physics engine is concerned with the motion of the simulated bodies. Rigid 
body dynamics can also be broken into two core components. First, the dynamics component 
encapsulates the physical state of a rigid body, and governs how that state changes over time. At its 
center is a set of equations of motion, relating the forces on an object to its change in position and 
velocity. 

 Second, the collision response component works to ensure that the current state of the system 
is physically valid. The foremost restriction on rigid bodies is that they cannot penetrate each other. 
Many other restrictions can be used to create various behaviors as well, for instance keeping two 
objects a certain distance from each other, or only allowing a lever to rotate a certain amount.  A 
popular way to implement these restrictions in rigid body simulations is with a constraint model – each 
restriction of the physical state of the system is enforced with a constraint, an equation on the variables 
of the state. For example, if the function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) returns the distance between points 𝑝𝑝 and 𝑞𝑞, then 
the equation 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) = 𝑑𝑑 is a position constraint on 𝑝𝑝 and 𝑞𝑞. Enforcing the constraint results in 
keeping 𝑝𝑝 and 𝑞𝑞 at a distance 𝑑𝑑 from each other. Constraints are enforced (at a conceptual level at least) 
by applying internal forces, called constraint forces, to the constrained bodies.  Non-penetration 
constraints, for instance, produce the normal force between two objects. The engine currently supports 
contact and friction constraints, and hopefully more types of constraints will be implemented soon. 

Given a set of constraints, the simulation would then use a constraint solver to figure out the 
constraint forces necessary to satisfy them. There are two main approaches to this problem – global 
solvers and iterative solvers. Global solvers solve the entire system simultaneously, and while they 
produce optimal answers, they are very slow. Iterative solvers adjust each constraint force locally, 
looping over all the constraints repeatedly until some stopping criteria is met. Good iterative methods 
do converge to a global solution, and therefore provide a fast approximation for the system of 
constraint forces. The solver that this project uses, the Sequential Impulses method, is an iterative 
solver. 

 

Rigid Body Dynamics 
 

The physical state of the rigid bodies in the engine consists of several variables. Each body has a 
constant scalar mass 𝑚𝑚, and a constant (in body-space) 3x3 inertia tensor 𝐼𝐼. Its time dependent state is 
described by its position 𝑥𝑥, linear velocity 𝑣𝑣, rotation 𝑅𝑅, and angular velocity 𝜔𝜔, where 𝑥𝑥, 𝑣𝑣, and 𝜔𝜔 are 
3D vectors and 𝑅𝑅 is a 3x3 matrix. The change of these time-dependent variables can be expressed as 
functions of each other, the applied force 𝐹𝐹 and torque 𝜏𝜏 on the object, and time, to form a set of 
differential equations that drive the motion of the system: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑) = 𝐹𝐹(𝑑𝑑) 𝑚𝑚⁄ ,    𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑) = 𝑣𝑣(𝑑𝑑)     for linear motion, and 



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑) =  𝐼𝐼−1𝜏𝜏(𝑑𝑑),    𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑) =  (𝜔𝜔(𝑑𝑑)∗)𝑅𝑅(𝑑𝑑)  for angular motion, where the star operator is defined as 

𝑎𝑎∗ = �
0 −𝑎𝑎𝑧𝑧 𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧 0 −𝑎𝑎𝑑𝑑
−𝑎𝑎𝑦𝑦 𝑥𝑥 0

�. 

These equations are integrated using the symplectic Euler method. Given the current linear motion 
state, applied force, and time step length ℎ, the following two equations produce the new linear state: 

(1) 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑑𝑑 + ℎ𝐹𝐹(𝑑𝑑)/𝑚𝑚 
(2) 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑑𝑑 + ℎ𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 

The equations for angular motion are similar, although extra work needs to be done to address the fact 
that the body’s inertia tensor is stored in body space.  

Given these equations, the system of bodies are updated each frame in the following manner. 
First, external forces and torques (such as gravity) are applied to each body. Next, using (1), the 
velocities of each body are integrated. The constraint solver then corrects the velocities in order to 
enforce all constraints (as described in the next two sections). Finally, (2) is used to integrate the new 
positions. 

Detailed explanations and derivations for the equations in this section can be found in Baraff[1]. 

 

Constraints 
 

 For this project, contact and frictional constraints were implemented. A constraint of each type 
is created for each contact point found in the collision detection step. The constraints are velocity-
based, in that they are constraints on the velocities of the two contacting objects.  

The contact constraint requires that the relative velocities of the two objects parallel to the 
contact normal must be greater than or equal to zero – that is, they cannot be moving towards each 
other. The contact constraint force, or normal force (technically impulse, see next section), is applied 
along the contact normal and in opposite directions in order to push the objects apart. Its magnitude is 
limited to [0, ∞), so that it can only push the two objects away from each other, and will push as hard as 
it needs to in order to enforce the constraint. 

 The frictional constraint requires that the relative velocities of the two objects perpendicular to 
the contact normal – i.e., along the contact plane – be zero. However, frictional forces are not unlimited. 
In fact, they are limited by the normal force at that contact point: 𝐹𝐹𝑓𝑓 ≤  𝜇𝜇𝐹𝐹𝑛𝑛, where 𝜇𝜇 is the friction 
constant for the pair of contacting objects. Because of this, each time an impulse is applied to a certain 
contact point’s normal constraint, the limit for its friction constraint must be updated.  

 



Sequential Impulses 
 

 The constraint solver chosen for this engine is a Sequential Impulse solver. Impulse is simply 
change in momentum: 𝐽𝐽 = ∆𝑃𝑃 = 𝑚𝑚∆𝑣𝑣 . Rather than find a set of constraint forces, which technically 
would need to be infinite in magnitude in order to produce an instantaneous change in velocity, the 
solver attempts to find a set of impulses that will result in the desired post-collision relative velocities. 

 The solver starts by building the constraints out of the given contact manifolds, each of which 
keeps track of its current applied impulse (initialized to zero). It then runs for a fixed number of 
iterations. In a given iteration, the solver loops over each constraint, calculates the additional impulse it 
needs to apply given the constraint’s current applied impulse and velocities, and clamps the resulting 
total impulse according to the limits in the previous section. Finally, the velocities of the rigid bodies are 
updated based on the constraint impulses, and the simulation can safely continue, penetration-free. 

 The precise relation between a velocity constraint and the impulse needed depends on the type 
of constraint. See Catto[2] for details on the necessary equations for normal and frictional constraints. It 
turns out though that solving the set of constraints comes down to solving a system of linear equations. 
Because of this, applying the Sequential Impulses method is actually equivalent to solving the system of 
equations with the Projected Gauss Seidel algorithm. Again, see Catto[2] for details. 

 Because the simulation updates bodies in discrete time steps, small penetrations between 
objects cannot be avoided, even with a good constraint solver. To fix this, the engine uses Baumgarte 
stabilization – if the penetration depth at a contact point reaches a certain threshold, the velocity 
constraint at that point is increased by an amount proportional to the depth. This serves to push 
intersecting bodies away from each other a little harder to correct the penetration. 
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