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Abstract 

The purpose of this project is to create 3D engine that displays the interaction of non-

rigid bodies.  As a part of our project we researched existing models for elastic and deformable 

bodies and algorithms for their collision detection and collision response.  We have created a 

model of the object as a set of points connected by springs of given elasticity factor k.  The 

model uses spring forces and damping to give elasticity to the objects.  Object collisions are 

determined using our collision detection engine.  After collision occurs the response is calculated 

using physics laws. 

Model of a Single Object 

Overview  

The objects we are working with are elastic and deformable bodies.  They change their 

shape under the influence of outside forces and then return to their original shapes.  Considering 

gravity as an external force, in the real world situation, even in a state of rest, for example sitting 

on a table, this type of object will have a slight deformation of shape and due to it the springs 

will not be in equilibrium.  This can be used to model objects made out of rubber, jell, metal or 

other similar substances.   

These objects behave according to a set of rules commonly used in physics models.  They 

maintain constant velocity and shape if no external forces are applied (Newton’s First Law).  

Without deformation the object has six degrees of freedom (three for translation and three for 

rotation).  If an external force is applied to some part of the object it deforms to find a state of 

rest where its internal energy is balanced by its external forces.  If the influence of the force 

stops, the object returns to its previous shape, after any vibrations have dampened.  We will 



assume that objects are non-breakable, do not change their elasticity over time, and do not 

deform permanently. 

Prior Work 

Over the past two decades, people in academia and industry have been working on 

simulating physically realistic elastic objects.  Different models have been developed over time.  

Most of them use some kind of elasticity rule combined with different constraints    

Terzopoulos and Witkin presented the Hybrid model [4], where an object has a reference 

component, which represent shape and displacement components.  These components represent a 

deformation from the initial shape.  In later research other models and ideas were introduced, 

including the concept of local and global deformations [5]; using extra layer coatings [8]; using 

elastic grids with additional constraints.  Recently, adaptive models for elastic and deformable 

bodies were developed; some of them use mass-spring system similar to the one we used for our 

project [6].  Compared to these models, our model is quite simple; however it includes all the 

main factors needed to animate and provide interaction between elastic and deformable bodies. 

Description 

For our models an object is represented as a mesh of polygons, namely triangles.  The 

edges of the triangles possess the physical qualities of springs.  Vertices have properties of rigid 

bodies that are connected by springs.  Vertices have only three degrees of freedom – they can 

move in space but cannot rotate.  If a distance between two adjacent vertices shortens, the spring 

which connects them forces them to move farther from each other and vice versa.   

The principal idea behind our model is that each point behaves as an independent body, 

or particle, and only spring forces of its direct neighbors affect velocity and acceleration of this 



point.  In our model we do not maintain information about linear and angular acceleration or the 

velocity of the object, and instead we only store the accelerations and velocities of each particle.   

Physics Involved 

As mentioned earlier, the main forces that move and deform the objects are the internal 

spring forces of is edges.  The force applied on each vertex is calculated by the spring equation 

[1]: 
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Where k is elasticity constant of the object and ∆x is the displacement of the length of the edge, 

and n is number of direct neighbors of the vertex.  Although we work in 3D, this force is 

calculated as projection on 1D space of each edge.   

While working with springs the problem of damping arises.  In a real world, springs do 

not oscillate forever because of the loss of internal energy.  In graphics and mechanics the loss 

can be simulated by applying a damping on the spring.  There are several ways to do damping: 

viscous damping, linear damping, or Rayleigh’s damping [1].  For this project we have chosen 

the viscous damping.  After including damping the formula for the force applied to each vertex 

changes to the following: 
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Where c is a damping constant and v is the velocity of a vertex.   

 The displacement of each vertex is calculated using Newton’s Laws and basic formulas 

for the motion of the body [2]: 
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To achieve the best performance, some assumptions should be made about the object.  As each 

vertex of an object is assumed to have the same mass, the distances between adjacent vertices 

should be approximately equal to each other.  So even if it is not needed for the appearance, the 

mesh of the object should be equally distributed over the object’s surface, otherwise a more 

sophisticated algorithm is needed to compute mass of each vertex so that mass of the body is 

uniform.    

Algorithms and Other Issues 

After deriving the formulas for the vertex forces there are two problems that need to be 

solved: creating a data structure for the object and applying linear algebra for projection of 3D 

space to 2D. 

The data structure of the model includes a set of vertices with velocities and accelerations 

for each vertex.  Each vertex also holds a list of its direct neighbors as well as the initial (rest) 

distances to each of them.  So in order to update the position of a vertex, we calculate the force 

applied (using the difference between the current and initial distances between the vertex and 

each neighbor), then update acceleration and velocity, and finally compute the displacement 

from previous position.  There is also set of faces (triangles) and edges stored for each object and 

are used later for the collision detection and rendering. 

The principal advantage of our model is that natural behavior of the elastic object can be 

achieved using a number of easily computed algebraic physics equations of degree at most two.  

The object mesh is easy to create using standard 3D graphics tool, for example 3D Studio Max 



[13].  Note that our model does not necessarily preserve the volume of the body.   If this is 

desired, additional constrains must be added.  Also the elasticity constant depends on the 

complexity of the object and has to be calculated for each different object.  One of the 

disadvantages of our model is that creating objects with no elasticity (rigid bodies) results in 

strong oscillation which damping cannot handle.   For this reason, non-elastic objects are handled 

by a different method.    

 

Mechanics behind Object Interaction 

Overview 

Given the object model presented in the previous section, the next building block to 

consider is how to combine them into a single world.  One of the factors involved in this is 

updating movements between objects, namely applying the appropriate forces to each object and 

updating their coordinates over some time step.  Following any type of non-predetermined 

movement, some sort of collision detection algorithm is run between all appropriate pairs of 

objects.  If any contact is detected, all of the information regarding the collision must be 

extracted and the appropriate collision response mechanism is applied. 

Typically in complex rendering programs or games, the objects in space would be 

contained in some type of data structure, such as an octree or kd-tree as proposed by Samet [11].  

Such an implementation can provide several performance gains, including rendering of objects 

and limiting the pairs of objects to which the collision test must be applied.  In the rendering 

process these data structures can help to determine whether an object needs to be drawn on the 

screen.  For example the partitioning nature of these structures organizes spatial information such 

as objects in such a way that they can determine when other objects are very close to it or when 



one is occluded behind another.  These properties help when trying to decide what objects need 

to be drawn or need to have complex operations applied to them such namely collision detection.  

Inaccuracies in the collision detection can arise when the time step between screen updates is 

large enough that the physical forces would place them on opposite sides of each other.  To 

compensate for this scenario the objects typically require being sufficiently scaled in size or a 

smaller time step has to be used in the collision detection process. 

Prior Work 

There are many methods that have been proposed for collision detection.  Generally all 

objects have some sort of boundary or more commonly a radius in which they are contained 

within, and whenever another object comes sufficiently near, a series of calculations are 

performed to see if there was an actual collision.  When dealing with convex objects, this method 

works well because the object can be simplified to a sphere or ellipse and your chances of 

finding a collision are higher in an early time step.  With concave objects there is a chance that 

the object could be very complex and a collision might not be found until several time steps later.  

To get around this problem this idea has been taken to another level with the use of hierarchal 

collision detection [12].  As the name suggests, there are layers of boundaries or radii that have 

to be penetrated before a collision is detected.  In the case of concave objects this works well 

because, after the primary radius has been penetrated, the collision detection is done against the 

next set of radii and so forth, as necessary.  This works well when the nature of the object is 

sparse or has convex substructures, because it increases the accuracy of the collision detection 

while reducing the need for computationally expensive algorithms. 

When it is determined that the collision boundary has been penetrated, it is required to be 

known exactly if there was a collision and where.  There are various algorithms that can 



calculate this but the overall method used by most of them is to compare all the faces or edges of 

one object and see if any of them lie within the boundaries of the other object.  While simple in 

concept, most techniques require several floating-point calculations to check against many edges 

and points of every polygon in one object to the other.  Typically there is a check to see if either 

point of any edge in one object penetrates any polygon in the other object.  This procedure is run 

twice, reversing the roles of edges and polygons between the two objects. If this does not reveal 

an intersection, all the individual faces and edges are checked to see if they are coplanar and/or 

coincident.  When naively implemented, this technique will still work but can be very expensive 

if the object consists of a large number of edges.  In this instance some type of selection against 

the object is done in order to select a minimal set of edges and polygons to check against.  For 

example, if the relative centers of two objects can be determined and the two points used as a 

vector and treated as the normal of a plane, then it suffices to test only points that lie on one side 

of that plane.  In the situation where the objects are represented by polynomial equations, it is 

common to check if the surfaces defined by these equations intersect using any of several 

techniques based on integral calculus.   

After it has been determined that a collision has occurred, we need to know where the 

collision has occurred and make an appropriate response to the point of intersection.  In this 

stage, the need for accuracy in the location of the collision is the driving factor for what collision 

information should collected.  In one case we can attempt to calculate the actual point of 

collision and try to isolate all the elements involved, such as the direction of the collision and the 

force being applied at that point.  At the time of collision, if it is determined that the two objects 

have penetrated each other, somewhere between the previous time step and the current step there 

was a point in time when the collision first occurs. So in order to find the instance of collision, 



the collision data is recalculated using a time step that is a half of the current time step and the 

previous.  This process is repeated until there is collision without penetration or until some 

threshold is met.  While this solution provides accuracy in the collision data, it is 

computationally expensive to repeat several calculations, which can produce redundant 

information between iterations.  What can happen instead is that all the information about the 

collision can be collected and then approximate what the real collision information data should 

be. 

Algorithms Used 

In our implementation we maintain a collection of objects, and then at arbitrary time 

intervals we update their positions in space, check for collisions and respond appropriately to 

them and repeat this process as necessary [10].  For the collision detection step, we used a 

variation of a ray to triangle intersection algorithm.  For any two objects that we find to be within 

each other’s collision boundary, we iterate over the edges of one object and check for any 

intersection with any of the planes of the triangles that make up the other object.  If the edge has 

been found to be crossing or touching the plane, the point of intersection with the plane is then 

calculated.  If that point is contained within the triangle on that plane then we have detected a 

collision.  As we continue to iterate over the rest of the edges, we mark all the edges and points 

of one object that were found to have intersected the other object.  Then with this set of edges, 

we run a depth-first search against the graph of the object’s polygonal mesh to collect all the 

points that are contained within the other object.  Once this set is complete, we apply our 

collision response system with the appropriate physics, as described in the previous section. 

 

 



Implementation Details 

In order to illustrate the models and algorithms we created and used, we developed an 

application that takes text file of meshes and their initial velocities as input and animates the 

behavior of these objects. This application was developed using C++ under the Microsoft Visual 

C++ .NET Compiler and the Standard C, OpenGL, STL libraries and the Win32 API.  The 

program structure is intended to be cross platform compatible so there are areas where things 

such as the timing mechanism is abstracted away into its own object. 

You can download the source code here. 

The most general class in our program is World, which contains list of objects displayed 

on the screen (EObject). Each object has list of faces (Triangle), edges (Edge), and points 

(GLPoint). The principal functional elements of the program, including collision detection, 

collision response, and each point location update can be found in the source file EObject.cpp.  

In the main loop for our program, after all models have been loaded into memory and initialized, 

we iterate over our collection of objects calling an update on their movements using the time 

span between the last iteration and the current as the time step.  After the updates, we check all 

appropriate objects for collisions against each other.  If a collision is found, we apply the 

appropriate collision response mechanism for that collision. 

In Windows, the standard timing library did not allow for precision in timing beyond 

seconds so we had to use the WIN32 API to achieve greater precision.  Our program uses a 

single thread for execution.  Rather than using the timestamps from the system clock which 

would include time allocated to other programs by the processor, we used the timestamp for the 

lifetime of the thread. 



Conclusions 

In the project we presented a 3D engine for the animation of non-rigid bodies. We were 

able to achieve natural behavior of elastic bodies and their collisions. Here is set of screen shots 

which were taken from the engine: 

  

  

Animation of multiple objects falling on the ground and interaction with each other. 

 

   

A box falling on the ground and flipping over 



Possible Future Work 

There are several ways to extend this project.  The first is to improve current engine.  

This might include adding global constraints such as preserving object volume; optimizing the 

collision detection algorithm by creating more sophisticated bounding boxes for each object, 

improving the algorithm for spring damping.  The other possible direction is to use a similar 

system to create other types of flexible objects, for example cloth [9] or hair.  As longer term 

work, it might be possible to extend our approach to create a model for much more general 

classes of substances.  That would require adding more physically realistic elements into the 

model, creating uniform mesh over all the volume of the object, and finding specific constraints 

to satisfy properties of different types of the materials.
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