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1 Introduction 

The Traveling Salesman Problem is a formulation that arises in many diverse fields, from 

vehicle routing to genome sequencing to circuit design. Because it is an NP-Hard problem, 

it is primarily calculated via heuristics for graphs of non-trivial size. The Held Karp lower 

bound algorithm provides a lower bound for the cost of the optimal TSP tour of a graph. 

Having the lower bound for a particular graph is useful for checking the performance of a 

given heuristic. This report details an implementation of the Held Karp lower bound 

algorithm in Python using nearest neighbors, based on the work of Valenzuela and Jones. 

 

2 Background 

The Traveling Salesman Problem is to find a minimum-cost Hamiltonian cycle, given a set 

of points and edges, and a cost function on the edges. In its original form, the problem was 

to find the shortest tour of all of the state capitals in the US. Since then, countless variations 

have been put forward in order to solve related problems. Unfortunately, all variants of the 

problem are at least NP-Hard.  

In the original form, the cost of the edge from capital a to capital b is equal to the Euclidean 

distance between them. The cost function then satisfies the triangle inequality, which states 

𝑐𝑐(𝑢𝑢, 𝑣𝑣) ≤ 𝑐𝑐(𝑢𝑢, 𝑡𝑡) + 𝑐𝑐(𝑡𝑡, 𝑣𝑣) 

for all vertices t, u, v in V. Also, the distances are symmetric, that is  

𝑐𝑐(𝑢𝑢, 𝑣𝑣) = 𝑐𝑐(𝑣𝑣,𝑢𝑢) 

for pairs of distinct vertices u and v. TSP problems that satisfy these two properties are 

called Euclidean or geometric TSPs. Euclidean TSPs, though still NP-Hard are generally 

more tractable than problems that do not satisfy these constraints. 

The Held Karp Bound is a lower bound for the cost of an optimal Traveling Salesman Tour, 

created by Michael Held and Richard Karp. Briefly, the Held Karp bound is found by 



assigning a weight to each vertex, which is factored into the cost of the edges incident on it. 

The vertex weights form a cost vector 𝜋𝜋.  

For a pre-determined number of iterations, the algorithm manipulates those weights in 𝜋𝜋 

using a gradient ascent method in order to generate gradually higher-cost minimum 1-

trees whose cost and shape grows closer and closer to that of a true TSP tour.  In essence, 

the algorithm attempts to force the spanning tree algorithm to produce vertices of degree 

exactly 2. This is accomplished by increasing the cost of vertices of degree > 2, which 

discourages the tree from using edges incident on those vertices, and decreasing the cost of 

vertices of degree 1 (to encourage use of those edges). The highest-cost tree found by a 

pre-determined stopping point is the bound. 

The Held Karp bound algorithm works well for symmetric TSP problems which satisfy the 

triangle inequality. For large instances of these problems, calculating the Held Karp bound 

is a good way to check the reasonableness of an approximation result without resorting to 

brute-forcing the exact TSP tour.  

 

3 Implementation 

For my implementation I followed the work of Valenzuela and Jones, who detailed an 

algorithm for finding an approximation of the Held Karp lower bound. The original Held 

Karp bound algorithm requires working with complete graphs. Since the algorithm 

requires computing a minimum 1-tree and updating every edge in each iteration of the 

loop, this quickly becomes very computationally expensive. Using a constant number of 

nearest neighbors greatly improves the running time of the algorithm, while only 

sacrificing significant accuracy on graphs with certain difficult properties.  I implemented 

the algorithm for finding the lower bound in Python, using the graph-tool and scipy 

packages. Both of these packages are based on C++ code, making them more efficient than 

pure Python code. 

3.1 Generating neighborhoods 

The Held Karp algorithm requires for each point p a subgraph 



𝐺𝐺 =  (𝑉𝑉,𝐸𝐸), where 

 𝑉𝑉 =  {𝑝𝑝}⋃{𝑘𝑘 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 𝑏𝑏𝑜𝑜 𝑝𝑝} 

𝐸𝐸 = {(𝑝𝑝, 𝑣𝑣) | ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑣𝑣 ≠ 𝑝𝑝} 

I inserted each of the points into a kd-tree, and then used it to calculate distances between 

each of the points. The possibility of severe clustering meant that I needed to calculate 

distance between all pairs of points rather than the nearest 40 or 50.   

The vanilla algorithm performs poorly for graphs with obvious clusters. In order to 

mitigate this, I used the technique specified by the Valenzuela and Jones. Instead of forming 

a neighborhood of the nearest neighbors, for each point the algorithm divides the plane 

into quadrants with the point as the origin. For each quadrant, select the nearest seven 

points in the quadrant, (or all points in the quadrant if fewer than seven) and add them to 

the neighborhood for a total of up to 28. Then fill the remaining space in the neighborhood 

with the nearest remaining points, without regard to quadrant, for a total of 40 neighbors.  

This method produced a list of 40 neighbors for each vertex. 

I created the subgraph by filtering out the vertices not in the neighborhood (except the 

vertex itself) and creating a directed edge from the vertex to each of its neighbors. Two 

directed edges (u,v) and (v,u) were used to describe each undirected edge for 

programming convenience. 

3.2 Running loop 

Next I implemented the substance of the algorithm. The details of the algorithm can be 

found in Valenzuela, 1997.  

The most time-consuming step was the updating of the edge costs, since each edge in each 

subgraph needed to be updated. After the edge costs were updated, a minimum spanning 

tree was created using graph-tool, which relies on Kruskal’s algorithm. Then it was simple 

to select the two smallest edges to form the 1-tree. 

I updated the step size using the formula 
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𝑡𝑡1 =
1

2𝑛𝑛
𝐿𝐿(𝑛𝑛𝑖𝑖𝑖𝑖 ,𝑇𝑇) 

𝐿𝐿(𝑛𝑛𝑖𝑖𝑖𝑖 ,𝑇𝑇) is the minimum 1-tree generated by the edge weights. 

I updated the vertex weights using the formula 𝜋𝜋𝑖𝑖
(𝑚𝑚+1) =  𝜋𝜋𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑚𝑚(𝑑𝑑𝑖𝑖𝑚𝑚 − 2), 1 ≤ 𝑛𝑛 ≤ 𝑛𝑛 

 

 4 Results 

I tested the algorithm on examples from TSPLIB, a database containing various graphs, 

many of which were included for being in some way pathological or difficult to find 

approximate tours for. The following shows my implementation execution on symmetric 

TSP graphs lin318 and dsj1000.  

  



Execution for graph dsj1000 

   

Fig 1. Dsj1000 initial spanning tree 

  



Fig 2. Best tree found by step 250

 

Fig3. Best tree found by step 500  



Execution of algorithm for graph lin318 

   

Fig. 1: Left - Initial 1-tree. Right: Best 1-tree found by step 250 

 

Fig. 2 Best 1-tree found by the end of the algorithm 



With the modifications specified, the bounds that my implementation returned matched 

those of Valenzuela and Jones exactly.  

The running time of the subgraph creation is dominated by the nearest neighbor query 

performed on the k-d tree. It amounts to sorting n lists, where each list is the distance of all 

points in the graph to a single point. Thus at worst it runs in 𝑂𝑂(𝑛𝑛2 log𝑛𝑛) time. 

The running time of each iteration of the loop is mainly contributed by the edge cost 

updating. Each edge in each subgraph must be updated, for a total of 80𝑛𝑛 updates. Finding 

the minimum 1-tree has time complexity 𝑂𝑂(𝑚𝑚 log𝑚𝑚) for Kruskal’s algorithm, which is 

𝑂𝑂(𝑛𝑛 log𝑛𝑛) in this case. The other update steps run in either 𝑂𝑂(𝑛𝑛)  or 𝑂𝑂(1) time. Thus, each 

iteration of the loop runs in 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time. For the relatively small graphs that I tested on, 

the execution time was dominated by the edge updating. 

This total running time, while large, is far smaller than the running time of a dynamic 

programming (𝑂𝑂(2𝑛𝑛𝑛𝑛2)) or branch and bound algorithm (𝑂𝑂(2𝑛𝑛)) needed to find an exact 

answer.  

 

5 Conclusion 

The implementation presented here can be used to find an approximation of the Held Karp 

lower bound for Euclidean TSPs, including those involving clustered data. This is a faster 

solution than calculating the bound outright, however, the implementation still does not 

scale well. 

There are two areas for performance improvement – initial subgraph creation and edge 

cost updating. Both aspects have some repetition in computation, and perhaps more 

efficient data structures could improve their running time. 
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