

Rediscovering Fire:
A Survey of Current Fire Models and

Applications to 3D Studio Max

Yulia Eyman

Independent Study
Fall 2003 – Spring 2004
Advisor: Dr. David Mount

Introduction

Fire is arguably the most visually impressive natural phenomenon. It is also one of the

most destructive and difficult to predict. Its physical properties vary with the fuel and

temperature, and have been studied extensively by combustion researchers. “Depending on the

[fuel] flow type and the type of premixing [with oxidizers], it is possible to distinguish different

kinds of flame structures, each with its own characteristic features” [de Goey 2003].

Fire’s basic components can be described as follows:

 Fuel for fire can be solid, liquid, or gaseous. However, in order to burn, it must be

chemically decomposed into a vapor, which is achieved through heating.

 “Heat can be understood as a measure of the molecular activity occurring within an

object” [Wei et al. 2002]., and increases along with the speed of the molecules. It can be

spread through convection, conduction and radiation.

 Oxygen allows combustion. Fire particles that receive insufficient oxygen transform into

smoke [Wei et al. 2002].

These components determine the appearance of fire. Their interaction results in all types of fire,

from calm candle flames to roaring forest fires.

In the field of computer science, fire’s complexity is still an elusive problem. Many

attempts have been made to model fire, both for visual and functional purposes, with

increasingly successful results. The approaches have been rather diverse, but can be subdivided

into attempts to model fire as a texture, and the use of physical formulas to simulate its behavior.

This paper presents a survey of existing research into fire representations and the fundamental

components of 3D Studio Max that can be used to create animated fire simulations.

Fire as Texture

The basic motivation for wanting to model fire as a texture that can be applied to a 3D

object is the speed and ease of subsequent use. In general, textures are either image-based or

procedural. Image-based textures map points from 2D images onto 3D surfaces. Procedural

textures are generated by “combining noise into various mathematical expressions” [Perlin

1999]. They require no source images and, therefore, need very little memory. Furthermore, they

can be used to “carve out” an object from texture material, rather than distorting a 2D image.

Procedural textures (also called solid textures), produce much more realistic results for natural

textures such as marble and metals. Procedural textures can also be animated over time. In the

1980’s Perlin was the primary contributor to the creation of procedural textures and the

algorithm for generating Perlin noise. Perlin and Hoffert presented several methods for creating

procedural fire, using noise to generate turbulence in the texture [Wei et all 2002].

More recent textures have increased in complexity, tackling the problem of animation

over time in various ways. [Wei et al. 2002] combined elements of texture with physical

concepts. Expending on the work of [King et al. 2000], which proposed the use of texture splat

primitives to simulate fire, they described a method for letting the splats interact with the

environment. Using the Lattice Boltzmann Model from fluid mechanics, [Wei et al. 2002]

allowed their display primitives to follow a simple physical model that lends itself to real-time

computation. A texture splat is a small image of a fire detail with a Gaussian filter applied for

smoothness where it overlaps other splats. The color and transparency of the splat are calculated

according to its position in the fire. Both the movement of the splats and the number of

primitives necessary for the animation are rather limited, greatly increasing efficiency over

particle system methods, discussed in the following section.

[Neyret 2003] suggested a method for making animated fluids, such as fire, that exhibit

realistic flow without requiring the tremendous computational power necessary to calculate

formulas of fluid dynamics. This texture animated both the overall movement of the flow as well

as small-scale swirling by simulating a low resolution fluid and letting it advect a specific

texture. The challenge was in preserving space and time continuity while maintaining the

statistical properties of the texture in a specified range. There are three basic methods for

animating textures: simple advection of the parametric space, relying on particles instead of

simple parameterization to control the location of texture patterns (similar to the method

proposed by Wei, above), and introducing time as a fourth dimension in the texture parameters.

[Neyret 2003] describes these approaches more specifically and points out the failings of each.

His improved method involves “locally adapting the texture latency…, blending the procedural

noise in frequency space…, and defining a control mechanism for small scale animation” and

allows for creating visually high-resolution textures without a dramatic increase in processing

power.

Physical Models

Models that have attempted to simulate fire using physical formulas have approached the

task from different directions that have recently converged. Several groups of researchers have

focused on fire’s behavior. Their simulations were intended for training and prevention purposes

and aimed to predict fire’s precise interaction with its environment. Others focused on the visual

elements of fire, trying to create visual realistic for use in games and movies.

Recently, fire prevention and suppression agencies have started relying on computer-

generated fire simulations to help understand and predict the growth and spread of fire. These are

modeled with one of two types of models – zone or field. Zone models divide the space into one

hot upper and one cool lower control volumes. Although these models cannot account for

complex geometries in a room and are not useful for prediction, they are computationally simple

and very effective for reconstruction of fires. Field models, also known as computational fluid

dynamics (CFD) models, divide the space into many homogenous cells. Although these models

produce very accurate results, the computations involved tend to be rather lengthy due to the

large numbers of elements. More importantly, these models generate large volumes of output

data that must be interpreted. [Govindarajan et al. 1999] go on to suggest a visualization method

to view the results of multiple CFD model runs simultaneously.

[Zaniewski and Bangay 2003] proposed using extended Lindenmayer Systems, rather

than CFD, to model fire propagation and geometry inside an enclosed building. Their model also

predicted where and how fast fire is most likely to spread, thus helping to identifying the safest

parts of the building. L-Systems, commonly used to model individual plants and entire

ecosystems, had not been used to store information about fire. In 2001, Devlin and Chalmers

conducted research into the impact of different fuels on the color of flames [Nguyen et al. 2002].

On the other side of the spectrum, researchers have used physical formulas, or simplified

variants thereof, to produce realistically looking, rather than behaving, fire. Used for artistic

purposes, emphasis in these models has been placed on ease of control by the animator. [Reeves

1983] was the first to simulate fire using particle systems. He proposed using clouds of

primitives to define an object’s volume, rather than polygons to define its surface. These new

objects were dynamic, since particles can move, change size, be created or destroyed, and had

non-deterministic shapes with fuzzy boundaries.

More recently, research has focused on gaseous “blobs,” rather than simplistic particles,

whose density is advected (i.e. displaced) and diffused by wind fields over time. [Stam and

Fiume 1995] implemented a “fire model for a fuel map defined on solid objects, [which]

corresponds to non-burning objects coated with a flammable substance.” Their algorithm can be

summarized as follows:

for each time frame do
 for each solid object in the scene do
 Update temperature of the object
 Generate flame blobs and update fuel map
 end
 for all flame blobs do
 Update temperature and density
 Generate smoke blobs
 Move and diffuse
 end
 for all smoke blobs do
 Update density
 Move and diffuse
 end
end

Relying on the physical properties of fuels and the impact of heat on the movement of gas, they

were able to model the appearance of flames and the location of smoke. They also proposed a

method for warping the gas blobs to produce less regular, more believable shapes.

 Extending on these ideas, [Beaudoin et al. 2001] suggested using individual flames as

primitives. Their process was subdivided into three parts: propagation, animation, and rendering

of flames. Propagation refers to the spread of flames over a burning object and, in this simplified

model, was controlled by fuel density, oxygen supply, wind, and surface orientation relative to

gravity. Animation accounts for the deformation of flames placed along a surface, thus capturing

the visual dynamics of fire. Each flame primitive is animated, and consists of a chain of

connected particles (called the “skeleton”), with the particle adjacent to the surface of the

burning object as the root. The rest of the chain moves according to a turbulence vector that is

based on user-defined parameters. After being propagated and animated, the flames are rendered

into a voluminous mass. To account for the apparent merging of multiple flames, [Beaudoin et

al. 2001] proposed the rendering of implicit surfaces to visualize the final fire effect.

 By building on physical and graphical models, [Nguyen et al. 2002] achieved the most

photo-realistic flames. They divided the model into three distinct visual components: blue flame

core, blackbody radiation, and smoke/soot. The core, which gets its blue or greenish color from

emission lines of chemical reactions, is modeled as a thin film adjacent to the implicit surface

where burning occurs. This surface marks the boundary where oxidized fuel heats up sufficiently

to begin combusting. Blackbody radiation produces the yellow-orange color typically associated

with flames. The exact color varies with temperature, which must be tracked. As the blackbody

radiation diminishes with cooler temperatures, the soot and smoke produced by the flames

become visible. Another complexity of the model is the rendering of light emitted by fire. Using

the scattering, absorption, and emission properties of fire, Nguyen’s team also accounted for the

chromatic adaptation of our eyes to produce fire of the correct colors. In general, this model very

successfully simulates fires based on gaseous fuels, but does not wrap around burning objects in

as successful an imitation as that of [Beaudoin et al. 2001].

Features of 3D Studio Max

 3D Studio Max provides a built-in fire effect that can be rendered on atmospheric

apparatus objects. Max allows the animator to choose between tendril and fireball flame shapes,

and lets the user choose the inner, outer, and smoke colors. It also takes parameters for flame

size, density, detail and number of samples. Although the animator does have options to adjust,

the overall effect tends to be “cartoony” and unrealistic. Furthermore, objects with the fire effect

cast no light, which must be modeled with a separate light object.

 In an attempt to create more sophisticated fire in Max, I used the built-in particle systems.

Max supplies two types of particle systems: event driven, and non-event driven. There are four

distinct non-event driven systems: Super Spray, Blizzard, PCloud, and PArray, used to simulate

fountains, snow/rain, clouds, and the surface of any 3D object, respectively. The creation of

particles and the overall shape of the system are controlled by parameters in the emitter.

Furthermore, the animator can create space warps (such as wind and gravity) to more finely

control the particles’ paths and behavior.

 For ultimate control, an animator can use the event-driven particle flow particle system.

The particle flow is controlled by a series of events (see Figure 1). Each event can define the

size, shape, texture, speed, direction, rotation, and overall behavior of individual particles. Using

the birth operator, an animator can defines how many particles may simultaneously exist in a

system, what the length of their life spans should be, and on what frame the system should begin

and stop emitting. By default, particles are born in Event 01. They can travel between user-

defined events by passing predefined tests (such as age or position tests). The most powerful

aspect of this system is that Max provides script operators and script tests, allowing the animator

to specify behaviors of arbitrary complexity. Max updates the positions of the particles at every

frame. To do so, the program sequentially performs all of the operations specified inside an event

on the subset of particles that currently belong to that event. Each particle that satisfies the test

condition for its current event is moved to the following event, as defined by the animator.

Figure 1: Particle System’s Control Panel.

Particle System Flame

 I attempted to use a particle flow to simulate the burning of a candle flame. This process

involved modifying the color, position, and movement of the particles. To simulate the color of

flames, I gave my particle system a global texture whose diffuse color was a gradient ramp

ranging from yellow to red to black. I also added transparency to the texture. Using the material

static operator, I mapped particle’s age to coordinates of the texture. As the particles aged, their

coloring changed from yellow to red and eventually faded to black smoke.

 The position and speed of the particles was controlled by three sequential events. Event 1

contained the birth operator and specified that the particles should be emitted upwards with a

slight tendency to move closer together. Particles entered event 2 on hitting a non-rendering

sphere that served as a deflector. To imitate the fullness at the bottom of a candle flame, the

particles skirted around the surface of the sphere up to its equator (see Figure 2). In event 3, the

particles’ speed increased and gained a tendency to cluster closer together. I achieved this by

adding a “keep apart” operator with a negative value. Finally, to simulate the subtle turbulence of

a candle flame, I animated the general path that particles in event 3 followed. I created an object

above the particle emitter to serve as the target of the find target test. By animating its x and y

coordinates, I was able to simulate the appearance of the flame moving from side to side (see

Figure 3). I have not yet added any light to the scene.

Figure 2: Wire-frame View of the Particle System. The sphere serves as a non-rendered deflector. Light blue tick
marks represent particles in event 1, darkle blue – in event 2, red – in event 3.

 One of the major downsides of my model is that, despite its lack of complexity, it is

extremely slow. Achieving somewhat realistic results requires thousands of very small particles.

Event 2, which calculates the position of each particle by transforming its planar coordinates to

polar, adding several degrees to one of the coordinates, and transforming the result back into

planar values, is computationally intense. Furthermore, code written in MaxScript is not

optimized for mathematical operations (unlike the embedded functions that are created in C++).

Therefore, I have noted a variant that produces similar-looking results but renders significantly

faster than the above-described approach. The collision test, which normally allows particles to

move between events 1 and 2, has several parameters that can influence the behavior of particles

upon collision. When particles are set to bounce and slow down after collision, their speed and

momentum naturally cause an upward motion. In effect, this combination of settings achieves a

result very similar to the manual repositioning of particles around the surface of the sphere, but

renders much more quickly.

Figure 3a: Rendered particle system at frame 10 of 100. Figure 3b: Rendered at frame 50 of 100.

Figure 3c: Rendered at frame 90 of 100.

Conclusion

The problem of fire simulation is rather complex and has been approached from a variety

of starting points. The models that achieved the most realistic appearances have been those that

have taken the physics of combustion into account by tracking the amount of fuel as well as the

temperature of the flames. However, fire simulations serve various functions. For models

intended as tools for fire prevention organizations, the realism of the fire’s appearance is

secondary. However, rendering the flames is still important as it allows the results of various

tests to be more readily interpretable. Also, for animations that must be rendered in real time, the

physically based models of fire appearance and propagation are too computationally challenging.

Procedural textures, although typically less realistic, are better suited for such tasks. In general,

because fire is made of such diverse components as the movement, color, temperature, and

transparency of flames, the interaction of flames with the fuel, the production and movement of

smoke, light, and the propagation of flames as they engulf and consume objects and oxygen, fire

is an extremely difficult phenomenon to simulate fully. But the approaches with the most

realistic results have attempted to account for all these factors.

References

Beaudoin, P., S. Paquet and P. Poulin. 2001. “Realistic and Controllable Fire Simulation.” No
description on Graphics interface 2001, 159-166.

Fedkiw, R., J. Stam and H. Jensen. 2001. “Visual Simulation of Smoke.” Proceedings of the 28th

International Conference on Computer Graphics and Interactive Techniques, 15-22.

de Goey, L., D. Roekaerts. 2003. Lecture Notes of the J. M. Burgerscentrum Course on

Combustion. Ed. K. Schreel. Eindhoven University of Technology, Department of
Mechanical Engineering.

Govindarajan, J., M. Ward, and J. Barnett. 1999. “Visualizing Simulated Room Fires.” IEEE

Visualization 1999, 475-478.

King, S., R. Crawfis and W. Reid. 2000. “Fast Volume Rendering and Animation of Amorphous

Phenomena.” Volume Graphics, 229–242.

Lamorlette, A. and N. Foster. 2002. “Structural Modeling of Flames for a Production

Environment.” Proceedings of the 29th Annual Conference on Computer Graphics and
Interactive Techniques, 729-735.

Neyret, F. 2003. “Advected Textures.” Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, 147-153.

Nguyen, D., R. Fedkiw, and H. Jensen. 2002. “Physically Based Modeling and Animation of

Fire.” Proceedings of the 29th International Conference on Computer Graphics and
Interactive Techniques, 721-728.

Perlin, K. 1999. Making Noise. http://www.noisemachine.com/talk1/index.html

Perlin, K. 2003. “Improving Noise.” Proceedings of the 29th International Conference on

Computer Graphics and Interactive Techniques, 681-682.

Stam, J. and E. Fiume. 1995. “Depicting Fire and Other Gaseous Phenomena Using Diffusion

Processes.” Proceedings of the 22nd International Conference on Computer Graphics and
Interactive Techniques, 129-136.

Wei, X., W. Li, K. Mueller, and A. Kaufman. 2002. “Simulating Fire with Texture Splats.” IEEE

Visualization 2002, 227-237.

Zaniewski, T. and S. Bangay. 2003. “Simulation and Visualization of Fire using Extended

Lindenmayer Systems.” Proceedings of the 2nd International Conference on Computer
Graphics, Virtual Reality, Visualisation and Interaction in Africa, 39-48.

	Introduction
	Fire as Texture
	Physical Models
	Features of 3D Studio Max
	Particle System Flame
	Conclusion
	References

