CAR-TR-600 CCR-89-08901
CS-TR-2816 AFOSR-91-0239
December 1991

COMPUTATIONALLY EFFICIENT
ALGORITHMS FOR A HIGHLY
ROBUST LINE ESTIMATOR

David M. Mount
Nathan S. Netanyaxhu2

lDepartment of Computer Science and
Institute for Advanced Computer Studies
University of Maryland
College Park, MD. 207423255

2Computer Vision Laboratory
Center for Automation Research
University of Maryland
College Park, MD. 20742-3411

ABSTRACT

The problem of fitting a straight line to a set of data points is an important
task in many application areas (e.g., statistical estimation, image processing, and
pattern recognition). Recently the computation of linear estimators that are
robust has been recognized as important, since these estimators are insensitive to
outlying data points, which arise often in practice. In this paper we study one
such robust estimator, the repeated median line estimator (Siegel 1982), which
achieves the highest possible breakdown point of 50%. We present the following
results: (1) a simple practical randomized algorithm that runs in O (nlog?n) time
with high probability, and (2) a slightly more complex randomized algorithm
which performs as well asymptotically, but empirical evidence shows that this al-
gorithm performs in time O(nlogn) on many realistic input distributions. We
present empirical evidence for the efficiency of this algorithm under a number of
input distributions.

IThe support of the National Science Foundation under Grant CCR-89-08901 is gratefully acknowledged.

2The support of the Air Force Office of Scientific Research under Grant AFOSR-91-0239 is gratefully ac-
knowledged.

1. Introduction

Fitting a straight line to a number of data points is a common task fre-
quently encountered in numerous fields of science and engineering (e.g., statistical
estimation, 1image processing, and pattern recognition). Let (=, y;),
+=1,...,n, denote a set of n distinct points in the plane which are

hypothesized to lie on a straight line. The line estimator y = 9155 + @2, where

N y. - y.
f, = med med —/——
i g Ty - @

0y = m?d (yi -6, xz’)7
was proposed by Siegel (1982) as the repeated median (RM) line estimator fitting
the given points. Computing 4A91 amounts to computing the median of the set of
elements, {0;, ¢ =1, ..., n}, where each 6, corresponds to the median of the
n —1 line slopes defined by joining the point (z;, y;) with each of the other n —1

points (z;, y,), 7 # ¢. Once 6, is known, 0, is easily computed in O (n) time.

Siegel’s estimator is among a general class of what are termed robust esti-
mators, that are of great importance in many practical applications, where there
may exist points which lie significantly outside the ideal line of fit. One of the
most important parameters used to evaluate the robustness of a given estimator
is its sensitivity to outlying data, or breakdown point. This parameter is roughly
defined as the smallest fraction of contamination in the data that may cause the
estimator to have an arbitrary deviant values from its original estimate (see
Donoho and Huber 1983, or Rousseeuw and Leroy 1987, for an exact definition).

Siegel’s (line) estimator achieves a 50% breakdown point, which is the ultimate

level of robustness considered by statisticians.

Common simple regression (i.e., line) estimators include the L, (least
squares) estimator, the L, (least absolute values) estimator, and the L (Che-
byshev) estimator. The L, estimator can be computed in O(n) time (see
Dahlquist and Bjérck 1974, pp. 85-96). The L; line estimator can also be com-
puted in O(n) time by extending Megiddo’s O(n) algorithms for linear program-
ming (Megiddo 1983b, 1984), as was shown in Imai, Kato, and Yamamoto (1989).
The L, estimator was shown to be computable in O(nlogn) time by finding the
convex hull of the point set (Shamos 1978). This (time) complexity is readily
reduced to O(n) using Megiddo’s technique. Although the above mentioned esti-
mators can be computed in optimal time (i.e., O(n)), they are all very sensitive
to outlying data. More formally, each of them has a 09 breakdown point since a
single outlier can bias the estimator arbitrarily (see Rousseeuw and Leroy 1987,

Chapter 1).

O(n) time line estimators achieving improved robustness levels are, for
example, the line estimators of Tukey (1970/1971) (16.6%), Brown and Mood
(1951) (25%), and Andrews (1974) (25%). Other line estimators having higher

breakdown points are the following:
e The Theil (1950) and Sen (1968) estimator, y = 0,2 + 05, such that

A Y, — yz'

§, = med —L——,
1_<_i<j§n .'I;]' . :1,‘1

yl. xj — yj wi

1<i<j<n Xy — &;

This estimator has a breakdown point of 1-+v1/2~229.3%, and its compu-
tation can be considered in a more general context, that of the

slope selection problem. (The slope selection problem is that of determining
the k-th smallest (e.g., median) slope among the [g] line slopes defined by

joining each pair of distinct points.) Cole, Salowe, Steiger, and Szemer€di
(1989) discovered an optimal (deterministic) O(nlogn) algorithm for this
problem. Their algorithm relies on the following ingenious but sophisticated
techniques: Cole’s improvement (Cole 1987) of Megiddo’s technique for
parametric search (Megiddo 1983a) based on parallel sorting schemes (e.g.,
the O(logn) depth sorting network of Ajtai, Komlds, and Szemerédi 1983),
and an algorithm for computing approximate ranks of elements in an array.
Alternatively, in Dillencourt, Mount, and Netanyahu (1991) we presented an
optimal randomized algorithm of expected time complexity O(nlogn).
(This result was arrived at, independently, by Matousek 1991.) Our alterna-
tive approach resulted in a simple practical algorithm and the techniques
used are also applicable for efficient computation of the Siegel estimator.

(See Section 2 for a brief review.)

The least median of squares (LMS) estimator (Rousseeuw 1984), i.e., the line
that minimizes the median of the squared residuals, was shown to have a
50% breakdown point. Souvaine and Steele (1987) derived an O(n?) time
and O(n2) space algorithm for its computation. The space bound was later

improved to O(n) by Edelsbrunner and Souvaine (1990).

¢ The MM-estimator (Yohai 1987) and the r-estimator (Yohai and Zamar
1988) are both highly robust (50% breakdown point) and statistically sound
(e.g., have high statistical efficiency). Their computation consists of iterative
numerical procedures but their overall computational complexity is deter-

mined by their initial robust estimates (e.g., LMS, RM).

In general, the more robust and sophisticated an estimator is, the higher its
computational complexity. Therefore, to maintain practical estimators that are
highly robust and statistically sound one should focus on deriving efficient algo-
rithms for robust estimators. Specifically, in this paper we present computation-
ally efficient algorithms for the RM line estimator. Although the LMS estimator
consists of somewhat superior statistical properties (e.g., affine equivariance), pur-
suing the RM estimator has resulted in achieving a twofold goal; (1) the compu-
tationally efficient algorithms derived establish the best result(s) known for a
50% breakdown line estimator and (2) overall highly robust, statistically sound,
and computationally efficient estimators (e.g., MM-, 7-) are immediate bypro-

ducts.

Underlying techniques used by Cole et al. [7] for deriving their deterministic
slope selection algorithm were also employed by Stein and Werman (1992) to
obtain a deterministic O(nloan) algorithm for the RM line estimator. As com-
mented previously, these techniques while ingenious are quite complicated and
not really practical. Independently we have discovered a set of algorithms for

this problem, which we feel are a significant improvement. We present the fol-

lowing results.

The

A simpler description of a deterministic O(nlog?n) algorithm for the
repeated median estimator is presented. Unfortunately, although easy to

describe, the algorithm is rather impractical.
A simple O (nlog?n) (expected) time randomized algorithm is presented.

An alternative O(nlog?n) (expected) time randomized algorithm is
presented. Although slightly more sophisticated, this algorithm has the
practical advantage that it appears to run in O (nlogn) time for many realis-
tic input distributions. We describe the actual implementation of this algo-
rithm, and demonstrate its practical efficiency empirically on a large number

of input sets and distributions.
main features of this latter randomized algorithm are:

The algorithm is fairly easy to implement, relying only on simple

modifications of mergesort.

The constants of proportionality hidden by the asymptotic notation are

small.

The O(nloggn) expected running time occurs with high probability on any
input of size n (probability of failure decreasing exponentially as =
increases). Moreover, empirical evidence gained by experimenting with our
algorithm over a wide range of data sets strongly suggests that, on the aver-
age, its expected running time is actually O (nlogn) for many realistic input

sets (see further discussion in Sections 4 and 5).

(4) The (randomized) algorithm always terminates giving the correct output in
worst case O(nQ), although the probability of achieving this worst case is

extremely small for large n.
(6) The algorithm is space optimal, i.e., it requires O (n) storage.

Although the paper relates primarily to the RM estimator, it should be
noted that the algorithms derived can easily be generalized to select an element
of arbitrary rank from each line, and then selecting an element of arbitrary rank

from this set. Thus we can generally compute the following estimator.

By = ky-th kj-th u,
z. j#z‘ x]. j— xl.

where 1 < k; < n and1 < k; < (n-1).

The paper is organized as follows: Our algorithmic methodology for the com-
putation of the RM line estimator is introduced in Section 2. In Section 3 we
present a deterministic O(nlogzn) algorithm, and in Section 4 we give practical
randomized versions which result in O(nloan) expected running time algo-
rithms. Implementation and practical experience with the above algorithms are

discussed in Section 5. Section 6 contains a discussion and concluding remarks.

2. General Approach and Review of Basic Techniques

As was stated in the introductory section, the computation of 91 amounts to
computing the median of the set of elements, {6;, 1 =1, ..., n}, where each 0,
corresponds to the median of the n —1 line slopes defined by joining the point

(z;,y;) with each of the other n —1 points (z;, y;), 7 7 ¢. For cases where n is

odd (i.e., n —1 is even), computing each §; according to the very definition of a
median (i.e., the arithmetic average of the two middle entries of a sorted set of
elements) would result in a more complicated algorithm. To alleviate this
difficulty, we will make the convention that the median element of a set contain-
ing n elements is the m-th smallest element if n =2m —1, and the m-th (or the
(m + 1)-st) smallest element if n =2m. In the latter case, choosing between the
m-th smallest entry (i.e., the low median) and the (m + 1)-st entry (i.e., the
high median) would be done consistently with respect to each 6;. (Although the
resulting estimator is slightly biased, it can easily be shown that it retains the
50% breakdown property of the original estimator.) Once 91 is known, computing
92 becomes a trivial O(n) task. A brute force computation of @1 results, obvi-
ously, in an O (n?) time algorithm. To improve upon this time bound, we outline

the following general approach.

First we dualize the problem by mapping each point p;(z;, y;) to a line
D(p;) given by y = z;2 — y; and vice versa. It is well known that such a
transformation has the following properties:

(1) Incidence Preservation. Point p lies on line [/ if and ouly if point D (I) lies on

line D (p).

(2) Order Preservation. Point p lies above (below) line ! if and only if point

D (1) lies below (above) line D (p).

A straightforward corollary of (1) is that the line / joining two distinct points, p,

and p,, is the dual transformation of the intersection point of the lines D(p,) and

D(py) and vice versa. In particular, the z coordinate of the intersection point,
henceforth the intersection ordinate, is equal to the slope of {. (In case two lines
are parallel, we make the convention that they meet at +00. To maintain con-

sistency we also assume that vertical lines in primal space have slope +o0.)

From the above discussion, it follows that the problem of finding the
repeated median slope is now reduced to finding the median of the set of ele-

ments m;, ¢t =1, ..., n, where each m; is the median of n — 1 intersection

n

ordinates of the line l; with each of the other n — 1 lines (i.e., §; = med m;).
i=1

Figure 1(a) illustrates a line arrangement in dual space where n =4. The
median z-coordinates of the intersections lying on I, Iy, I3, and [, are x4, x5, 4,
and x4, respectively. The median of these ordinates (i.e., the repeated median

intersection ordinate) is z,.

Our basic approach is to maintain two z-values, =z, and gz,
—o0 < gy, < zp; < 4oo. Let (2., 2;;] denote the half-open, half-closed interval of
points z, z;, < z < z,;, and let I(x,, z;;] denote the set of intersection ordinates
(i.e., the z-coordinates of the intersection points between pairs of lines) in this
interval. (Note that this is a multi-set since multiple equal ordinates are possi-
ble.) To complete our notation, let L denote the set of lines {/;} whose median
intersection ordinate, m,, lies to the left of (z;,, ;;]. Similarly, let R denote the
set of lines {lj} whose median intersection ordinate, m;, lies to the right of the
interval, and let C represent the set of lines {l; } whose median intersection ordi-

nate, m, lies within the interval. For example, Figure 1(b) depicts the line

arrangement of Figure 1(a), where L = {{;}, C = {l3, {4}, R = {ly}, with
respect to the interval (zy,, z;;]. We will maintain the invariant that the
repeated median intersection ordinate is in I(z),, z);]. Equivalently, that is to
say that |L| < n/2, |R| <n/2 and |L| + |C| + |R| = n. Initially,

T, =00, Iy =400, |L|=|R| =0 C={l;,ly...,0L} (e,
|C| = n), and I(z,, z;;] contains all [g] intersection ordinates because, by
convention, no two lines intersect at —oo.

We begin by describing how our algorithms work at an intuitive level. The
algorithms operate in a series of stages. At the start of each stage the repeated
median intersection ordinate lies within an interval (z;,, z);]. The idea is to
repeatedly contract the interval into a smaller interval which also contains the
desired ordinate. There are two methods we use to perform this contraction.
The first method selects the median element, z,,,,, from the set of intersection
ordinates in the interval (this is a median of all the ordinates, and is not to be
confused with the repeated median). This can be done deterministically in
O(nlogn) time using a slope selection algorithm. A more practical approach is
to use random sampling to pick a random subset of, say O(n), intersection ordi-
nates from the the interval. We show that this can be done in O(nlogn) time
deterministically by a simple variant of mergesort. Using this set of ordinates we
use their median as an estimate for the true median of the interval. Using z,,.4
as a test value, we can determine whether the repeated median entry is contained

in the left subinterval (z,, ,,.4] or in the right subinterval (2,4, 2;;]. This is

done by counting the intersection ordinates in various intervals by the process of
inversion counting which is sketched below. Since the number of intersection
ordinates in the initial interval is O(n?), it follows that after
O (log(n?)) = O(logn) steps we will converge on the desired element. (For the
randomized version this holds with high probability.) In fact, for greater
efficiency, our implementation actually stops this binary search when the number
of remaining intersection ordinates in the interval drops to O(n), at which point
we simply enumerate all of the remaining ordinates in O(nlogn) time and use a

standard selection algorithm [5], [15], to find the desired element.

The second method attempts to speed up the convergence rate of the binary
search for many practical instances of the problem. The idea is analogous to the
method used in our slope selection paper [11]. We contract a given interval from
both above and below simultaneously with the hope of eliminating much more
than just a constant fraction of intersection ordinates. We select two parameters
P and Q such that P- Q = O(n), e.g., P = Q = O(v/n). By randomly sam-
pling @ lines, and P intersection ordinates along each line we can construct a set
of confidence intervals for the medians of the sampled lines, and then combine
the confidence intervals of the sampled lines to form a confidence interval for the
repeated median. The resulting subinterval will contain the repeated median
ordinate with high probability and for typical problem instances has a very small
(decreasing with n) fraction of the remaining intersection ordinates. This algo-
rithm terminates in O(nloan) time with high probability, but empirical evi-

dence suggests that the running time is closer to O (nlogn) time for many typical

10

input distributions. See Sections 4, 5, for a detailed discussion.

The key issues of both algorithms involve counting the number of intersec-
tion ordinates in an interval efficiently, sampling intersection ordinates efficiently,
and contracting the interval in an effective manner. In Subsection 2.2 we review
how to count efficiently the number of intersection ordinates in a given interval.
As it turns out, by using a simple modification of mergesort, this task can be
achieved in O(nlogn) worst-case time. Once the count, Count, is known, a sam-
ple of size (up t‘;o) O(n) (with replacement) can be generated in O(nlogn) time
by generating a collection of (up to) O(n) random integers in the range from 1 to
Count, sorting this collection of integers, and running a slightly modified version
of the counting algorithm. A variant of this sampling technique is introduced in
Subsection 2.3. Randomized contraction of a given interval in an efficient
manner, and a probabilistic analysis establishing the theoretical basis for it are

introduced in Section 4.

To simplify the presentation of the algorithms derived, we will assume that
the given points in primal space are in a general position, e.g., no three points lie
on the same line. Equivalently, that is to say that no two intersection ordinates
in dual space are equal to one another.- Also, we will assume that no two lines in
dual space intersect the vertical lines z =), or z = =z;; at the same y-

coordinate. In Section 5 we discuss ways of handling these degeneracies.

11

2.1. Counting Intersection Ordinates

Counting the number of intersection ordinates in an interval is easily reduci-
ble to the task of determining the number of inversions in a list. Define an inver-
ston in a list ay, ay, . .

., @y, to be a pair of values, a; and a;, where ¢+ < j but

a; is greater than a;. Index lines in order according to the y-coordinate at which

7
they intersect the left end of the interval, £ = z;,. Label each line with the y-
coordinate at which it intersects the right end of the interval, = ;. Consider
the resulting list of labels in index order. It is easily observed that two lines
intersect within the interval if and only if the relative order of their intersection
with the left and right ends of the interval are reversed, which means that there
is an inversion in the resulting list (see Figure 2). Thus, in order to count the

number of intersection ordinates in the interval (z,, 2], it suffices to count the

number of inversions in the resulting list.

In our slope selection paper [11], we describe the function Ord_Count, which
returns the number of intersection ordinates between z;, and z,;. This function
invokes the procedure Inv_Count to count the inversions in a list. In the context
of the RM line estimator, we invoke, respectively, the modified versions
RM_Ord_Count and RM_Inv_Count to count not only the global number of
intersection ordinates in (z,, 2;;], but also the number of intersection ordinates
that lie on each specific line in the interval. (Note that each intersection ordinate
is accounted for twice.) This information is stored in line_status, an array of n
records whose ¢-th entry corresponds to the 7-th line, /;. We store the number of

l;’s intersection ordinates in (z,, z;] in l;.count. Other fields of a record are

12

used to store additional information regarding the corresponding line (see Sec-
tions 3, 4). The global variable n is the number of points and the global arrays
X and Y contain the coefficients of the line equations y = z;x—y;. The integer
parameter Count keeps a running (global) count of the number of inversions. In
the algorithm below we say that when we sort lines we permute the associated
array of line coefficients X and Y in parallel. This would be quite costly in prac-
tice since this involves a lot of data movement. We actually use a permutation
vector to keep track of the location of lines, and access lines indirectly through
this vector. We have omitted this extra level of indirection here to make the
algorithms easier to read.

function RM_Ord_Count(z,,), line_status);
(* Count intersection ordinates in (z;,, z;]) *)
begin
for 1 ;=1 to n do
Y, [i] = X[i] -, - Y[l
Sort Y, and permute X and Y in parallel;
for 1 :=1to n do
Y [i] := X[1] - my; - Y[3];
(* Initialize *)
Count := 0;
for + := 1 to n do
l; .count := 0;
RM_Inv_Count(Y,, 1, n, Count, line_status);
return(Count)
end;

The problem of counting the number of inversions in a list is closely related
to sorting, and is discussed in Knuth (1973). We describe a simple adaptation of
mergesort that solves this problem in O(nlogn) time while maintaining the

number of intersection ordinates per each line. Assume that recursively, we wish

13

to sort the subarray Y, [L.u] of reals. Assuming that w« > [, let
m = [({ + »)/2|]. We divide the list into left and right subarrays Y,[l..m] and
Y, [m + 1..u] and sort these subarrays recursively and at the same time count the
number of inversions within each sublist. Finally these two sorted subarrays are
merged together into a single sorted list. In the process of merging for each ¢,
| <1 < m, the 1-th element in the left sublist implicitly discovers the index 7
of the next larger element in the right sublist. It follows that each of the 7 -1
smaller elements in the right sublist induces an inversion with the :-th element in
the left sublist, and thus [/;.count is increased by 7 —1. Likewise, in the process
of merging for each 7, m < j < u, the 7-th element in the right sublist impli-
citly discovers the index ¢ of the next larger element in the left sublist. It follows
that each of the m —¢ 4+ 1 larger elements in the left sublist induces an inversion
with the y-th element of the right sublist, and so we increase both the (global)
inversion counter and [;.count by m —+¢ + 1. (Equivalently the line associated
with the 7-th element in the right sublist intersects each of the lines associated
with the k-th elements of the left sublist for i < k < m in the vertical strip
1), < z < z3;.) Although each intersection ordinate is accounted for twice (as
far as updating the lines’ count field is concerned), observe that the global
counter, Count, is incremented only once (e.g., when an element of the right sub-

list is merged). As in mergesort, this algorithm terminates in O (nlogn) time.

The procedure RM_Inv_Count which counts the number of inversions in the
portion of the array Y, [lL.u] of reals is described below. It calls the procedure

RM_Merge which merges two sorted lists Y, [l..m] and Y,[m + 1..u] and counts

14

inversions. A parallel auxiliary array Auz[l..u] is used to hold the sorted output.
Proper handling of ties in sorting is briefly discussed in Section 5. (The post-
increment operator ¢++ returns the current value of ¢+ and then increments the
variable.)

function RM_Inv_Count(Y,, I, u, Count, line_status);
(* Count the inversions associated with each line in Y[l..u] *)
begin
if | = u then return;
m = (I +) div 2;
RM_Inv_Count(Y,, I, m, Count, line_status);
RM_Inv_Count(Y,, m + 1, u, Count, line_status);
RM_Merge(Y,, I, m, u, Count, line_status)
end;

procedure RM_Merge(Y,, I, m, u, Count, line_status);
(x Merge Y, [l.m] and Y,[m + 1..u] *)

begin
(* Initialize *)
1 =1
7 :=m +1;
k=1

while (<m and 7 < u) do begin
if (Y,[/] < Y,[s]) then begin
(* Copy from left and increment line’s intersection count *)
Auz|k++] == Y, [i++];
l; .count := l;.count + (5 -1)
end
else begin
(* Copy from right and increment intersection counters *)
Auz [k ++] == Y, [7++];
l;.count = I;.count + (m —¢ +1);
Count 1= Count + (m —1 + 1)
end
end;
(* Copy the remaining elements from the left or from the right *)
while (¢ < m) do begin
Auvz[k++] := Y, [i++];
l; .count := l;.count + (7 —1)
end;
while (7 < u) do

15

Aug[k++] == Y, [++];
Copy Auz[l.u] to Y, [l.u]
end;

The RM_Merge procedure as presented here suffers from the deficiency of
having to copy back the contents of the auxiliary array to Y, after each recursive

call. In the actual implementation, this is avoided by using two working arrays

which are switched between at alternate levels of the recursion.

2.2. Sampling Intersection Ordinates

As was suggested in Subsection 2.1, in order to select the next candidates for
7, and z,;, we will need to uniformly sample a subset of I(z,, ;;]. (Actual con-
traction of the interval is discussed in Section 4.) Suppose that we have already
counted the number of intersection ordinates per each line in I(z,, z;;]. Let
l;.count (+ =1, ..., n) be this count. We apply the following adaptation of
the above procedure to sample (with replacement) a subset of O(n) intersection
ordinates. Assume, for example, that we are interested in sampling P intersec-
tion ordinates from each line, for some constant P. Thus, we first generate the n
element array IS whose i1-th entry consists of a list of P random integers distri-
buted uniformly in the range from 1 to l;.count (allowing duplicates) and sorted
in increasing order. (This array of lists is implemented using a two dimensional

array and using a array of n indices to indicate the current element of each list.)

Next, we rerun the mergesort algorithm of the preceding subsection but
instead of counting intersections, for each line [;, 1 < 7 < n, and for each ele-

ment k € IS[i], we select the k-th intersection ordinate counted by the counting

18

procedure to be part of the sample. More precisely, to perform this sampling we
modify RM_Inv_Count as follows. Each time the line counter of an element from
the left sublist is incremented in RM_Merge, Y, [7] induces an inversion with each
of Y, [j/], m < j < 7. This corresponds to increasing l;.count by
Acount; = j—1. We check the list of random integers, IS[¢], for elements in
the range [;.count +1 to [;.count + Acount;, and select for the sample the z-
coordinate at which the corresponding pairs of lines intersect. Likewise, each
time the line counter of an element from the right sublist is incremented, Y, [7]
induces an inversion with each of Y, [z'l], < i < m. Selecting the sample in
this case is done analogously to the description above (see code for RM_Merge2,
below). We maintain an array Samp[i], 1 < ¢ < n, which holds a list of the

sampled intersection ordinates for line 1.

We claim that the sample selection can be performed in O(nlogn) time plus
constant time per element selected. The reason is that for each step of the merg-
ing process, even though an element may induce a large number of inversions we
need access only those elements of the sorted subarray which are to be sampled.
Thus the total running time of this modified mergesort procedure is still
O(nlogn). The ordinate sampling procedure RM_Samp_Ord is essentially the
same as the function RM_Ord_Count given earlier, but the statements incre-
menting [;.count and l;.count in RM_Merge are replaced with the code below.
The list operator Curr returns the value of the current element of a list (initially
the first element), Extract_Curr returns the current element and advances to the

next element of this list, and Add adds an element to a list.

17

function RM_Merge2(Y,, [, m, u, Count, line_status, IS_Indz, Samp);
begin
(* Same as RM_Merge but replace the statement(s) incrementing [;.count with *)
auz_count = l;.count + (7 —1);
while (Curr (IS[¢]) < auz_count) do begin
' = Extract_Curr (IS[i])-I; .count;
(* Add new z-coordinate to Samp [7] *)
Add(Samp [¢],(Y [7]- Y [])/(X[7]-XT[e]));
end;
l;.count := auz_count;
(* Same as RM_Merge but replace the statement(s) incrementing /;.count with *)
auz_count = l;.count + (m —¢ +1);
while (Curr (IS[7]) < auz_count) do begin
i 1= Egtract_Curr (IS [7]) - 1;.count;
(* Add new z-coordinate to Samp[5] *)
. 5 W . o
. Add(Samp [7],(Y [7]- Y [£])/(X[7]-XT[¢]);
end;

l;.count := auz_count;

end;

3. A Deterministic Algorithm

As mentioned earlier, the algorithm consists of a series of stages. During
each stage we are given the sets of lines L and C, and a corresponding interval
(21, , x3;] within which we seek the repeated median intersection ordinate. More
specifically, we assume that for each line /; € C we know the number of its inter-
sections to the left of the interval, ;.L, and the number of its intersections
within the interval, [;.C. This information is stored in the data structure
line_status. (Obviously, the number of [;’s intersections to the right of the inter-

valis (n -1)-;.L -1;.C.)

18

Once | C | =1 (i.e., there is one remaining line in the interval currently con-
sidered which contains the desired intersection ordinate), we apply a simple
enumeration algorithm to locate the repeated median value. The enumeration
procedure can simply be done by generating the list of n —1 intersection ordi-
nates of the remaining line with each of the other n —1 lines. After this, an
O(n) selection algorithm (e.g., [5], [15]) can be invoked to obtain the
(med(n)-1{;.L)-th smallest ordinate, i.e., the repeated median value. (By med(n)

we mean n /2 if n is even, and (n +1)/2 if n is odd.)

For efficiency it is actually faster to terminate the algorithm when
“sufficiently few’ intersections remain to be considered. For example, if

|C| <¢,orif Tot_Count < ¢ n, where

[C]

Tot_Count = Y, [;.C,

t=1
for some constants ¢, ¢; > 1, we terminate the interval contraction and apply a
different enumeration algorithm to locate the desired intersection ordinate. The
algorithm is a simple modification of RM_Inv_Count (see Subsection 2.2).
Beyond counting inversions associated with the remaining lines in C, the
enumeration generates a list of inversion ordinates. This can be obtained by
modifying the sampling procedure to sample every ordinate in the interval which
belongs to the remaining lines. To be more precise, each element of the list is of
the form <¢,z;,,>, where z,, is a (sampled) intersection ordinate of /;. Lexico-

graphic sorting of the list allows for O(1) retrieval, for each of the | C'| sublists

of the (med(n —1) — [;.L)-th smallest ordinate of the line /;. (Since the size of

19

the list is less than or equal to | C'|(n -1), i.e., O(n), this operation requires
O(nlogn) time.) The repeated median value is obtained by invoking a fast selec-
tion algorithm to select the (med(n) - |L |)-th smallest element of these | C |

median ordinates.

If the termination condition does not hold, the algorithm proceeds by first
picking an intersection ordinate in the current interval, e.g., the median intersec-
tion ordinate. This can be accomplished by invoking a slope selection algorithm

to select, for example, the (Left + Count/2)-th smallest intersection ordinate
(among the [g] ordinates in I(-oco, +00]), where Left and Count denote the

number of intersections in (-0, z;,] and (=, , z;;], respectively. In principle, we
may invoke the deterministic O (nlogn) algorithm of Cole et al. [7], as a “‘black
box"’, to obtain this ordinate. (In the next section we will discuss how to improve
upon this purely theoretical approach.) Let z,,,; denote the value obtained. .4
serves as.a test value with respect to the desired repeated median estimate. At
this point, the algorithm performs inversion counting to determine whether
0, € (21, Tpmeq] OF Oy € (Tpeqs #4;]. This can be done by invoking a modified inver-
sion counting procedure with respect to the interval (z;,, ,,.4], for example. By
(tentatively) updating C, a decision is reached as to what interval should be con-
sidered next; (z,, Zyeqs] OF (Tpeqs Tp;]- The variables L, C, x,, z;,;, and
line_status are updated appropriately, and the algorithm continues to loop until

a termination condition is met.

20

The overall algorithm is described below. Initially, 2, = —o0, 2;; = 400, L
is empty, C = {l;, .. ., I, }, and the status of all lines is such that [;.L =0
and [;.C = n -1, where:t =1, ..., n. C' is an auxiliary variable which serves
for updating C.

function Repeated_Median(zy,, 24, L, C, line_status);

begin
while (| C | > 1) do begin
C' =
Left :== Ord_Count(-o0, 7},);
Count := RM_Ord_Count(z,, z;;, line_status);
(* Invoke Cole et al.’s slope selection algorithm *)
T,,.q = selected (Left + Count /2)-th smallest slope;
for all I; € C do
if ;. L + l;.count > med(n —1) then
(* I;’s median ordinate € (zy,, 4] *)
¢ = Cc'u{l};
if |L| + |C'| > med(n) then begin
(* Repeated median € (z,, 2,,04] *)
Thi = x/med;
C = C;
(* Update line_status *);
for all [; € C do
;. C = l;.count
end
else begin
(* Repeated median € (2,,.4, 1] *)
Ty = "I"med;/
L:=LuyuCcC;
Cc:=cC\C}
(* Update line_status *)
for all [; € C do begin
l; L :=1;.L + l;.count;
[;.C:=1.C -1l .count
end
end
end;
(x|C|=1%)

Enumerate all of the intersection ordinates of the remaining line [in C;
Select the (med(n —1) — LL }-th smallest entry;

21

Return this ordinate
end;

Lemma 3.1: The RM line estimator can be computed by a deterministic
O (nlog?n) time and O (n) space algorithm.

Proof: Each while-loop consists of various procedures (e.g., modified inversion
counting, slope selection, etec.) which are known to require O(nlogn) time and
O(n) space. By definition of the interval contraction, (approximately) half of the
intersection ordinates in the current interval are eliminated through the execution
of one iteration. As the initial number of intersection ordinates is O(n?), it is
obvious that O(log(n?)) = O(logn) iterations suffice to meet the termination

condition. Hence, Lemma 3.1 follows. m
4. A Randomized Approach

4.1. Randomized Binary Search

As indicated earlier, one may invoke the slope selection procedure of Cole
et al. [7] as a “‘black box” for obtaining z,,,4, thus yielding a deterministic algo-
rithm. Incorporating the techniques introduced by Cole et al. results, however,
in a purely theoretical algorithm. In practice, to obtain the test value, z,,,, we

could invoke various other procedures.

One possibility is to replace the above ‘‘black box’ with our randomized
slope selection module [11]. Instead of selecting the exact median intersection
ordinate in I(z,, z;;] as a test value, we can further simplify the above pro-

cedure by selecting at random an intersection ordinate from (z,, 2;;]. Although

22

the resulting algorithm may eliminate occasionally only a small fraction of the
remaining intersection ordinates in the interval, it would still exhibit an expected
convergence of O(logn) stages. (This is established by similar analysis to that
provided for the randomized version of Quicksort [14], [8].) However, to get a sin-
gle random intersection ordinate requires executing an O (nlogn) sampling pro-
cedure, and in this much time we can get a better estimate, i.e., a test value that,

with high probability, is ‘“‘sufficiently close’ to z,,,,.

The idea is to pick the median of the random sample of n elements in the
interval. Let z,,,,* denote this alternative test value. As noted in the derivation
of our slope selection algorithm, z,,,;* is expected to be ‘‘sufficiently close” to
the actual median. More importantly, with high probability, this variant of the
Repeated_Median procedure would still eliminate approximately half of the inter-
section ordinates in I(z,, 2;;]. This claim can be intuitively justified in view of
the probabilistic analysis provided in Chapter 2. More specifically, observe that
each randomly selected element is less than the median intersection ordinate with
probability equal to 1/2. Thus the expected number of successes is given by the
mean of a binomial distribution. Since the number of trials grows with n, it fol-
lows from Chernoff’s bounds that sample median will be very close in rank to the

true median for large n. Summarizing, we have the following:

Lemma 4.1: The RM line estimator can be computed, with high probability, in

(expected) O (nlog?n) time and O(n) space.

23

4.2. Efficient Randomized Interval Contraction

In this subsection we introduce a refinement to further reduce the time com-
plexity of the RM line estimator. We will focus mainly on deriving ‘‘more
efficient’’ procedures for interval contraction. Put differently, we are interested in
interval contraction that, with high probability, traps the repeated median ordi-

nate and at the same time eliminates as many intersection ordinates as possible.

Consider an interval (z),, z;;] (in dual space) which is hypothesized to con-
tain @1. Also, we assume the same notation presented in Section 2 (i.e., L, C,
and R denote the sets of lines whose median intersection ordinates lie, respec-
tively, to the left, inside, and to the right of the interval). We would like to con-
tract this interval, as efficiently as possible, to a smaller subinterval (xlol, xh,-/]
which also contains ;. In an attempt to reduce the current number of O (logn)
contraction stages, we pick two parameters P, @, such that P - Q@ = O(n), e.g.,
P = Q = O(vVn). (The choice of P and @ will affect the probabilistic perfor-
mance of the algorithm, but not its correctness. In Section 5 we discuss issues in
choosing these parameters, but for now we leave the discussion as general as pos-
sible.) @ lines (that belong to the set C) are selected at random and on each of
these lines, P intersection ordinates in the interval (z;,, @;;] are randomly sam-
pled. (We allow for sampling with replacement.) Note that the sampler described
is clearly a variant of our inversion counting/sampling routines mentioned in Sec-
tion 2. In other words, it requires O(nlogn) time and O(n) space. For each of
the @ sampled lines, an estimate is obtained for its median intersection point

from the sample of P ordinates. (This is accomplished by invoking any selection

24

algorithm with respect to the line’s P sampled intersection ordinates.)

Similar to the slope selection case, we can construct a confidence interval for
each sampled line that will contain, with high probability, the line's (true)

median intersection ordinate, given a sufficiently large sample. Let (z, ., 2,]
1]

denote the confidence interval corresponding to the ¢-th sampled line

(+ =1,..., Q). Now we repeat the process individually on the sets {:vloz_} and
{z);.}, determining for each a confidence interval for the median of these lower
?

bounds and median of these upper bounds, respectively. In particular, let xlol be

the lower bound on the confidence interval for the median of the set {z;, } and
3

let :ch,-l be the upper bound of the confidence interval for the median of the set

{:v,“-i}. (To be precise, since the repeated median is not necessarily the median of

the set C, we actually are looking for an confidence interval for the
(med(n) — | L |)th smallest element of C.) Since we have confidence that the
median of each sampled line is trapped within the individual confidence intervals
for each line, it is quite reasonable to expect that the true repeated median
should be trapped within an interval formed by a lower bound for the set of
lower bounds, and an upper bound for the set of upper bounds, that is (xlol, xhi’]-
In Subsection 4.3 we will show that (subject to the proper selection of P and Q)
this subinterval contains, with high probability, the repeated median ordinate.
By balancing P and Q, eg. P = Q = O(vVn), the quality of the
confidence intervals both within each line and among the different lines is quite

good. However, it is also interesting to consider how the algorithm behaves in

25

the two extreme cases (1) P = O(n), @ = O(1), and (2) P = 0O(1),
@ = O(n). In the first case, we randomly select a constant number of lines,
perhaps only one, and randomly generate O(n) (essentially all) intersection ordi-
nates and generate a confidence interval for the median of these few l,ines. In the
second case, we randomly select O(n) lines (essentially all) and randomly select a
constant number of intersection ordinates for each line, from which a confidence
interval is constructed. In the first case we get a very good confidence interval
from one line, and in the second case we get a number of fairly poor confidence
intervals from every line. Between the two cases, the latter is intuitively better
from a probabilistic standpoint since it allows the aggregation of many poor esti-
mates to form a better estimate; whereas the former is doomed to poor perfor-
mance if the chosen line is not a good representative. Expanding on this observa-
tion, note that it is not obviously necessary to even compute confidence intervals
for the median of each line. For example, if even a single random intersection
ordinate is sampled per line, it can still be argued that the median of these values
is a reasonable estimate for the repeated median. (These observations will be
justified further in Section 4.3.) In the algorithm described below we have two
other parameters {p and t; which are used in determining the size of the
confidence intervals taking within the lines and between the lines, respectively.
By setting tp = 0 we can effectively shrink the confidence interval on each line

to a single point, simulating this special case.

We can now describe the algorithm for sampling and constructing confidence

intervals. The variable Samp denotes a @ X P array whose ¢-th row contains P

26

sampled intersection ordinates that lie on the ¢-th sampled line. (It is assumed
that Samp [¢][1], . . ., Samp[i][P], the elements of this sample, have been sorted
in increasing order.) All of the @ X P ordinates sampled lie in the interval
(%1, , z4;], and a contraction procedure is invoked once Samp is known. Analo-
gously to the slope selection case, confidence intervals are constructed by picking
ordinates of various samples which lie several standard deviations (index-wise) on
either side of the sample’s mean (i.e., expected) index. The (global) parameters
tp and ¢y specify the numbers of such standard deviation shifts applied to sam-
ple sizes of P and @, respectively. As mentioned earlier, by setting {p = 0 we
allow for the special case in which the confidence intervals for each line shrink to
a single point. A theoretical justification of the probabilistic properties of this
algorithm is presented in Subsection 4.3.
procedure Contract(Samp, |L |, | C |, line_status, z,, z;);
begin

(* Compute a standard deviation with respect to each line’s sample *)

op = VP |2

(* Compute a standard deviation with respect to the line sample *)

og = VQ /2

(* Construet confidence interval for each sampled line *)
for : := 1 to @ do begin

k; == med(n -1) - I;.L;
k"’i := max(1, | k; —tpop]);
xlat- = Samp [i][klo'-];

/ch,-l_ := min(P, [k; + tpop]|);
xhz'z. = Samp [i][khz'i]
end;
(* Construct confidence interval for the repeated median *)
k= (med(n)-|L [)-@/|CJ;
(* Shift ¢y standard deviations *)
kj, == max(1, [k -ty -ogl;
ky; = min(Q, [k +1tg -0gl;

27

z, = k;,—th smallest{wlot_, i=1,...,Q}k
;= ky;—th smallest{xh,-‘_, 1=1,..., Q}

end;
The above contraction scheme is illustrated in Figure 3. Figure 3(a) illustrates

the construction of a confidence interval (z, , ;] for a sampled line /;, and Fig-
J 13

ure 3(b) illustrates the construction of a confidence interval based on the values

{xloi}’ {xhii} (l =1..., Q)

Once a confidence interval is constructed, the algorithm proceeds in a similar
fashion described in our slope selection paper [11]. Specifically, a verification pro-
cedure is employed to test whether the repeated median is contained in (z, | Tp; /].
If not, a different subinterval should be considered next, i.e., (z,,z,] or
(xh,-l, Ty; |, and other variables such as L, C, and line_status are updated accord-
ingly. The algorithm continues to loop until the termination condition is met.
We prefer using the weaker termination condition Tot_Count < ¢n (for some
constant ¢ > 1)to | C| < ¢, for example, since it is more likely to result in less

iterative steps without affecting the complexity bounds of the algorithm.

We call this algorithm the P-Q algorithm for the repeated median. This
description allows for four separate parameters, whose choice affects the perfor-
mance of the algorithm (although not its correctness). The first two parameters
are @ and P, which determine the number of lines sampled, and the number of
intersection ordinates sampled per line, respectively. The second two parameters
specify the size of the confidence intervals taken for each sample about the

estimated median. As in the Theil-Sen estimator, these parameters are given as

28

tp and tp, where the radius of the confidence intervals are tpVP /2 and
to V'@ /2, respectively. For our implementation we have chosen P = O (Vn),
Q = 0(Vn), tp =0 and tg = O(1). The choice tp = 0 means that for each
line we only return a single estimator of the lines’ median, rather than a
confidence interval. We have found that it suffices to use only the confidence
interval specified by ¢y to trap the final repeated median with high probability.
Our analysis of the algorithm’s performance assumes this particular choice of

parameters (and the fact that tp = 0 is critical to our analysis).

The overall algorithm is described below. Initially, z;, = —o0, z;; = 400, L
is empty, C = {{y, . . ., L, }, Tot_Count = n(n —1), and the status of all lines
is such that [.L =0 and [;.C = n -1, where + =1, ..., n. C' and C" are
auxiliary variables (initialized to the empty set) which serve for updating C.

function Randomized_Repeated_Median(z,, ;;, L, C, line_status, Tot_Count);

begin
while (Tot_Count > ¢n) do begin
O’// = 0;
C" = 0

Generate a sorted list of @ random numbers from 1 to | C |,
stored in LI[1], ..., LI[Q];
(x LI[7] is the index of the ¢-th sampled line in C *)
for all /17 do
Generate a sorted list of P random numbers from 1 to I r(;).C,
stored in IS[7][1], . . ., IS[:][P];
(x IS is a @ X P array of sampled indices *)
(* Sample @ X P ordinates from I(z,, z3;] and store them in Samp *)
RM_Samp_Ord(z,,, z;;, line_status, IS, Samp);
(¥ Contract the interval *)
Contract(S, |L |, | C |, line_status,) s xh,-l);
(* Verify whether or not the repeated median € (21, Thi] *)
RM_Ord_Count(z,, z, ' line_status)
For all [; € C copy [;.count to line_left_count[i];

29

RM_Ord_Count(s,, zy;, line_status);

for all [; € C do begin
1fl L +left_line_count[¢] > med(n 1) then
(x l s median intersection € (xlo, z,'] *)
C':=Cc'u{l;}
else if [;.L + left_line_count[i] +l;.count < med(n —1) then

(x I;’s 11”1ed1an intersection € (24, 4] *)

C == O U{l‘}
end;
if |L |+ |C'| > med(n) then begin
(* Repeated medlan lies in the left subinterval (z,, z;,] *)
Thi = xlo ’
C = C;
(x Update line_status *)
for all /; € C do
l;.C = line_left_count|i]
end
else if |L | + | C\ C"| > med(n) then begin
(* Repeated median lies in the center subinterval (21,5 Tpi'] *)
L:=LUC,
(* Update lme_status *)
for all /; € C do begin
l; . C = l;.count;
L. L :=[;.L + line_left_count|[7]
end
end
else begin
(x Repeated median hes in the right subinterval (xh,/, ;] *)
=Ly (c\c";
C’ = ¢
(x Update line_status *)
for all /; € C do begin
;. C = 1;.C —(l;.count + line_left_count[¢]);
L;.L :=1;.L + line_left_count[i] + [;.count
end L
end
Update Tot_Count
end;
(¥ Tot_Count < cn %)
Enumerate all of the intersection ordinates of the remaining lines in C}
Sort lexicographically <line, intersection ordinate>;
for each remaining /; € C do
Select its (med(n —1) — {;.L)-th smallest intersection ordinate;
Select the (med(n)— L)-th smallest entry of these | C | ordinates;

30

Return this ordinate
end;

4.3. Probabilistic Analysis

In this section we establish the probabilistic theory of the randomized P-Q
algorithm that was just presented. We analyze two cases. First we show that
the algorithm’s expected running time is O(nloan) with no assumptions on the
structure of the input. Second we show that if the intersection ordinates along
each line are assumed to be independent and identically distributed (i.i.d.), then
the running time is O(nlogn), and in particular it terminates after a constant
number of iterations of O(nlogn) time each. This latter result forms the
theoretical basis for the claim that the algorithm’s performance is better for real-
istic input sets (which is demonstrated empirically in the next section). Although
it is not generally reasonable to assume that the intersection points on each line
are i.i.d., observe that for many realistic inputs for robust estimators, the data
typically consists of a significant constant fraction of points that lie near to the
line of fit, and a constant fraction of outlying data points. We suspect that the
algorithm performs so well because after a constant number of iterations, the
intersection ordinates generated by the outlying data points are eliminated from
consideration by the interval contraction algorithm. After this the remaining
intersection ordinates are sufficiently close to i.i.d. that the algorithm terminates

in an additional constant number of iterations.

Lemma 4.2: The P-Q randomized algorithm for computing the RM estimator

31

runs in O (nlog?n) time with high probability.

Proof: We make use of the following results which were proven in [11], and
which follow from a basic analysis of the binomial distribution. Given a universe
of M distinct numbers, and an integer £, 1 < k < M, and given a random sub-
set of m elements from this universe, we can select two elements from the sample
(together with the minimum and maximum elements of the universe) which form
a confidence interval for the k-th smallest element of the universe, such that (1)
the probability that this confidence interval contains the k-th smallest can be
made arbitrarily high, (2) the number of elements from the sample contained in
the confidence interval is O(vm), and (3) the number of elements of the
universe contained within this confidence interval is O (M /vm) with arbitrarily
high probability. The constants hidden by the asymptotic bounds are functions
of the probability of (1) and (2). This confidence interval referred to here is

exactly the one computed by the algorithm.

Let us assume that, among the C lines whose line median is known to lie
within the interval (z),, ;;], at least half have their line median less than the
repeated median. (The other case is symmetric.) Thus for a given sampled line
the probability that its line median is not greater than the repeated median is at
least 1/2. Independent of this, because the median estimator for each sampled
line is chosen symmetrically about the line’s true median, with probability at
least 1/2 the estimated median for each sampled line is not greater than the line’s

median. Combining these observations it follows that with probability at least

32

1/4 the estimated median for each sampled line is not greater than the repeated
median. If we consider a sample to be a success if this occurs, then among the Q
lines sampled, we expect at least @ /4— O(v/m) sampled lines to be successes
with high probability. Furthermore, since there are only O(\/ﬁ) sampled lines
in the contracted confidence interval, it follows that almost all of these successes
are less than 2, ', the lower bound for the confidence interval. With probability
at least 1/2 the repeated median is greater than z,, (since this value is greater
than an unbiased estimate for the repeated median). Whenever this is the case,
we eliminate these roughly @ /4 lines from further consideration. Now applying
the result stated in the previbus paragraph with M = C and
m =P = 0(Vn), it follows that with high probability, at least

C/4-0(C/vVn) (i.e. roughly C/4 for large n) lines are eliminated from further

consideration.

Thus for roughly half of the iterations we eliminate a constant fraction of
the lines. Since the initial number of lines is n, the expected number of itera-
tions will be O (logn), as desired. The probability that we exceed this expected
number of iterations by a given constant factor is at most (1/2)0(103'”) which is
function of the form 1/(n®) for some constant ¢ > 0. Thus this result holds
with high probability for large n. =

Since each iteration takes O(nlogn) time, and O(n) space, we have the fol-

lowing.

Theorem 4.3: The P-Q randomized algorithm for computing the RM estimator

33

runs in time O(nlog?n) with high probability and O (n) space.

We now show that the algorithm terminates in a constant number of itera-

tions if the intersection ordinates for each line are assumed to be i.i.d.

Lemma 4.4: The P-Q randomized algorithm for computing the RM estimator

terminates after a constant number of iterations with high probability.

Proof: It suffices to prove two facts. First, that with high probability each itera-
tion of this algorithm succeeds in trapping the repeated median within the newly
contracted interval (:v,o/, xh,-l], and second, that each time we do this we eliminate
all but a fraction of O(1/(n'/%) of the remaining intersection ordinates from
further consideration. Let us call an iteration successful if both of these condi-
tions hold. By establishing these two facts, it follows that after &k successful
iterations the number of remaining intersection ordinates will be reduced by a
fraction of O(1/(n*/4). Since the initial number of intersection ordinates is
O(n2), after roughly 5 iterations the number of remaining intersection ordinates
will be reduced to a quantity that is sublinear in n, implying that the enumera-

tion phase can complete the process.

Let u denote the median of the distribution. To simplify the presentation
we will assume that the probability density of the distribution, restricted to the
interval (mlol, :c,”-/] is evenly distributed about p. (The general case is similar,
replacing 1/2 by the corresponding probability.) To establish the first fact we
observe that for each intersection ordinate sampled on each line the probability

that it is less than p is 1/2. Thus the median of a given sample of ordinates on

34

each line is an unbiased estimator for u, and hence it is less than u with probabil-
ity 1/2. The proof of the remarks in Lemma 4.2 is based on this same fact. It
follows directly from these remarks that we expect u to lie within this contracted

confidence interval with high probability.

To establish the second fact, let M, denote the number of intersection ordi-
nates remaining for the line /; within the interval (z;,, 2;,]. Because the distribu-
tion of a line’s intersection ordinates is i.i.d. this expected value will be consistent
over the entire universe of lines. Using the notions introduced in the remarks
made in Lemma 4.2, imagine that for each line /; we construct a confidence inter-
val around the estimated line median (although our algorithm does not actually
construct such an interval). From these remarks applied to this line’s intersec-
tion ordinates, it follows that with high probability (1) g lie within this
confidence interval, and (2) there are O(M,/\/P) intersection ordinates of I;
lying within this confidence interval. Let us call a sampled line a success if these
two conditions are met. Observe that successful sampled lines will tend to have
estimates close to the value u, and hence we expect their estimates to be closest

to the median of the sample of estimates.

Because the estimated line median lies within each confidence interval
(indeed the confidence interval is built symmetrically outwards around the esti-
mate), it follows that for each line the number of intersection ordinates lying
between p and the line’s estimate is not greater than O(Ml-/\/-]_j), with high pro-
bability. Since this holds with high probability for all lines, and since the end-

points of the contracted interval are drawn from two ‘“‘central’”’ estimates (lying

35

within O(\/a) of the median of the sample of @ estimates), it follows that the
number of intersection ordinates on each line between the lower and upper end-
points of the contracted interval will be no greater than O(M;/VP), with high
probability. Summing over all successful lines shows that the number of intersec-

tion ordinates remaining in the interval drops by a fraction of

O(1/VP)= 0(1/(n/%)) on the average. m

Since each iteration requires O(nlogn) time, and O(n) space, we arrive at

the following:

Theorem 4.5: The P-@ randomized algorithm for computing the RM estimator
runs in time O(nlogn), with high probability, and O (n) space if the intersection

ordinates on each line are independent and identically distributed.

5. Implementation and Experimental Results

In this section we briefly mention several implementation issues that were

left unspecified in the preceding presentation. Such issues include the following;:
(1) How to handle various degenerate and special cases.
(2) How to deal with limited numerical precision.

(3) How to choose the constant parameters referred to in earlier sections which

affect the probabilistic behavior and running time of the algorithm(s).

In addition to the above we also describe the experimental behavior of an imple-

mentation of our algorithm.

36

5.1. Degeneracies

Adequate handling of special cases and degeneracies is an important task
concerning any (computational) geometry algorithm. Since the algorithm deals
exclusively with lines, we could pass all the handling of degeneracies to a general
purpose system, e.g., the stmulation of simplicity technique introduced by
Edelsbrunner and Miicke (1990). However, for the sake of efficiency and due to
the limited nature of the degeneracies, we choose to handle degeneracies on a case

by case basis.

Degenerate and special cases arise in the following cases: (1) When values to
be sorted or ranked (i.e., y-coordinates at), and z;,,) are equal to one another.
(2) When an intersection ordinate occurs multiple times within I(z),, z;;]. The
first type of degeneracies can be handled by applying specific tie-breaking rules to
the special case when z;, = —00 or z;,; = +0c0 and to the case when z;, and zy;
are finite. The tie-breaking rules introduced in our slope selection paper [11] also
apply to our randomized algorithm(s) for the RM line estimator. (See ¢bid. for a

detailed discussion.)

The second type of degeneracies introduces the following problem. Suppose

" intersection ordinate of each of the sampled lines of

that we seek the “median’
C within the interval (=z,, z,;], and just over half of the ordinates within
I(z),, z);] are equal to z,;. In sampling ordinates, we expect that about half will

be equal to z;; for the lines sampled. It is not unlikely, therefore, that for the

next stage a new subinterval, (x,, a,;], will be generated such that o = .

37

In other words, since the interval is closed on the right side, no intersection ordi-

nates will be eliminated from that side of the ““median’’ ordinates.

As in the slope selection case, we note that the problem arises only when the
“median’ ordinates of sampled lines coincide with the right endpoint of the
current interval. (Since the interval is open on the left, degeneracies at z;, are
ignored.) We solve the problem by altering the procedure RM_Inv_Count (Sub-
section 2.2) so that instead of counting the number of intersection ordinates
l;.count for each sampled line in the half-open, half-closed interval (z,, 2], it
returns two counts for each sampled line, one for the open interval (a),, z;,;),
denoted /;.count, and one for the single point z;;, denoted [;.count,. Obviously,
l;.count = l; .count| + l;.county. If [l;.count; < med(n-1)-1{;.L, then the
median intersection ordinate of [; is z,;. Let C, denote the set of all lines in C
which satisfy the above condition. If |L | + | Cy| > n /2, then we conclude
that the RM ordinate is z;; and terminate. Otherwise the algorithm is applied to

the open interval (z;,, ;).

The above modification can be accommodated with little additional effort.
Applying RM_Inv_Count only to the half-open half-closed interval requires using
a slightly different tie-breaking rule at 2 = =z;;. (The exact details are given in
[11].) This modified RM_Inv_Count procedure returns the counts [;.count, for
t=1,..., |C|. To obtain the number of intersection ordinates at z,, per
each line in C, we scan the sorted list of y-coordinates at which the lines inter-

sect the vertical line * = x,;. These y-coordinates can be grouped into bunches

38

of equivalence classes in O(n) time. It is important to note that each bunch of
size m corresponds to m lines intersecting at a common point with z-coordinate
T);, thereby implying that the counts /;.count, for each of these lines should be
set to (m —1).

As in [11], the use of open intervals should not affect the proofs of the
algorithm’s correctness. Moreover, the asymptotic running time cannot
deteriorate as a consequence, since processing the open interval can only reduce
the number of ordinates to be considered at later stages of the algorithm. In
practice, the above modification has little effect on the performance of the algo-
rithm since the probability of degeneracies is small. In cases of (nearly) exact
data (i.e., many degeneracies are present), the algorithm may terminate after
fewer iterations than in nondegenerate cases, since intersection ordinates bunch

heavily around the repeated median point.

5.2. Numerical Precision

The proofs of the algorithm’s correctness have been based on the assumption
that all calculations have been carried out using exact arithmetic. In practice,
where calculations are typically performed using floating point representation,
this assumption may not be valid. However, analogously to the treatment in our
slope selection paper [11], it can be shown that if the input is presented to b bits
of precision, 2b +3 bits of precision suffice to determine the solution exactly.
Even if (single precision) floating point calculations are carried out throughout,

we can guarantee that the algorithm will succeed in finding an (imprecise) solu-

39

tion within the specified time complexity. (See [11] for a more detailed discussion

concerning the handling of roundoff errors associated with floating point calcula-

tions.)

5.3. Choice of Parameters

We now discuss how to choose the various parameters which determine the

probabilistic performance of the algorithm.

(1)

Selecting P and @ was done in accordance with the intuitive guidelines
described in Subsection 4.2. To maintain a certain statistical significance,
i.e., to ensure reliable, representative samples both within each line and
amongst the different lines, it is desirable to pick large enough values for P
and @. Picking P and @ in a balanced manner, one may choose, in princi-
ple, P =Kp\/; and @ =KQ\/'77 for some large constants Kp, K.
Note, however, that picking P and @ values that are too large results in an
additional (running time) overhead that could outweigh the advantage(s)

gained by generating reliable samples in the first place.

In principle it is possible to take tp 7 0, tg 5 0, in order to maintain a
“conservative’’ confidence interval. Our own experience shows, however,
that tp = 0 performs rather efficiently. Also, our empirical experience indi-
cates that picking tg = 3 by analogy to the Theil-Sen case results in a rea-

sonably good performance.

The parameter ¢ which determines whether the termination condition holds,

i.e., whether or not Toi_Count < ¢n is met, should be determined by

40

similar considerations discussed in [11]. In principle, one faces the following
tradeoff. One more iteration incurs the additional cost of counting and sam-
pling, but then enumeration can be applied to a smaller set of intersection

points.

In view of the above discussion and based on preliminary experiments we
have carried out over various value ranges for the parameters in question, we
chose the following set of values which seems to work reasonably well: P = \/;,

Q=2\/;,tp=0,tQ=3,andc=10.

5.4. Experimental Results

We ran the algorithm on numerous data sets to study its overall perfor-
mance and to establish a certain degree of statistical validity for the empirical
results obtained. (The following input descriptions are stated in terms relevant
to primal space.) The experiment considered 100 different data instances for each
value of n. In each case, a set of n points associated with one of the following

data distribution types was generated inside a unit square.

(1) Linear plus normal perturbation, i.e., a set of points associated with a
specific line (characterized by its slope and vertical intercept) whose y-
coordinates are perturbed with respect to the line by the value of a Gaussian
randomly generated variable with standard deviation o. (See Knuth 1981,

pp- 116-117, for the algorithm used to produce these values.)

(2) Linear plus one-sided perturbation; like the above mentioned distribution

only that the perturbation is one-sided, e.g., determined by the value of a

41

(3)

(4)

(5)

Weibull randomly generated variable with parameters v and p [3]. (Gen-
erating values for a Weibull random variable is fairly simple since the
(inverse of the) Weibull cumulative distribution function can be expressed in

closed form.)

Bimodal plus normal perturbation, i.e., a set of n points, n; of which are
associated with one specified line, and n, (= n —1) of which are associated
with another specified line. The y-coordinate of each point is perturbed
(with respect to one of the lines) by the value of a normal random variable

with standard deviation o.

Circular, i.e., a set of points corresponding to a circular arc characterized by

its center coordinates and radius.

Uniform, i.e., a set of points uniformly (spatially) distributed in the unit

square considered.

For each value of n, we ran our algorithm on 20 instances for each of the above

types. The data instances generated correspond to lines of various slopes (and

intercepts) and to various degrees of perturbation (e.g., o = 107°,107%,1072, 107}).

Examples of various data instances for n = 225 are shown in Figures 4(a)-(e).

These figures depict data instances of the distribution types (1)-(5), respectively.

Figures 4(a)-(b) correspond to the line y = 0.52 + 0.25, with perturbations

o = 0.1, and <7, p> = <100, 2>, respectively, 4(c) corresponds to the lines

y = 0.52 + 0.25 and y = -0.5z + 0.75 with a perturbation o = 0.01, 4(d)

corresponds to the circle (2 —0.5)2 + (y —0.5)> = 0.25%, and 4(e) shows an

42

instance of uniform distribution. (The corresponding RM values given are the

those computed by the algorithm for the repeated median estimate.)

For each data instance, we invoked our algorithm to find the RM estimate,
and recorded the running times and the values of various parameters of interest
(e.g., the number of iterations per each run, the number of times the algorithm
has failed to capture the desired intersection ordinate, etc.) For comparison, we
have also recorded the running times of the O(n2) brute force algorithm (which
simply enumerates, for each point, all of its (n —1) pairwise slopes, selects the
median of each such subset, and then selects the median of the resulting n medi-

ans).

The results obtained are summarized in Figure 5. Specifically, Figure 5(a)
depicts the (average, minimum, and maximum) number of iterations recorded per
each value of n. Notice that for (relatively) small n values (e.g., n < 225), the
(average, minimum, and maximum) number of iterations is greater than the
respective number obtained for larger n values. Although the theoretical proofs
provided in Subsection 4.3 suggest that the P-Q algorithm should terminate
within four iterations (plus an enumeration stage), these proofs apply only in the
“asymptotic’’ sense. For small n values, samples of size O (v'n) are not statisti-
cally valid, i.e., the results obtained may not adequately reflect the algorithm’s
overall performance. (Note that for such cases, situations where gz, = 7,
and/or xh,-/ = 13, arise more often, i.e., more iterations are expected to take
place.) To establish reliable running time models, we discarded, therefore, run-

ning times recorded for n < 225 from computing the models below. As in [11],

43

we used least squares to derive linear models for the running times of both algo-
rithms. As only a constant number of iterations (per run) were recorded for n
values ranging up to 40000, we assume an O (nlogn) model for the running time
of our algorithm. Letting T;(n) and Tg(n) denote the running times (in mil-
liseconds) of our inversion counting algorithm and the brute force algorithm,

respectively, we obtained the following relations:

T:(n
Tiln) _ 1.2logon + 7.2,
n
Th(n
5(n) _ 0.05n + 1.9.
n

The running times have been scaled down by a factor of n to reduce the residu-

als for large n.

The above results are illustrated in Figures 5(b)-(d). (Logarithms are base
10.) Figure 5(b) shows Tj(n)/n, 5(c) shows Tg(n)/n, and 5(d) shows both fits
superimposed. We conclude from these models that for n > 10%19 = 155, our
algorithm performs faster than the brute force algorithm. (To be more precise,
we should extrapolate running times obtained for small n values and compare
them with the brute force model. Carrying this out reveals that our algorithm

performs faster for a slightly greater threshold, i.e., n > 175.)

As was mentioned previously, we also recorded the number of times the con-
traction stage has failed to trap the RM ordinate. With the choice of parameters
made (see Subsection 5.3), it was observed that the RM ordinate was trapped

successfully for over 99% of the cases.

44

6. Discussion

In this paper we presented several efficient algorithms for the 509 break-
down point RM line estimator. First, a simple presentation of a deterministic
O (nlog?n) time and O (n) space algorithm was given. Noting the impracticality
of underlying techniques this algorithm was based on, we introduced alternative
randomized versions for computing the estimator. The randomized algorithms
introduced always terminate giving the correct output within machine precision.
We have shown that the algorithms derived require O(nlogzn) expected running
time. The characteristic features of our algorithmic approach are summarized as

follows:

o The algorithms are fairly easy to implement, relying only on simple

modifications of mergesort.

e The constants of proportionality hidden by the asymptotic notation are

small.

e The O(nloan) expected running time occurs with extremely high probabil-
ity on any input of size n. Moreover, empirical results for a large number of
data sets strongly suggest that, the expected running time of our P-Q algo-
rithm is essentially O(nlogn). We have proved that if the ’distributions of
intersection ordinates on each line are assumed to be i.i.d., then the expected

running time will indeed be O(nlogn).

e The algorithms are space optimal, i.e., they require O(n) storage.

45

In a companion paper (Mount and Netanyahu 1991), we have extended the
approach pursued in this paper to higher dimensions. Specifically, we have
shown that a d-dimensional RM estimator can be computed in (expected)
O (n¢~log?n) time and O(n) space, for fixed d. Based on our encouraging
experience regarding the two-dimensional case, we believe that our extended algo-

rithmic approach is practical also in higher dimensions, at least for low values of

d (e.g., d = 3).

Acknowledgements

We would like to thank Mike Dillencourt and Azriel Rosenfeld for their help-
ful remarks and valuable suggestions, Peter Rousseeuw for his encouragement
and genuine interest in our research, and Chris Welsh for providing useful assis-

tance in processing our experimental results.

46

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

M. Ajtai, J. Komlds, and E. Szemerédi (1983), Sorting in clogn Parallel
Steps, Combinatorica, 3, pp. 1-19.

D.F. Andrews (1974), A Robust Method for Multiple Linear Regression,
Technometrics, 16, pp. 523-531.

I.N. Bronshtein and K.A. Semendyayev (1985), Handbook of Mathematics,
English translation edited by K.A. Hirsch, Van Nostrand, New York.

G.W. Brown and A.M. Mood (1951), On Median Tests for Linear
Hypotheses, in Proceedings of the Second Berkeley Sympostum on Mathemat-
scal Statistics and Probability, edited by J. Neyman, University of California
Press, Berkeley and Los Angeles, pp. 159-166.

M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan (1973), Time
Bounds for Selection, Journal of Computer and System Sciences, 7, pp.
448-461.

R. Cole (1987), Slowing Down Sorting Networks to Obtain Faster Sorting
Algorithms, Journal of the ACM, 34, pp. 200-208.

R. Cole, J.S. Salowe, W.L. Steiger, and E. Szemer€di (1989), An Optimal-
Time Algorithm for Slope Selection, SIAM Journal on Computing, 18, pp.
792-810.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest (1990), Introduction to Algo-
rithms, MIT Press, McGraw-Hill, New York.

G. Dahlquist and A. Bjorck (1974), Numerical Methods, translated by N.
Anderson, Prentice-Hall, Englewood Cliffs, New Jersey.

D.L. Donoho and P.J. Huber (1983), The Notion of Breakdown Point, in A
Festschrift for Eric L. Lehman, edited by P.J. Bickel, K. Doksun, and J.L.
Hodges, Jr., Wadsworth International Group, Belmont, California, pp.
157-184.

M.B. Dillencourt, D.M. Mount, and N.S. Netanyahu (1991), A Randomized
Algorithm for Slope Selection, in Proceedings of the Third Canadian Confer-
ence on Computational Geometry, Vancouver, Canada, August 1991, pp.
135-140; CS-TR-2431, Center for Automation Research, University of

47

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Maryland, March 1990; to appear in International Journal on Computational
Geometry and Applications.

H. Edelsbrunner and E.P. Miicke (1990), Simulation of Simplicity: A Tech-
nique to Cope with Degenerate Cases in Geometric Algorithms, ACM Tran-
sactions on Graphics, 9, pp. 66-104.

H. Edelsbrunner and D.L. Souvaine (1990), Computing Median-of-Squares
Regression Lines and Guided Topological Sweep, Journal of the American
Statistical Association, 85, pp. 115-119.

C.A.R. Hoare (1962), Quicksort, Computer Journal, 5, pp. 10-15.

C.A.R. Hoare (1970), Proof of a Program: FIND, Communications of the
ACM, 13, pp. 39-45.

H. Imai, K. Kato, and P. Yamamoto (1989), A Linear-Time Algorithm for
Linear L, Approximation of Points, Algorithmica, 4, pp. 77-96.

D.E. Knuth (1973), The Art of Computer Programming, Vol. 8, Sorting and
Searching, Addison-Wesley, Reading, Massachusetts.

D.E. Knuth (1981), The Art of Computer Programming, Vol. 2: Seminumeri-
cal Algorithms, second edition, Addison-Wesley, Reading, Massachusetts.

J. Matousek (1991), Randomized Optimal Algorithm for Slope Selection,
Information Processing Letters, 39, pp. 183-187.

N. Megiddo (1983a), Applying Parallel Computation Algorithms in the
Design of Serial Algorithms, Journal of the ACM, 30, pp. 852-865.

N. Megiddo (1983b), Linear Time Algorithms for Linear Programming in R3
and Related Problems, SIAM Journal of Computing, 12, pp. 759-776.

N. Megiddo (1984), Linear Programming in Linear Time when the Dimension
is Fixed, Journal of the ACM, 31, pp. 114-127.

D.M. Mount and N.S. Netanyahu (1991), Computationally Efficient Algo-
rithms for High-Dimensional Robust Estimators, Technical Report in
preparation, Institute for Advanced Computer Studies and Department of
Computer Science, University of Maryland.

48

[24]

[25]

[26]

[27]

28]

[29]

[30]

31)

[32]

[33]

[34]

P.J. Rousseeuw (1984), Least Median of Squares Regression, Journal of the
American Statistical Assocration, 79, pp. 871-880.

P.J. Rousseeuw and A.M. Leroy (1987), Robust Regression and Outlier
Detection, John Wiley & Sons, New York.

P.K. Sen (1968), Estimates of the Regression Coefficient Based on Kendall’s
Tau, Journal of the American Statistical Association, 63, pp. 1379-1389.

M.I. Shamos (1978), Computational Geometry, Ph.D. Thesis, Yale University.

A.F. Siegel (1982), Robust Regression Using Repeated Medians, Biometrika,
69, pp. 242-244.

D.L. Souvaine and J.M. Steele (1987), Time- and Space-Efficient Algorithms
for Least Median of Squares Regression, Journal of the American Statistical
Assoctiation, 82, pp. 794-801.

A. Stein and M. Werman (1992), Finding the Repeated Median Regression
Line, to appear in Proceedings of the Third Annual Symposium on Discrete
Algorithms, Orlando, Florida, January 1992.

H. Theil (1950), A Rank-Invariant Method of Linear and Polynomial Regres-
sion Analysis (Parts 1-3), Nederlandse Akademie Wetenschappen Series A,
53, pp. 386-392, 521-525, 1307-1412.

JW. Tukey (1970/1971), Ezploratory Data Analysis (Limited Preliminary
Edition), Addison-Wesley, Reading, Massachusetts.

V.J. Yohai (1987), High Breakdown-Point and High Efficiency Robust Esti-
mates for Regression, Annals of Statistics, 15, pp. 642-656.

V.J. Yohai and R.H. Zamar (1988), High Breakdown-Point Estimates of
Regression by Means of the Minimization of an Efficient Scale, Journal of the
American Statistical Association, 83, pp. 406—413.

49

14

=

11

12

13

xhi

xlo

(b)

14

Figure 1: Finding the RM in dual space

50

4

3 o 3
2 // \

1 5
x = xlo x = xhi

Figure 2: Inversions and line intersections

51

sampled line i

%

x = xlo x = xhi
x =xlo_i sampled mediani x=xhi_i
(a)
x = xlo x = xhi
median median
x_lo_i's x_hi_i's

x = xlo' x = xhi'

(b)

Figure 3: Interval contraction for the RM line estimator

52

o O O O

o O O ©
S NN by @

S N & oy o B

RM slope = 4759 RM slope = .4964

1 .
0.8 LSP R oy
: 0.6} e
" ,v'-__:... ~ 0.4 el
0.2
0
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
(a) ()]
11 RM slope =-.4196
0.8}
0.6} tna, e
0.4f L.w T =
0.2
0
0.2 0.4 0.6 0.8 1
(©
RM slope =.0015 RM slope =-.0108
R 0.8
y ™ 0.6
0.4
0.2}
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
(D (e)

Figure 4: Examples of experimental data sets

53

of iterations

710 O O O max
® av
ol g
O min
5 O O
®e
4t [O O O O O
® o o0 o o
3(0 0O O O O O O O O
log n
2 2.5 3 3.5 4 4.5 &1
(a)
[msec]/n

13 ¢

12

11 ¢

(b)

Figure 5: Number of iterations and comparison between the P-Q
and brute force algorithms.

54

[msec]/n

60 [
50 ¢
40
30F
20

10¢f

[msec]/n

25
20
15

10 |

200

400 600 800

(0

1000

1200

(d)

Figure 5 continued

655

