
An Optimal Algorithm for Approximate Nearest
Neighbor Searching in Fixed Dimensions

Sunil Arya

Hong Kong University of Science and Technology, Hong Kong,

David M. Mount

University of Maryland, College Park, Maryland,

Nathan S. Netanyahu

Dept. of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900,

Israel.

Ruth Silverman

University of Maryland, College Park, Maryland

and University of the District of Columbia, Washington, DC

and

Angela Y. Wu

The American University, Washington, DC

A preliminary version of this paper appeared in the Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, 1994, pp. 573–582.
S. Arya was supported by HK RGC grant HKUST 736/96E. Part of this research was conducted
while the author was visiting the Max-Planck-Institut für Informatik, Saarbrücken, Germany.
D. Mount was supported by the National Science Foundation under grant CCR–9712379. N. Ne-
tanyahu was supported in part by a National Research Council NASA Goddard Associateship.
R. Silverman was supported by the National Science Foundation under grant CCR–9310705.
Author’s addresses: S. Arya, Department of Computer Science, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. e-mail: arya@cs.ust.hk.
D. M. Mount, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, Maryland, 20742. e-mail: mount@cs.umd.edu. N. S. Ne-
tanyahu, Dept. of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900,
Israel. e-mail: nathan@macs.biu.ac.il. This work was performed while the author was at the
Center for Automation Research, University of Maryland and the Space Data and Computing
Division, NASA Goddard Space Flight Center. R. Silverman, Department of Computer Sci-
ence, University of the District of Columbia, Washington, DC 20008, and Center for Automation
Research, University of Maryland, College Park, Maryland, 20742. e-mail: ruth@cfar.umd.edu.
A. Y. Wu, Department of Computer Science and Information Systems, The American University,
Washington, DC, 20016. e-mail: awu@american.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · S. Arya, et al.

Consider a set S of n data points in real d-dimensional space, Rd, where distances are measured
using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure,
so that given any query point q ∈ Rd, the closest point of S to q can be reported quickly. Given
any positive real ε, a data point p is a (1 + ε)-approximate nearest neighbor of q if its distance
from q is within a factor of (1+ ε) of the distance to the true nearest neighbor. We show that it is
possible to preprocess a set of n points in Rd in O(dn log n) time and O(dn) space, so that given
a query point q ∈ Rd, and ε > 0, a (1 + ε)-approximate nearest neighbor of q can be computed in
O(cd,ε log n) time, where cd,ε ≤ d d1 + 6d/εed is a factor depending only on dimension and ε. In
general, we show that given an integer k ≥ 1, (1 + ε)-approximations to the k nearest neighbors
of q can be computed in additional O(kd log n) time.

Categories and Subject Descriptors: E.1 [Data]: Data Structures; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Problems; H3.3 [Informa-
tion Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Nearest neighbor searching, post-office problem, closest-point
queries, approximation algorithms, box-decomposition trees, priority search.

1. INTRODUCTION.

Nearest neighbor searching is the following problem: we are given a set S of n data
points in a metric space, X, and the task is to preprocess these points so that,
given any query point q ∈ X, the data point nearest to q can be reported quickly.
This is also called the closest-point problem and the post office problem. Nearest
neighbor searching is an important problem in a variety of applications, including
knowledge discovery and data mining [Fayyad et al. 1996], pattern recognition
and classification [Cover and Hart 1967; Duda and Hart 1973], machine learning
[Cost and Salzberg 1993], data compression [Gersho and Gray 1991], multimedia
databases [Flickner et al. 1995], document retrieval [Deerwester et al. 1990], and
statistics [Devroye and Wagner 1982].

High-dimensional nearest neighbor problems arise naturally when complex ob-
jects are represented by vectors of d numeric features. Throughout we will assume
the metric space X is real d-dimensional space Rd. We also assume distances are
measured using any Minkowski Lm distance metric. For any integer m ≥ 1, the
Lm-distance between points p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) in Rd is
defined to be the m-th root of

∑
1≤i≤d |pi − qi|m. In the limiting case, where

m = ∞, this is equivalent to max1≤i≤d |pi − qi|. The L1, L2, and L∞ metrics are
the well-known Manhattan, Euclidean and max metrics, respectively. We assume
that the distance between any two points in Rd can be computed in O(d) time.
(Note that the root need not be computed when comparing distances.) Although
this framework is strong enough to include many nearest neighbor applications, it
should be noted that there are applications that do not fit within this framework
(e.g., computing the nearest neighbor among strings, where the distance function
is the edit distance, the number of single character changes).

Obviously the problem can be solved in O(dn) time through simple brute-force

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 3

search. A number of methods have been proposed which provide relatively modest
constant factor improvements (e.g., through partial distance computation [Bei and
Gray 1985], or by projecting points onto a single line [Friedman et al. 1975; Guan
and Kamel 1992; Lee and Chen 1994]). Our focus here is on methods using data
structures that are stored in main memory. There is a considerable literature on
nearest neighbor searching in databases. For example, see [Berchtold et al. 1997;
Berchtold et al. 1996; Lin et al. 1994; Roussopoulos et al. 1995; White and Jain
1996].

For uniformly distributed point sets, good expected case performance can be
achieved by algorithms based on simple decompositions of space into regular grids.
Rivest [1974] and later Cleary [1979] provided analyses of these methods. Bentley,
Weide, and Yao [1980] also analyzed a grid-based method for distributions satisfying
certain bounded-density assumptions. These results were generalized by Friedman,
Bentley, and Finkel [1977] who showed that O(n) space and O(log n) query time
are achievable in the expected case through the use of kd-trees. However, even
these methods suffer as dimension increases. The constant factors hidden in the
asymptotic running time grow at least as fast as 2d (depending on the metric).
Sproull [1991] observed that the empirically measured running time of kd-trees
does increase quite rapidly with dimension. Arya, Mount, and Narayan [1995]
showed that if n is not significantly larger than 2d, as arises in some applications,
then boundary effects mildly decrease this exponential dimensional dependence.

From the perspective of worst-case performance, an ideal solution would be to
preprocess the points in O(n log n) time, into a data structure requiring O(n) space
so that queries can be answered in O(log n) time. In dimension 1 this is possible
by sorting the points, and then using binary search to answer queries. In dimen-
sion 2, this is also possible by computing the Voronoi diagram for the point set
and then using any fast planar point location algorithm to locate the cell contain-
ing the query point. (For example, see [de Berg et al. 1997; Edelsbrunner 1987;
Preparata and Shamos 1985].) However, in dimensions larger than 2, the worst-
case complexity of the Voronoi diagram grows as O(ndd/2e). Higher dimensional
solutions with sublinear worst-case performance were considered by Yao and Yao
[1985]. Later Clarkson [1988] showed that queries could be answered in O(log n)
time with O(ndd/2e+δ) space, for any δ > 0. The O-notation hides constant factors
that are exponential in d. Agarwal and Matoušek [1993] generalized this by provid-
ing a tradeoff between space and query time. Meiser [1993] showed that exponential
factors in query time could be eliminated by giving an algorithm with O(d5 log n)
query time and O(nd+δ) space, for any δ > 0. In any fixed dimension greater than
2, no known method achieves the simultaneous goals of roughly linear space and
logarithmic query time.

The apparent difficulty of obtaining algorithms that are efficient in the worst case
with respect to both space and query time for dimensions higher than 2, suggests
that the alternative approach of finding approximate nearest neighbors is worth
considering. Consider a set S of data points in Rd and a query point q ∈ Rd. Given
ε > 0, we say that a point p ∈ S is a (1 + ε)-approximate nearest neighbor of q if

dist(p, q) ≤ (1 + ε)dist(p∗, q),

where p∗ is the true nearest neighbor to q. In other words, p is within relative

4 · S. Arya, et al.

error ε of the true nearest neighbor. More generally, for 1 ≤ k ≤ n, a kth (1 + ε)-
approximate nearest neighbor of q is a data point whose relative error from the true
kth nearest neighbor of q is ε. For 1 ≤ k ≤ n, define a sequence of k approximate
nearest neighbors of query point q to be a sequence of k distinct data points, such
that the ith point in the sequence is an approximation to the ith nearest neighbor
of q. Throughout we assume that both d and ε are fixed constants, independent
of n, but we will include them in some of the asymptotic results to indicate the
dependency on these values.

The approximate nearest neighbor problem has been considered by Bern [1993].
He proposed a data structure based on quadtrees, which uses linear space and
provides logarithmic query time. However, the approximation error factor for his
algorithm is a fixed function of the dimension. Arya and Mount [1993b] proposed
a randomized data structure which achieves polylogarithmic query time in the ex-
pected case, and nearly linear space. In their algorithm the approximation error
factor ε is an arbitrary positive constant, fixed at preprocessing time. In this paper,
we strengthen these results significantly. Our main result is stated in the following
theorem.

Theorem 1. Consider a set S of n data points in Rd. There is a constant
cd,ε ≤ d d1 + 6d/εed, such that in O(dn log n) time it is possible to construct a data
structure of size O(dn), such that for any Minkowski metric:

(i) Given any ε > 0 and q ∈ Rd, a (1 + ε)-approximate nearest neighbor of q in
S can be reported in O(cd,ε log n) time.

(ii) More generally, given ε > 0, q ∈ Rd, and any k, 1 ≤ k ≤ n, a sequence of k
(1 + ε)-approximate nearest neighbors of q in S can be computed in O((cd,ε +
kd) log n) time.

In the case of a single nearest neighbor and for fixed d and ε, the space and query
times given in Theorem 1 are asymptotically optimal in the algebraic decision tree
model of computation. This is because O(n) space and O(log n) time are required
to distinguish between the n possible outcomes in which the query point coincides
with one of the data points. We make no claims of optimality for the factor cd,ε.

Recently there have been a number of results showing that with significantly
more storage, it is possible to improve the dimensional dependencies in query time.
Clarkson [1994] showed that query time could be reduced to O((1/ε)d/2 log n) with
O((1/ε)d/2(log ρ)n) space, where ρ is the ratio between the furthest-pair and closest-
pair interpoint distances. Later Chan [1997] showed that the factor of log ρ could
be removed from the space complexity. Kleinberg [1997] showed that it is pos-
sible to eliminate exponential dependencies on dimension in query time, but with
O(n log d)2d space. Recently, Indyk and Motwani [1998] and independently Kushile-
vitz, Ostrovsky, and Rabani [1998], have announced algorithms that eliminate all
exponential dependencies in dimension, yielding a query time O(d logO(1)(dn)) and
space (dn)O(1). Here the O-notation hides constant factors depending exponentially
on ε, but not on dimension.

There are two important practical aspects of Theorem 1. First, space require-
ments are completely independent of ε and are asymptotically optimal for all param-
eter settings, since dn storage is needed just to store the data points. In applications

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 5

where n is large and ε is small, this is an important consideration. Second, prepro-
cessing is independent of ε and the metric, implying that once the data structure has
been built, queries can be answered for any error bound ε and for any Minkowski
metric. In contrast, all the above mentioned methods would require that the data
structure be rebuilt if ε or the metric changes. In fact, setting ε = 0 will cause our
algorithm to compute the true nearest neighbor, but we cannot provide bounds on
running time, other than a trivial O(dn log n) time bound needed to search the en-
tire tree by our search algorithm. Unfortunately, exponential factors in query time
do imply that our algorithm is not practical for large values of d. However, our
empirical evidence in Section 6 shows that the constant factors are much smaller
than the bound given in Theorem 1 for the many distributions that we have tested.
Our algorithm can provide significant improvements over brute-force search in di-
mensions as high as 20, with a relatively small average error. There are a number
of important applications of nearest neighbor searching in this range of dimensions.

The algorithms for both preprocessing and queries are deterministic and easy to
implement. Our data structure is based on a hierarchical decomposition of space,
which we call a balanced box-decomposition (BBD) tree. This tree has O(log n)
height, and subdivides space into regions of O(d) complexity defined by axis-aligned
hyperrectangles that are fat, meaning that the ratio between the longest and short-
est sides is bounded. This data structure is similar to balanced structures based on
box-decomposition [Bern et al. 1993; Callahan and Kosaraju 1995; Bespamyatnikh
1995], but there are a few new elements that have been included for the purposes of
nearest neighbor searching and practical efficiency. Space is recursively subdivided
into a collection of cells, each of which is either a d-dimensional rectangle or the
set-theoretic difference of two rectangles, one enclosed within the other. Each node
of the tree is associated with a cell, and hence it is implicitly associated with the
set of data points lying within this cell. Each leaf cell is associated with a single
point lying within the bounding rectangle for the cell. The leaves of the tree define
a subdivision of space. The tree has O(n) nodes and can be built in O(dn log n)
time.

Here is an intuitive overview of the approximate nearest neighbor query algo-
rithm. Given the query point q, we begin by locating the leaf cell containing the
query point in O(log n) time by a simple descent through the tree. Next, we begin
enumerating the leaf cells in increasing order of distance from the query point. We
call this priority search. When a cell is visited, the distance from q to the point
associated with this cell is computed. We keep track of the closest point seen so
far. For example, Figure 1(a) shows the cells of such a subdivision. Each cell has
been numbered according to its distance from the query point.

Let p denote the closest point seen so far. As soon as the distance from q to
the current leaf cell exceeds dist(q, p)/(1 + ε) (illustrated by the dotted circle in
Figure 1(a)), it follows that the search can be terminated, and p can be reported
as an approximate nearest neighbor to q. The reason is that any point located in
a subsequently visited cell cannot be close enough to q to violate p’s claim to be
an approximate nearest neighbor. (In the example shown in the figure, the search
terminates just prior to visiting cell 9. In this case p is not the true nearest neighbor,
since that point belongs to cell 9, which was never visited.) We will show that, by
using an auxiliary heap, priority search can be performed in time O(d log n) times

6 · S. Arya, et al.

(1+)εr

?ε< r2

34 6

5

7

8

1

9

(a) (b)

q

p

q

r

p

Fig. 1. Algorithm overview.

the number of leaf cells that are visited.
We will also show that the number of cells visited in the search depends on d

and ε, but not on n. Here is an intuitive explanation (and details will be given in
Lemma 5). Consider the last leaf cell to be visited that did not cause the algorithm
to terminate. If we let r denote the distance from q to this cell, and let p denote
the closest data point encountered so far, then because we do not terminate, we
know that the distance from q to p is at least r(1+ ε). (See Figure 1(b).) We could
not have seen a leaf cell of diameter less than rε up to now, since the associated
data point would necessarily be closer to q than p. This provides a lower bound
on the sizes of the leaf cells seen. The fact that cells are fat and a simple packing
argument provide an upper bound on the number of cells encountered.

It is an easy matter to extend this algorithm to enumerate data points in “ap-
proximately” increasing distance from the query point. In particular we will show
that a simple generalization to this search strategy allows us to enumerate a se-
quence of k approximate nearest neighbors of q in additional O(kd log n) time. We
will also show that, as a consequence of the results of Callahan and Kosaraju [1995]
and Bespamyatnikh [1995], the data structure can be generalized to handle point
insertions and deletions in O(log n) time per update.

The rest of the paper is organized as follows. In Section 2 we introduce the
BBD-tree data structure, present an algorithm for its construction, and analyze
its structure. In Section 3 we establish the essential properties of the BBD-tree
which are used for the nearest neighbor algorithm. In Section 4 we present the
query algorithm for the nearest neighbor problem, and in Section 5 we present its
generalization to enumerating the k approximate nearest neighbors. In Section 6
we present experimental results.

2. THE BBD-TREE.

In this section we introduce the balanced box-decomposition tree or BBD-tree, which
is the primary data structure used in our algorithm. It is among the general class
of geometric data structures based on a hierarchical decomposition of space into d-
dimensional rectangles whose sides are orthogonal to the coordinate axes. The main
feature of the BBD-tree is that it combines in one data structure two important
features that are present in these data structures.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 7

First consider the optimized kd-tree [Friedman et al. 1977]. This data struc-
ture recursively subdivides space by a hyperplane that is orthogonal to one of the
coordinate axes and which partitions the data points as evenly as possible. As a
consequence, as one descends any path in the tree the cardinality of points asso-
ciated with the nodes on this path decreases exponentially. In contrast, consider
quadtree-based data structures, which decompose space into regions that are either
hypercubes, or generally rectangles whose aspect ratio (the ratio of the length of
the longest side to the shortest side) is bounded by a constant. These include PR-
quadtrees (see Samet [1990]), and structures by Clarkson [1983], Feder and Greene
[1988], Vaidya [1989], Callahan and Kosaraju [1992], and Bern [1993], among oth-
ers. An important feature of these data structures is that as one descends any path
in these trees, the geometric size of the associated regions of space (defined, for
example, to be the length of the longest side of the associated rectangle) decreases
exponentially. The BBD-tree is based on a spatial decomposition that achieves
both exponential cardinality and geometric size reduction as one descends the tree.

The BBD-tree is similar to other balanced structures based on spatial decompo-
sition into rectangles of bounded aspect ratio. In particular, Bern, Eppstein, and
Teng [1993], Schwarz, Smid, and Snoeyink [1994], Callahan and Kosaraju [1995],
and Bespamyatnikh [1995] have all observed that the unbalanced trees described
earlier can be combined with auxiliary balancing data structures, such as centroid
decomposition trees [Chazelle 1982], dynamic trees [Sleator and Tarjan 1983], or
topology trees [Frederickson 1993] to achieve the desired combination of properties.
However, these auxiliary data structures are of considerable complexity. We will
show that it is possible to build a single balanced data structure without the need
for any complex auxiliary data structures. (This is a major difference between this
and the earlier version of this paper [Arya et al. 1994].)

The principal difference between the BBD-tree and the other data structures
listed above is that each node of the BBD-tree is associated not simply with a
d-dimensional rectangle, but generally with the set theoretic difference of two such
rectangles, one enclosed within the other. Note, however, that any such region can
always be decomposed into at most 2d rectangles by simple hyperplane cuts, but
the resulting rectangles will not generally have bounded aspect ratio. We show that
a BBD-tree for a set of n data points in Rd can be constructed in O(dn log n) time
and has O(n) nodes.

Before describing the construction algorithm, we begin with a few definitions. By
a rectangle in Rd we mean the d-fold product of closed intervals on the coordinate
axes. For 1 ≤ i ≤ d, the ith length of a rectangle is the length of the ith interval.
The size of a rectangle is the length of its longest side. We define a box to be a
rectangle whose aspect ratio (the ratio between the longest and shortest sides) is
bounded by some constant, which for concreteness we will assume to be 3.

Each node of the BBD-tree is associated with a region of space called a cell. In
particular, define a cell to be either a box or the set theoretic difference of two
boxes, one enclosed within the other. Thus each cell is defined by an outer box and
an optional inner box. Each cell will be associated with the set of data points lying
within the cell. Cells are considered to be closed, and hence points which lie on the
boundary between cells may be assigned to either cell. The size of a cell is the size
of its outer box.

8 · S. Arya, et al.

An important concept which restricts the nature of inner boxes is a property
called stickiness. Consider a cell with outer box bO and inner box bI . Intuitively,
the box bI is sticky for bO if each face is either sufficiently far from or else touching
the corresponding face of bO. To make this precise, consider two closed intervals,
[xI , yI] ⊆ [xO, yO], and let w = yI − xI denote the width of the inner interval. We
say that [xI , yI] is sticky for [xO, yO] if each of the two distances between the inner
interval and the outer interval, xI − xO and yO − yI , is either 0 or at least w. The
inner box bI is sticky for the outer box bO if each of the d intervals of bI is sticky
for the corresponding interval of bO. (See Figure 2(a).) An equivalent condition for
stickiness arises by considering the 3d regular grid of copies of bI , centered around
bI . Observe that bI is sticky for bO if and only if each rectangle in this grid either
lies entirely within bO or is disjoint from the interior of bO. (See the lower right box
in Figure 2(a).) Throughout, we maintain the property that for all cells the inner
box is sticky for the outer box. Stickiness is needed for various technical reasons,
which will be discussed later. In particular, it prohibits situations in which a large
number of inner boxes are nested one within the next, and all are extremely close
to the outer wall of a cell. In situations like this it will not be possible to prove our
bounds on the search time.

b

Ib

bO b
I

Ob

Ib

O

not sticky

(a)

sticky

Fair split

(b)

low high
child child

Shrink

(c)

inner child

outer child

Fig. 2. Stickiness, fair splits, and shrinking.

2.1 Overview of the Construction Process

The BBD-tree is constructed through the repeated application of two operations,
fair splits (or simply splits) and shrinks. These operations will be described in detail
later, but intuitively they represent two different ways of subdividing a cell into two
smaller cells, called its children. A fair split partitions a cell by an axis-orthogonal
hyperplane. The two children are called the low child and high child, depending
on whether the coordinates along the splitting coordinate are less than or greater
than the coordinate of the splitting plane. (See Figure 2(b).) A shrink partitions
a cell into disjoint subcells, but uses a box (called the shrinking box) rather than
a hyperplane to do the splitting. It partitions a cell into two children, one lying
inside (the inner child) and one lying outside (the outer child). (See Figure 2(c).)
Both operations are performed so that the following invariants hold.

—All boxes satisfy the aspect ratio bound.
—If the parent has an inner box, then this box lies entirely within one of the two

children. If the operation is a shrink, then this inner box lies within the inner
child of the shrink.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 9

—Inner boxes are sticky for their enclosing outer boxes.

Observe that when only fair splits are performed, it may not generally be possible
to guarantee that the points are partitioned evenly. Hence a tree resulting from fair
splits alone may not be balanced. (The “fairness” of the split refers to the aspect
ratio bound, not to the balance of the point partition.) Intuitively the shrink
operation remedies this shortcoming by providing the ability to rapidly zoom into
regions where data points are highly clustered.

Note that a split is really a special case of shrink, where the shrinking box has
2d − 1 sides in common with the outer box. There are two reasons for making
the distinction. The first is that splitting will be necessary for technical reasons
in maintaining the above invariants. The other reason is largely practical. De-
termining whether a point lies within a shrinking box requires 2d comparisons in
general. On the other hand, determining the side of a splitting hyperplane on which
a point lies requires only one comparison. For example, in dimension 10, this repre-
sents a 20-to-1 savings. We will also see that programming tricks for incrementally
updating distances are most efficient when splitting is used.

The BBD-tree is constructed through a judicious combination of fair split and
shrink operations. Recall that we are given a set S of n data points in Rd. Let
C denote a hypercube containing all the points of S. The root of the BBD-tree
is a node whose associated cell is C and whose associated set is the entire set S.
The recursive construction algorithm is given a cell and a subset of data points
associated with this cell. Each stage of the algorithm determines how to subdivide
the current cell, either through splitting or shrinking, and then partitions the points
among the child nodes. This is repeated until the number of associated points is
at most one (or more practically is less than some small constant, called the bucket
size), upon which the node is made a leaf of the tree.

Given a node with more than one data point, we first consider the question of
whether we should apply splitting or shrinking. As mentioned before, splitting is
preferred because of its simplicity, and the fact that after every d consecutive splits,
the geometric size of the associated cell decreases by a constant factor. Splitting
cannot guarantee that the point set is partitioned evenly, but we will see that
shrinking can provide this. A simple strategy (which we will assume in proving
our results) is that splits and shrinks are applied alternately. This will imply that
both the geometric size and the number of points associated with each node will
decrease exponentially as we descend a constant number of levels in the tree. A
more practical approach, which we have used in our implementation, is to perform
splits exclusively, as long as the cardinalities of the associated data sets decrease
by a constant factor after a constant number of splits. If this condition is violated,
then a shrink is performed instead. Our experience has shown that shrinking is
only occasionally needed, in particular for data sets that arise from highly clustered
distributions, but it can be critical for the efficiency of the search in these cases.

Once it has been determined whether to perform a split or a shrink, the splitting
plane or shrinking box is computed, by a method to be described later. For now,
let us assume that this can be done in time proportional to the number of points
associated with the current node. Once the splitting plane or shrinking box is
known, we store this information in the current node, create and link the two

10 · S. Arya, et al.

children nodes into the tree, and then partition the associated data points among
these children. If any data points lie on the boundary of the splitting surface, then
these points are distributed among the two children so that the final partition is as
even as possible. Finally we recurse on the children.

2.2 Partitioning Points

Before presenting the details on how the splitting plane or shrinking box is com-
puted, we describe how the points are partitioned. We employ a technique for
partitioning multidimensional point sets due to Vaidya [1989]. We assume that
the data points that are associated with the current node are stored in d separate
doubly-linked lists, each sorted according to one of the coordinate axes. Actually,
the coordinates of each point are stored only once. Consider the list for the ith
coordinate. Each entry of this doubly-linked list contains a pointer to the point’s
coordinate storage, and also a cross link to the instance of this same point in the
list sorted along coordinate i + 1 (where indices are taken modulo d). Thus, if a
point is deleted from any one list, it can be deleted from all other lists in O(d) time
by traversing the cross links. Since each point is associated with exactly one node
at any stage of the construction, the total space needed to store all these lists is
O(dn). The initial lists containing all the data points are built in O(dn log n) time
by sorting the data points along each of the d coordinates.

To partition the points, we enumerate the points associated with the current
node, testing which side of the splitting plane or shrinking box each lies. We label
each point accordingly. Then in O(dn) time it is easy to partition each of the d
sorted lists into two sorted lists. Since two nodes on the same level are associated
with disjoint subsets of S, it follows that the total work to partition the nodes on
a given level is O(dn). We will show that the tree has O(log n) depth. From this
it will follow that the total work spent in partitioning over the entire construction
algorithm will be O(dn log n). (The d sorted lists are not needed for the efficiency
of this process, but they will be needed later.)

To complete the description of the construction algorithm, it suffices to describe
how the splitting plane and shrinking box are computed and show that this can
be done in time linear in the number of points associated with each node. We
will present two algorithms for these tasks, the midpoint algorithm and the middle-
interval algorithm (borrowing a term from [Bespamyatnikh 1995]). The midpoint
algorithm is conceptually simpler, but its implementation assumes that nonalge-
braic manipulations such as exclusive-or, integer division, and integer logarithm
can be performed on the coordinates of the data points. In contrast, the middle-
interval algorithm does not make these assumptions, but is somewhat more com-
plex. The midpoint algorithm is a variant of the one described in an earlier version
of this paper [Arya et al. 1994], and the middle-interval algorithm is a variant of
the algorithm given by Callahan and Kosaraju [1995] and developed independently
by Bespamyatnikh [1995].

2.3 Midpoint Algorithm

The midpoint algorithm is characterized by restricting the types of rectangles that
can arise in the construction. Define a midpoint box to be any box that can arise
by a recursive application of the following rule, starting from the initial bounding

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 11

hypercube C.

Midpoint splitting rule:. Let b be a midpoint box, and let i be the longest side
of b (and among all sides having the same length, i has the smallest coordinate
index). Split b into two identical boxes by a hyperplane passing through the center
of b and orthogonal to the ith coordinate axis. (See Figure 3(a).)

This can be seen as a binary variant of the standard quadtree splitting rule
[Samet 1990]. We split through the midpoint each time by a cyclically repeating
sequence of orthogonal hyperplanes. The midpoint algorithm uses only midpoint
boxes in the BBD-tree. It is easy to verify that every midpoint box has an aspect
ratio of either 1 or 2. If we assume that C is scaled to the unit hypercube [0, 1]d

then the length of each side of a midpoint box is a nonnegative power of 1/2, and
if the ith length is 1/2k, then the endpoints of this side are multiples of 1/2k. It
follows that if bO and bI are midpoint boxes, with bI ⊂ bO, then bI is sticky for bO

(since the ith length of bO is at least as long as that of bI , and hence is aligned with
either the same or a smaller power of 1/2). Thus we need to take no special care
to enforce stickiness. Another nice consequence of using midpoint boxes is that
the boxes are contained hierarchically within one another. This implies that inner
boxes lie entirely to one side or the other of each fair split and shrink.

To perform a fair split, we simply perform a midpoint split. The shrinking
operation is more complicated. Shrinking is performed as part of a global operation
called a centroid shrink, which will produce up to three new nodes in the tree (two
shrinking nodes and one splitting node). Let nc denote the number of data points
associated with the current cell. The goal of a centroid shrink is to decompose the
current cell into a constant number of subcells, each containing at most 2nc/3 data
points. We begin by giving a description of a simplified approach to the centroid
shrink, which does not quite work, and then we show how to fix it.

Midpoint Boxes Centroid shrinking

(b)(a)

Fig. 3. Midpoint construction: Midpoint boxes and centroid shrinking.

We apply a midpoint split to the outer box of this cell, creating two cells. If both
of the cells contain no more than 2nc/3 data points, then we are done. (And the
centroid shrink degenerates to a single split.) Otherwise, we take the cell containing
the larger number of points and again apply a midpoint split to it. We repeat this
process, always splitting the cell with the majority of points, until first arriving at
a cell that contains no more than 2nc/3 points. (See Figure 3(b).) The outer box
of this cell is the shrinking box for the shrink operation. The intermediate splits

12 · S. Arya, et al.

used in the creation of this box are simply discarded and generate no new nodes in
the BBD-tree. Observe that prior to the last split we had a box with at least 2nc/3
data points, and hence the shrinking box contains at least nc/3 points. Thus, there
are at most 2nc/3 points inside the shrinking box and at most 2nc/3 points outside
the shrinking box.

There are two problems with this construction.

Problem 1:. The number of midpoint splits needed until this procedure termi-
nates cannot generally be bounded by a function of nc (e.g., when the data points
are very tightly clustered).

Problem 2:. The resulting shrinking box does not necessarily contain the inner
box of the original cell, as required in the shrink operation.

To remedy Problem 1, we need to accelerate the decomposition algorithm when
points are tightly clustered. Rather than just repeatedly splitting, we combine two
operations, first shrinking to a tight enclosing midpoint box and then splitting this
box. From the sorted coordinate lists, we can determine a minimum bounding
rectangle (not necessarily a box) for the current subset of data points in O(d) time.
Before applying each midpoint split, we first compute the smallest midpoint box
that contains this rectangle. We claim that this can be done in O(d) time, assuming
a model of computation in which exclusive-or, integer floor, powers of 2, and integer
logarithm can be computed on point coordinates. (We omit the proof here, since we
will see in the next section that this procedure is not really needed for our results.
See Bern, Eppstein, and Teng [1993] for a solution to this problem based on a bit-
interleaving technique.) Then we apply the split operation to this minimal enclosing
midpoint box. From the minimality of the enclosing midpoint box, it follows that
this split will produce a nontrivial partition of the point set. Therefore, after at
most nc/3 = O(nc) repetitions of this shrink-and-split combination, we will have
succeeded in reducing the number of remaining points to at most 2nc/3.

To remedy Problem 2, we replace the single stage shrink described in the simple
approach with a 3-stage decomposition, which shrinks, then splits, then shrinks.
Suppose that we are applying the centroid shrink to a cell that contains an inner
box bI . When we compute the minimum enclosing rectangle for the data points, we
make sure that it includes bI as well. This can be done easily in O(d) time, given
the minimum enclosing rectangle for the data points. Now we apply the above
iterated shrinking/splitting combination, until (if ever) we first encounter a split
that separates bI from the box containing the majority of the remaining points. Let
b denote the box that was just split. (See Figure 4(b).) We create a shrinking node
whose shrinking box is b. The outer child contains the points lying outside of b.
The inner child consists of a splitting node, with the box containing bI on one side,
and the box containing the majority of the data points on the other side. Finally,
we continue with the centroid shrinking procedure with the child cell that contains
the majority of points. Since this cell has no inner box, the above procedure will
correctly compute the desired shrinking node. The nodes created are illustrated
in Figure 4(c). The final result from the centroid shrink is box c in the lower left.
Note that this figure illustrates the most general case. For example, if the first split
separates bI from the majority, then there is no need for the first shrinking node.
The (up to) four remaining cells are decomposed recursively. Also note that none

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 13

of these cells contains more than 2nc/3 data points.

bI

(a)

Ib

(c)

b

shrink

split

b

(b)

bI
c

c

Fig. 4. Midpoint construction: Centroid shrinking with an inner box.

Lemma 1. Given a parent node associated with nc points, and assuming that
the points have been stored in coordinate-sorted lists, each split and centroid shrink
can be performed in O(dnc) time.

Proof. The centroid shrink is clearly the more complex of the two operations,
so we will present its analysis only. We begin by making a copy of the d coordinate-
sorted point lists described earlier in O(dnc) time. Now consider each split used
in finding the centroid box. In O(d) time we can compute the minimal enclosing
midpoint box, and the splitting plane for this box. Letting k denote the number
of points in the box and j denote the number of points on the smaller side of the
split, we show that we can eliminate these j points in O(dj) time. Suppose that we
are splitting along the ith coordinate. By walking along the ith list, inward from
both ends, we can determine which of the two subsets of the partition is smaller
in O(j) time. Then we remove the points of this subset from this list, and remove
them from the other d − 1 lists as well in O(dj) time by traversing the cross links.
Now the lists contain only the data points from the larger subset of size k − j and
are still in sorted order. We pass this list along to the next iteration.

Since (after finding a minimum enclosing box) each split is nontrivial, each such
split eliminates from 1 to k/2 points from further consideration. Letting T (k)
denote the time to complete the processing on a subset of k points, we can see
that (ignoring constant factors and O(dnc) time for initial copying and final point
partitioning) the running time is given by the following recurrence.

T (k) = 1 if k ≤ 2nc/3,
T (k) = max1≤j≤k/2(dj + T (k − j)) otherwise.

An easy induction argument shows that T (nc) ≤ dnc, and hence the total running
time for each operation is O(dnc).

In conclusion, we can compute the splitting plane and shrinking box in O(dnc)
time. Since we alternate splits with shrinks, and shrinking reduces the number of
points in each cell by a constant factor, it follows that the resulting tree has height
O(log n). From the arguments made earlier, it follows that the entire tree can be
constructed in O(dn log n) time.

14 · S. Arya, et al.

2.4 Middle-interval algorithm

In this section we present the middle-interval algorithm for constructing splitting
planes and shrinking boxes. It does not require the stronger model of computation
needed by the previous algorithm. This algorithm also has the advantage of offer-
ing a greater degree of flexibility in the choice of splitting planes. Our empirical
experience has shown that this flexibility can provide significant (constant factor)
improvements in space and query time for highly skewed point distributions. This
middle-interval algorithm allows the splitting plane to be chosen from a central
strip of the current outer box. The need to maintain stickiness and the aspect
ratio bound make the choice of splitting plane somewhat more complicated. The
algorithm has the same basic structure as the algorithm presented in the previous
section. We describe only the important differences.

First we consider how to perform a fair split on a cell. Let bO denote the outer
box of the current cell. If there is no inner box, then we can split bO by a hyperplane
perpendicular to the longest side and passing through the center of bO. It is easy to
see that, in general, any hyperplane perpendicular to the longest side, and splitting
this side into any ratio between 1/3 and 2/3 will partition bO into two boxes, both
of which satisfy the aspect ratio bound. (In practice, alternative choices might
be worthwhile to produce a more even data point partition, and hence reduce the
height of the tree.)

If there is an inner box bI , then care must be taken that the splitting hyperplane
does not intersect the interior of bI , and that stickiness is not violated after splitting.
Consider the projection of bI onto the longest side of bO. If this projection fully
covers the longest side of bO, then we consider the second longest side of bO, and so
on until finding one for which bI does not fully cover this side. One side must exist
since bI 6= bO. Observe that, by stickiness, this projected interval cannot properly
contain the central third of this side. If the projection of bI lies partially within
the central third of this side, we select a splitting plane in the central third passing
through a face of bI (see Figure 5(a)). Otherwise the projection of bI lies entirely
within either the first or last third. In this case we split at the further edge of the
center strip (see Figure 5(b)).

Ib
bO bO

x

b

x

I

x

O

bI

b
O

c I

(a) (b) (c)

Fig. 5. Middle-interval algorithm: Fair split.

It is easy to see that this operation preserves stickiness. We show in the following
lemma that the aspect ratio is preserved as well.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 15

Lemma 2. Given a cell consisting of outer box bO and inner box bI satisfying
the 3:1 aspect ratio bound, the child boxes produced by the middle-interval split
algorithm also satisfy the bound.

Proof. First observe that the longest side of the two child boxes is not greater
than the longest side of bO. We consider two cases, first where the longest side of
bO is split, and second where some other side of bO is split. In the first case, if the
shortest side of the child is any side other than the one that was split, then clearly
the aspect ratio cannot increase after splitting. If the shortest side of the child is
the splitting side, then by our construction it is at least one third the length of its
parent’s longest side, implying that it is at least one third the length of its own
longest side.

In the second case, the longest side of bO was not split. Then by our construction
this implies that the projection of bI along this dimension fully covers this side.
It follows that bI and bO have the same longest side length, that is, the same
size. By hypothesis, bI satisfies the aspect ratio bound, and so it suffices to show
that each side of each child is at least as long as the shortest side of bI . For
concreteness, suppose that the high child contains bI (as in Figure 5(c)). Clearly
the high child satisfies this condition. The low child differs from the high child
in only one dimension (namely the dimension that was split). Let xO, xI , and xc

denote the lengths of bO, bI , and the low child, respectively, along this dimension.
We assert that bI overlaps the middle interval of bO. If not, then it follows that
xI < xO/3 ≤ size(bO)/3 = size(bI)/3, contradicting the hypothesis that bI satisfies
the aspect ratio bound. Since bI overlaps the middle interval, the splitting plane
passes through a face of bI , implying that the distance from bI to the low side of
the low child is xc. But, since bI is sticky for bO, it follows that xc ≥ xI . This
completes the proof.

Computing a centroid shrink is more complicated, but the same approach used
in the previous section can still be applied. Recall that the goal is to decompose
the current cell into a constant number of cells, such that each contains at most a
fraction of 2/3 of the data points. As before, this can be done by repeatedly applying
fair splits and recursing on the cell containing the majority of the remaining points,
until the number of points falls below 2/3 of the original. Problems 1 and 2, which
arose in the previous section, arise here as well. Problem 2 is solved in exactly the
same way as before, thus each centroid shrink will generally produce three nodes
in the tree, first a shrink to a box containing the old inner box, a split separating
the inner box from the majority of points, and a shrink to the new inner box.

To solve Problem 1 we need to eliminate the possibility of performing more
than a constant number of splits before succeeding in nontrivially partitioning the
remaining points. As before, the idea is to compute a minimal box that encloses
both the data points and any inner box that may already be part of the current
cell. Achieving both minimality and stickiness is rather difficult, but if r denotes
the minimum rectangle (not necessarily a box) which encloses the data points and
inner box, then it suffices to construct a box b which contains this rectangle, and
whose size is at most a constant factor larger than the size of r. Once such a box
is computed, O(d) splits are sufficient to generate a nontrivial partition of r. This
in turn implies a nontrivial partition of the point set, or a partition separating the

16 · S. Arya, et al.

inner box from the majority of points. This box b must also satisfy the stickiness
conditions: b is sticky for the current outer box, and the inner box (if it exists) is
sticky for b. The construction of such a box is presented in the proof of the next
lemma.

Lemma 3. Given a cell and the minimum bounding rectangle r enclosing both
the subset of data points and the inner box of the cell (if there is an inner box),
in O(d) time it is possible to construct a box b which is contained within the cell’s
outer box and which contains r, such that

(i) the longest side of b is at most a constant factor larger than the longest side
of r,

(ii) the cell’s inner box (if it exists) is sticky for b, and
(iii) b is sticky for the cell’s outer box.

Proof. Let bO denote the cell’s outer box. Recall that the size of a rectangle is
the length of its longest side. First, observe that if the size of r is within a constant
factor of the size of bO, then we can let b = bO. Otherwise, let us assume that the
size of r is at most a factor of 1/36 of the size of bO. (We have made no attempt
to optimize this constant.) We construct b by applying a series of expansions to r.

First, we consider whether the cell has an inner box. If so, let bI be this box.
By hypothesis, r contains bI . We expand each side of r so that it encloses the
intersection of bO with the 3d regular grid of copies of bI surrounding bI . (See
Figure 6(a).) Note that because bI is sticky for bO, this expansion will necessarily
lie within bO. Subsequent expansions of r cannot cause stickiness with respect to
bI to be violated. This may increase the longest side of r by a factor of 3, so the
size of r is at most 1/12 of the size of bO. Because bO satisfies the aspect ratio
bound, the size of r is at most 1/4 of the side length of any side of bO.

O

Ib

b bb O O

(a) (b)

b

(c)

r r r

Fig. 6. Middle-interval algorithm: Minimal box.

Next, we expand r to form a hypercube. Let lmax denote the size of r. Each
side of r whose length is less than lmax is expanded up to lmax. (See Figure 6(b).)
Since lmax is less than the length of each side of bO, this expansion can be contained
within bO. This expansion does not increase the length of the longest side of r.

Finally, we consider whether r is sticky for bO. If it is not, then we expand
each of the violating sides of r until it meets the corresponding side of bO. (See
Figure 6(c).) Let b be this expanded rectangle. Since each side of r is not more than
1/4 of the length of the corresponding side of bO, it follows that this expansion will
at most double the length of any side of r. (In particular, r may be expanded in
one direction along each dimension, but not in both directions.) Thus, the longest

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 17

side of b is at most 2lmax, and its shortest side is at least lmax. Thus, b satisfies
the aspect ratio bound. This establishes (i). By the construction, b also satisfies
properties (ii) and (iii). The size of b is at most 6 times the size of r. Finally, each
of the three expansion steps can easily be performed in O(d) time.

This lemma solves Problem 1. The centroid shrinking box is computed essentially
as it was in the previous section. We repeatedly compute the enclosing box b
described above. Then we perform O(d) splits until nontrivially partitioning the
point set. (Note that each trivial split can be performed in O(1) time, since no
partitioning is needed.) Finally, we recurse on the larger half of the partition. This
process is repeated until the number of points decreases by a factor of 2/3. In spite
of the added complexity, the operation generates only three new nodes in the tree.
Partitioning of data points is handled exactly as it was in the previous algorithm.
Thus, the entire construction can be performed in O(dn log n) time.

2.5 Final Modifications

This concludes the description of the construction algorithm for the BBD-tree.
However, it will be necessary to perform a few final modifications to the tree, before
describing the nearest neighbor algorithm. A split or shrink is said to be trivial if
one of the children contains no data points. It is possible for the tree construction
algorithms to generate trivial splits or shrinks (although it can be shown that there
can never be more than a constant number of consecutive trivial partitions). It is
not hard to see, however, that any contiguous sequence of trivial splits and shrinks
can be replaced by a single trivial shrink. We may assume that the data points all
lie within the inner box of such a shrinking node, for otherwise we could simply
remove this inner box without affecting the subdivision. After constructing the
BBD-tree, we replace each such sequence of trivial splits and shrinks by a single
trivial shrink. This can be done in O(n) time by a simple tree traversal.

We would like to be able to assume that each leaf contains at least one data
point, but this is generally not the case for the leaf nodes resulting from trivial
shrinks. We claim that we can associate a data point with each such empty leaf
cell by borrowing a point from its inner box. Furthermore, we claim that this can
be done so that each data point is associated with at most two leaf cells. To see
this, consider the following borrowing procedure. Each nontrivial split or shrink
node recursively borrows one point from each of its two children, and passes these
to its parent. If the parent is a trivial shrink, it uses one of the points for its empty
leaf child, and passes the other up the tree. Because there are no two consecutive
trivial shrinks or splits, the grandparent must be nontrivial, and so this procedure
succeeds in borrowing a different data point for each empty leaf. In summary we
have the following characterization of the BBD-tree.

Theorem 2. Given a set of n data points S in Rd, in O(dn log n) time we can
construct a binary tree having O(n) nodes representing a hierarchical decomposition
of Rd into cells (satisfying the stickiness properties given earlier) such that

(i) The height of the tree is O(log n) and in general, with every 4 levels of descent
in the tree, the number of points associated with the nodes decreases by at least

18 · S. Arya, et al.

a factor 2/3.
(ii) The cells have bounded aspect ratio, and with every 4d levels of descent in
the tree, the sizes of the associated cells decrease by at least a factor of 2/3.

(iii) Each leaf cell is associated with one data point, which is either contained
within the cell, or contained within the inner box of the cell. No data point is
associated with more than two leaf cells.

Proof. We assume a construction in which centroid shrinks are alternated with
fair splits. Construction time and space and property (iii) follow from the earlier
discussion in this section. To see (i), observe that because each centroid shrink
introduces three new levels into the tree, and we alternate this with fair splits, it
follows that with each four levels the number of points decreases by at least a factor
of 2/3. For (ii), note that to decrease the size of a cell, we must decrease its size
along each of d dimensions. Since fair splits are performed at least at every fourth
level of the tree, and each such split decreases the longest side by at least a factor
of 2/3, it follows that after at most d splits (that is, at most 4d levels of the tree)
the size decreases by this factor.

The BBD-tree which results from this construction is quite similar to the tree
described in the earlier version of this paper [Arya et al. 1994]. The main differences
are that centroid shrinking has been incorporated into the tree (through the use
of the centroid shrink operation), and the cells associated with internal nodes of
the tree are of bounded complexity. These properties significantly simplify the
implementation of the data structure. The size reduction property mentioned in
Theorem 2(ii) is not used in this paper, but it is important in other applications of
BBD-trees for geometric approximation problems [Arya and Mount 1995; Mount
et al. 1995].

Although we do not know how to maintain the BBD-tree directly under point
insertion and deletion, by using an auxiliary data structure (either a topology tree
[Frederickson 1993] or a dynamic tree [Sleator and Tarjan 1983]) to represent the
unbalanced box-decomposition tree, it is possible to support data point insertions
and deletions in O(log n) time each. See either Callahan and Kosaraju [1995] or
Bespamyatnikh [1995] for details. A somewhat more practical approach to insertion
and deletion would be to achieve O(log n) amortized time for insertion and deletion
by rebuilding unbalanced subtrees, using the same ideas as scapegoat trees [Galperin
and Rivest 1993]. The key fact is that given an arbitrarily unbalanced subtree
of a box-decomposition tree, it is possible to replace it with a balanced subtree
(representing the same underlying spatial subdivision) in time linear in the size of
the subtree. For example, this can be done by building a topology tree for the
subtree [Frederickson 1985].

3. ESSENTIAL PROPERTIES

Before describing the nearest neighbor algorithm, we enumerate some important
properties of the BBD-tree, which will be relevant to nearest neighbor searching.
These will be justified later. Recall that each cell is either a rectangle, or the
difference of two rectangles, one contained within the other. Recall that the leaf
cells of the BBD-tree form a subdivision of space. The cells of this subdivision
satisfy the following properties.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 19

(a) Bounded occupancy: Each cell contains up to some constant number of data
points (possibly zero). Points that lie on the boundary between two or more
cells are assigned to one of the cells.

(b) Existence of a nearby data point: If a cell contains one or more data points,
then these points are associated with the cell. Otherwise, a data point lying
within the cell’s outer box is associated with the cell. This is done in such a
way that each data point is associated with O(1) different cells.

(c) Point location: Given a point q in Rd, a cell of the subdivision containing q can
be determined in O(d log n) time.

(d) Packing constraint: The number of cells of size at least s that intersect an
open ball of radius r > 0 is bounded above by a function of r/s and d, but
independent of n. (By ball we mean the locus of points that are within distance
r of some point in Rd according to the chosen Minkowski distance metric.)

(e) Distance enumeration of cells: Define the distance between a point q and a cell
to be the closest distance between q and any part of the cell. Given q, the cells
of the subdivision can be enumerated in order of increasing distance from q.
The m nearest cells can be enumerated in O(md log n) time.

Properties (a) and (b) are immediate consequences of our construction. In par-
ticular, each leaf cell contains at most one point, and each point is associated with
at most two different cells. Property (c) follows from a simple descent through
the tree. The following lemma establishes property (d), and (e) will be established
later. The proof of the lemma makes critical use of the aspect ratio bound and the
stickiness property introduced earlier.

Lemma 4. (Packing Constraint) Given a BBD-tree for a set of data points in
Rd, the number of leaf cells of size at least s > 0 that intersect a Minkowski Lm

ball of radius r is at most d1 + 6r/sed.

Proof. From the 3:1 aspect ratio bound, the smallest side length of a box of size
s is at least s/3. We say that a set of boxes are disjoint if their interiors are pairwise
disjoint. We first show that the maximum number of disjoint boxes of side length
at least s/3 that can overlap any Minkowski ball of radius r is d1 + 6r/sed. For any
m, an Lm Minkowski ball of radius r can be enclosed in an axis-aligned hypercube
of side length 2r. (The tightest fit is realized in the L∞ case, where the ball and
the hypercube are equal). The densest packing of axis-aligned rectangles of side
length at least s/3 is realized by a regular grid of cubes of side length exactly s/3.
Since an interval of length 2r can intersect at most d1 + 6r/se intervals of length
s/3, it follows that the number of grid cubes overlapping the cube of side length 2r
is at most d1 + 6r/sed. Therefore this is an upper bound on the number of boxes
of side length s that can overlap any Minkowski ball of radius r.

The above argument cannot be applied immediately to the outer boxes of the leaf
cells, because they are not disjoint from the leaves contained in their inner boxes.
To complete the proof, we show that we can replace any set of leaf cells each of size
at least s that overlap the Minkowski ball with an equal number of disjoint boxes
(which are not necessarily part of the spatial subdivision) each of size at least s
that also overlap the ball. Then we apply the above argument to these disjoint
boxes.

20 · S. Arya, et al.

Ob

bI

p

Fig. 7. Packing constraint.

For each leaf cell of size at least s that either has no inner box, has an inner
box of size less than s, or has an inner box that does not overlap the ball, we take
the outer box of this cell to be in the set. In these cases, the inner box cannot
contribute a leaf to the set of overlapping cells.

On the other hand, consider a leaf cell c, formed as the difference of an outer
box bO and inner box bI , such that the size of bI is at least s, and both bI and c
overlap the ball. Since bO has at most one inner box, and by convexity of boxes
and balls, it follows that there is a point p on the boundary between c and bI that
lies within the ball. Let p denote such a point. (See Figure 7.) Any neighborhood
about p intersects the interiors of both c and bI . By stickiness, we know that the
3d − 1 congruent copies bI , surrounding bI either lie entirely within bO or their
interiors are disjoint from bO. Clearly there must be one such box containing p
on its boundary, and this box is contained within bO. (In Figure 7 this is the box
lying immediately below p). We take this box to replace c in the set. This box is
disjoint from bI , its size is equal to the size of bI , and it overlaps the ball. Because
leaf cells have disjoint interiors, and each has only one inner box, it follows that the
replacement box will be disjoint from all other replacement boxes. Now, applying
the above argument to the disjoint replacement boxes completes the proof.

The last remaining property to consider is (e), the enumeration of boxes in in-
creasing order of distance from some point q (which we will assume to be the query
point). The method is a simple variant of the priority search technique used for
kd-trees by Arya and Mount [1993a]. We recall the method here. The algorithm
maintains a priority queue of nodes of the BBD-tree, where the priority of a node is
inversely related to the distance between the query point and the cell corresponding
to the node. Observe that because each cell has complexity O(d), we can compute
this distance in O(d) time.

Initially, we insert the root of the BBD-tree into the priority queue. Then we
repeatedly carry out the following procedure. First, we extract the node v with
the highest priority from the queue, that is, the node closest to the query point.
(This is v1 in Figure 8.) Then we descend this subtree to visit the leaf node closest
to the query point. Since each cell consists of the difference of two d-dimensional
rectangles, we can determine which child’s cell is closer to the query point in O(d)
time. We simply recurse down the path of closer children until reaching the desired
leaf.

As we descend the path to this leaf, for each node u that is visited, we compute
the distance to the cell associated with u’s sibling and then insert this sibling into

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 21

u3

2u
1u

2v

3v
4v

3u
2u

1u

4v
3v2

v

v

1

v

1

v

w

q
w

2

3

3v
4v

4v

v2

v

q

Fig. 8. Priority Search.

the priority queue. For example, in Figure 8, subtrees v1 through v4 are initially
in the queue. We select the closest, v1, and descend the tree to leaf w, enqueuing
the siblings u1, u2, and u3 along the way. The straightforward proof of correctness
relies on the invariant that the set of leaves descended from the nodes stored in the
priority queue forms a subdivision of the set of all unvisited leaves. This is proved
by Arya and Mount [1993a].

Each node of the tree is visited, and hence enqueued, at most once. Since there
are at most n nodes in the heap, we can extract the minimum in O(log n) time.
Each step of the tree descent can be processed in O(d) time (the time to compute
the distances from the query point to the child cells) plus the time to insert the
sibling in the priority queue. If we assume the use of a Fibonacci heap [Fredman
and Tarjan 1987] for the priority queue, the amortized time for each insertion is
O(1). Since the BBD-tree has O(log n) height, and the processing of each internal
node takes O(d) time, the next leaf in the priority search can be determined in
O(d log n) time. Thus, the time needed to enumerate the nearest m cells to the
query point is O(md log n). Thus property (e) is established.

Before implementing this data structure as stated, there are a number of practical
compromises that are worth mentioning. First, we have observed that the size of
the priority queue is typically small enough that it suffices to use a standard binary
heap (see, e.g., [Cormen et al. 1990]), rather than the somewhat more sophisticated
Fibonacci heap. It is also worth observing that splitting nodes can be processed
quite a bit more efficiently than shrinking nodes. Each shrinking node requires
O(d) processing time, to determine whether the query point lies within the inner
box, or to determine the distance from the query point to the inner box. However,
it is possible to show that splitting nodes containing no inner box can be processed
in time independent of dimension. It takes only one arithmetic comparison to de-
termine on which side of the splitting plane the query point lies. Furthermore, with
any Minkowski metric, it is possible to incrementally update the distance from the
parent box to each of its children when a split is performed. The construction,

22 · S. Arya, et al.

called incremental distance computation is described in Arya and Mount [1993a].
Intuitively it is based on the observation that for any Minkowski metric, it suffices
to maintain the sum of the appropriate powers of the coordinate differences between
the query point and the nearest point of the outer box. When a split is performed,
the closer child is at the same distance as the parent, and the further child’s dis-
tance differs only in the contribution of the single coordinate along the splitting
dimension. The resulting improvement in running time can be of significant value
in higher dimensions. This is another reason that shrinking should be performed
sparingly, and only when it is needed to guarantee balance in the BBD-tree.

4. APPROXIMATE NEAREST NEIGHBOR QUERIES.

In this section we show how to answer approximate nearest neighbor queries, as-
suming any data structure satisfying properties (a)–(e) of the previous section. Let
q be the query point in Rd. Recall that the output of our algorithm is a data point
p whose distance from q is at most a factor of (1 + ε) greater than the true nearest
neighbor distance.

We begin by applying the point location algorithm to determine the cell con-
taining the query point q. Next, we enumerate the leaf cells of the subdivision in
increasing order of distance from q. Recall from (a) and (b) that each leaf cell is
associated with at least one data point that is contained within the outer box of the
cell. As each cell is visited, we process it by computing the distance from q to these
data points and maintaining the closest point encountered so far. Let p denote this
point. The search terminates if the distance r from the current cell to q exceeds
dist(q, p)/(1 + ε). The reason is that no subsequent point to be encountered can
be closer to q than dist(q, p)/(1 + ε), and hence p is a (1 + ε)-approximate nearest
neighbor.

From (e) it follows that we can enumerate the m nearest cells to q in O(md log n)
time. To establish the total query time, we apply (d) to bound the number of cells
visited.

Lemma 5. The number of leaf cells visited by the nearest neighbor algorithm is
at most Cd,ε ≤ d1 + 6d/εed for any Minkowski metric.

Proof. Let r denote the distance from the query point to the last leaf cell that
did not cause the algorithm to terminate. We know that all cells that have been
encountered so far are within distance r from the query point. If p is the closest
data point encountered so far, then because we did not terminate we have

r(1 + ε) ≤ dist(q, p).

We claim that no cell seen so far can be of size less than rε/d. Suppose that such
a cell was visited. This cell is within distance r of q, and hence overlaps a ball of
radius r centered at q. The diameter of this cell in any Minkowski metric is at most
d times its longest side length (in general, d1/m times the longest side in the Lm

metric), and hence is less than rε. Since the cell is associated with a data point
lying within the outer box of the cell, the search must have encountered a data
point at distance less than r + rε = r(1 + ε) from q. However, this contradicts the
hypothesis that p is the closest point seen so far.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 23

Thus the number of cells visited up until termination is bounded by the number
of cells of size at least rε/d that can overlap a ball of radius r. From property (d)
we know that the number of such cells is a function of ε and d. Using the bounds
derived in Lemma 4, the number of cells is at most d1 + 6d/εed.

By combining the results of this and previous sections, we have established The-
orem 1(i). The extra factor of d differentiating cd,ε in the theorem and Cd,ε in the
lemma above is due to the O(d) processing time to compute the distance from the
query point to each visited node in the tree.

5. APPROXIMATE K-NEAREST NEIGHBORS.

In this section we show how to generalize the approximate nearest neighbor proce-
dure to the problem of computing approximations to the k nearest neighbors of a
query point. Recall that a point p is a (1 + ε)-approximate jth nearest neighbor
to a point q if its distance from q is a factor of at most (1 + ε) times the distance
to q’s true jth nearest neighbor. An answer to the approximate k-nearest neigh-
bors query is a sequence of k distinct data points p1, p2, . . . , pk, such that pj is a
(1 + ε)-approximation to the j-th nearest neighbor of q, for 1 ≤ j ≤ k.

The algorithm is a simple generalization of the single nearest neighbor algorithm.
We locate the leaf cell containing the query point, and then enumerate cells in
increasing order of distance from q. We maintain the k closest data points to
q encountered in the search, say, by storing them in the balanced binary search
tree sorted by distance. Let rk denote the distance to the k-th closest point so
far (rk = ∞ if fewer than k distinct points have been seen so far). The search
terminates as soon as the distance from the current cell to q exceeds rk/(1 + ε).
The reason is that no subsequently visited data point can be closer to q than
rk/(1 + ε), and hence the data point at distance rk is an approximate kth nearest
neighbor. There are at least k− 1 data points that are closer to the query point. It
is easy to verify that the sorted sequence of k data points seen so far is a solution to
the approximate k-nearest neighbors query. The running time is analyzed below.

Lemma 6. Recalling Cd,ε from Lemma 5, this algorithm visits at most 2k+Cd,ε

leaf cells.

Proof. To bound the number of leaf cells visited by the algorithm, recall from
property (b) that each point is associated with at most two cells. Thus, the k data
points reported by the search were contributed by at most 2k leaf cells that were
visited in the search. We claim that the algorithm encounters at most Cd,ε other
noncontributing leaf cells.

The argument is a straightforward generalization of the one used in Lemma 5.
Consider the set of visited leaf cells that did not contribute a point to the final
answer. Let r denote the distance to the last cell of this set that did not cause
termination. Let p be the kth closest point encountered so far. As in Lemma 5, we
have r(1 + ε) ≤ dist(q, p), and so none of the noncontributing cells seen so far can
be of size less than rε/d, or else they would have contributed a point that is closer
than p. The final result follows by applying Lemma 4.

To complete the proof, we recall that the algorithm spends O(d log n) time to
process each leaf cell, and in time O(log k) ≤ O(log n) we determine whether the

24 · S. Arya, et al.

point is among the k nearest points encountered so far, and add it to the set if it is.
Combining this with the earlier remarks of this section establishes Theorem 1(ii).

6. EXPERIMENTAL RESULTS.

In order to establish the practical value of our algorithms, we implemented them
and ran a number of experiments on a number of different data sizes and with point
sets sampled from a number of different distributions.

Our implementation differed slightly from the description of the previous sections.
First, in preprocessing we did not perform the partitioning using the asymptotically
efficient method described in Section 2, of storing the points sorted along each of
the d dimensions. Instead we opted for the much simpler technique of applying a
standard partitioning algorithm as used in QuickSort (see [Cormen et al. 1990]).
This does not affect the structure of the resulting tree, but if splits are very un-
balanced then the preprocessing may take longer than O(dn log n) time. On the
other hand, we save a factor of d with each invocation, since only one coordinate
is accessed with each partition. Second, we did not use the rather sophisticated
algorithms for accelerating the shrinking operation. We just performed repeated
splits. We observed no unusually high preprocessing times for the data sets that
were tested.

We mentioned earlier that splitting is generally preferred to shrinking because
of the smaller factors involved. However, splitting without shrinking may result in
trees of size greater than O(n) and height greater than O(log n). In our implemen-
tation we performed shrinking only if a sequence of d/2 consecutive splits failed to
reduce the fraction of points by at least one half. For most of the distributions that
we tested, no shrinking nodes were generated. Even for the highly clustered distri-
butions, a relatively small fraction of shrinking was observed (ranging from 5–20%
of the total nodes in the tree). In part, this explains why simple data structures
such as kd-trees perform well for most point distributions.

As in [Arya and Mount 1993a], incremental distance calculation (described in
Section 3) was used to speed up distance calculations for each node. We experi-
mented with two schemes for selecting splitting planes. One was the midpoint-split
rule described in Section 2.3 and the other was a variant of the middle-interval rule
described in Section 2.4. The latter rule, called the fair-split rule, was inspired
by the term introduced in [Callahan and Kosaraju 1992]. Given a box, we first
determine the sides that can be split without violating the 3:1 aspect ratio bound.
Given a subset of the data points, define the spread of these points along some
dimension to be the difference between the maximum and minimum coordinates
in this dimension. Among the sides that can be split, select the dimension along
which the points have maximum spread, and then split along this dimension. The
splitting hyperplane is orthogonal to this dimension and is positioned so the points
are most evenly distributed on either side, subject to the aspect ratio bound.

We ran experiments on these two data structures, and for additional comparison
we also implemented an optimized kd-tree [Friedman et al. 1977]. The cut planes
were placed at the median, orthogonal to the coordinate axis having maximum
spread. Although the kd-tree is guaranteed to be of logarithmic depth, there is no
guaranteed bound on the aspect ratios of the resulting cells (and indeed ratios in
the range from 10:1 to 20:1 and even higher were not uncommon). We know of no

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 25

prior work suggesting the use of a kd-tree for approximate nearest neighbor queries,
but the same termination condition given in Section 4 can be applied here. Unlike
the box-decomposition tree, we cannot prove upper bounds on the execution time
of query processing. Given the similarity to our own data structure, one would
expect that running times would be similar for typical point distributions, and our
experiments bear this out.

Our experience showed that adjusting the bucket size, that is, the maximum
number of points allowed for each leaf cell, affects the search time. For the more
flexible kd-tree and the fair-split rule, we selected a bucket size of 5, but found that
for the more restricted midpoint-split rule, a bucket size of 8 produced somewhat
better results.

The experiments were run on a Sun Sparc 20 running Solaris. Each experiment
consisted of 100,000 data points in dimension 16 and the averages were computed
over 1,000 query points. More query points were taken when measuring CPU times,
due to greater variations in CPU time caused by varying system loads. For each
query we computed the nearest neighbor in the L2 metric. Except where noted,
query points and data points were taken from the same distribution.

Typical preprocessing times ranged from 20 to 100 CPU seconds. The higher
running times were most evident with highly clustered data sets and when using
the midpoint-split rule. This is because shrinking was needed the most in these
cases. In contrast, the optimized kd-tree, whose running time is independent of the
data distribution, had preprocessing times uniformly around 20 CPU seconds.

6.1 Distributions Tested

The distributions that we tested are listed below. The correlated Gaussian and cor-
related Laplacian point distributions were chosen to model data from applications
in speech processing. These two point distributions were formed by grouping the
output of autoregressive sources into vectors of length d. An autoregressive source
uses the following recurrence to generate successive outputs:

Xn = ρXn−1 + Wn,

where Wn is a sequence of zero mean independent, identically distributed ran-
dom variables. The correlation coefficient ρ was taken as 0.9 for our experiments.
Each point was generated by selecting its first coordinate from the corresponding
uncorrelated distribution (either Gaussian or Laplacian), and then the remaining
coordinates were generated by the equation above. See Farvardin and Modestino
[1985] for more information.

The two clustered distributions were designed to model data sets where clustering
is present. In the clustered Gaussian distribution, points are clustered around a
small number of randomly chosen cluster center points. In the clustered segments
distribution, the points are clustered around a small number of randomly chosen
orthogonal line segments.

Uniform:. Each coordinate was chosen uniformly from the interval [0, 1].
Gaussian:. Each coordinate was chosen from the Gaussian distribution with zero

mean and unit variance.
Laplace:. Each coordinate was chosen from the Laplacian distribution with zero

26 · S. Arya, et al.

mean and unit variance.
Correlated Gaussian:. Wn was chosen so that the marginal density of Xn is nor-

mal with variance unity.
Correlated Laplacian:. Wn was chosen so that the marginal density of Xn is

Laplacian with variance unity.
Clustered Gaussian:. Ten points were chosen from the uniform distribution and

a Gaussian distribution with a standard deviation 0.05 was centered at each point.
Clustered Segments:. Eight orthogonal line segments were sampled from a hyper-

cube as follows. For each line segment a random coordinate axis xk was selected,
and a point p was sampled uniformly from the hypercube. The line segment is
the intersection of the hypercube with the line parallel to xk, passing through p.
An equal number of points were generated uniformly along the length of each line
segment plus a Gaussian error with standard deviation of 0.001.

For the clustered segments distribution, five trials were run, with newly gener-
ated cluster centers for each trial, and each involving 200 query points. Query
points were sampled from a uniform distribution. We show results only for the
uniform distribution and two extreme cases, the correlated Laplacian and clustered
segments distributions. The results for other distributions generally varied between
the uniform case and the correlated Laplacian.

6.2 Query time

For each experiment, we recorded a number of different statistics. We will present
only a subset of these statistics, starting with query time. We measured both the
average CPU time and the average number of floating point operations for each
query. Floating point operations, called floats, are any arithmetic operation in-
volving point coordinates or distances. We felt that this provides a reasonable
machine-independent measure of the algorithm’s running time. A comparison of
CPU times and floating operations shows relatively good agreement. We ran ex-
periments for values of ε ranging from 0 (exact nearest neighbor) up to 10, in
increments of 0.1. The results for the uniform, correlated Laplacian, and clustered
segments distributions are shown in Figures 9 through 11. Note that the y-axis is
on a logarithmic scale in all cases.

1000

10000

100000

1e+06

0 2 4 6 8 10

F
lo

at
s

Epsilon

kd-tree
fair-split

midpoint-split

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

T
im

e
(s

ec
)

Epsilon

kd-tree
fair-split

midpoint-split

(a) (b)

Fig. 9. (a) Floating point operations and (b) CPU time versus ε for the uniform distribution.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 27

1000

10000

100000

1e+06

0 2 4 6 8 10

F
lo

at
s

Epsilon

kd-tree
fair-split

midpoint-split

0.0001

0.001

0.01

0.1

0 2 4 6 8 10

T
im

e
(s

ec
)

Epsilon

kd-tree
fair-split

midpoint-split

(a) (b)

Fig. 10. (a) Floating point operations and (b) CPU time versus ε for the correlated Laplacian
distribution.

1000

10000

100000

1e+06

1e+07

0 2 4 6 8 10

F
lo

at
s

Epsilon

kd-tree
fair-split

midpoint-split

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

T
im

e
(s

ec
)

Epsilon

kd-tree
fair-split

midpoint-split

(a) (b)

Fig. 11. (a) Floating point operations and (b) CPU time versus ε for the clustered segments
distribution.

The empirical running times on most of the distributions suggest that there is
little or no significant practical advantage to using the BBD-tree over the kd-tree.
Indeed, we feel that a kd-tree, enhanced with many of the improvements described
in this paper (allowing approximation errors, incremental distance calculations,
and priority search) is a very good data structure for nearest neighbor searching
on most data sets. However, it can perform very badly in some circumstances,
especially when the data distribution is clustered in low-dimensional subspaces, as in
the clustered segments distribution. Low-dimensional clustering is not uncommon
in practice. An inspection of some of the other program statistics (not shown
here) explains why. For this distribution, the kd-tree produced a large number of
cells with very high aspect ratios. Because the optimized kd-tree cuts along the
dimension of greatest spread, it can produce cells that are very skinny along the
dimensions in which the data are well distributed, and very long in the remaining
dimensions. These skinny cells violate the packing constraint, which is critical to
our analysis. If the query point distribution differs from the data point distribution,
then many such skinny cells may be visited by the search. This is why uniformly
distributed query points were chosen.

In contrast, we could have forced bounded aspect ratios by using the midpoint
splitting rule, but by not allowing shrinking. The result is a sort of binary form of

28 · S. Arya, et al.

a quadtree. For highly clustered distributions, like clustered segments, this results
in trees that are at least an order of magnitude larger than the BBD-tree in both
size and depth.

Both variants of BBD-trees took advantage of shrinking to produce reasonably
small trees with cells of bounded aspect ratio. As shown in Figure 11, the running
times are significantly better than those for the kd-tree for this distribution.

6.3 Average Distance Error

Another issue involves the actual performance of the algorithm with respect to
distance errors. The user supplies an upper bound ε on the allowable distance
error, but the data structure may find points that are closer.

We computed the true nearest neighbor off-line and then computed the actual
relative error, namely the ratio between the distance to the point reported by the
algorithm and the true nearest neighbor minus 1. The resulting quantity averaged
over all query points is called the average relative error (or simply average error).
This is shown in Figure 12 for the uniform and correlated Laplacian distributions.
Again, most of the other distributions showed a similar behavior. The results show
that for even very large values of ε, the average error committed is typically at
least an order of magnitude smaller. Although we have no theoretical justification
for this phenomenon, this better average-case performance may be of interest in
applications where average error over a large number of queries is of interest, and
suggests an interesting topic for future study.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

A
ve

ra
ge

 E
rr

or

Epsilon

kd-tree
fair-split

midpoint-split

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

A
ve

ra
ge

 E
rr

or

Epsilon

kd-tree
fair-split

midpoint-split

(a) (b)

Fig. 12. Average error for the (a) uniform and (b) correlated Laplacian distribution versus ε.

A related statistic is how often the algorithm succeeds in finding the true nearest
neighbor as a function of ε. We found that the algorithm manages to locate the
true nearest neighbor in a surprisingly large number of instances, even with relative
large values of ε. To show this, we plotted the fraction of instances in which the
algorithm fails to return the true nearest neighbor for these distributions. Results
are shown in Figure 13.

6.4 Dependence on Dimension and ε

Another question involves the constant factors which depend on the dimension and
ε. In Lemma 5 we define Cd,ε = d1 + 6d/εed, and argue that in all Minkowski
metrics, the nearest neighbor can be reported in O(Cd,εd log n) time. The factor

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 29

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 M
is

s

Epsilon

kd-tree
fair-split

midpoint-split

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

F
ra

ct
io

n
of

 M
is

s

Epsilon

kd-tree
fair-split

midpoint-split

(a) (b)

Fig. 13. Fraction of nearest neighbors missed for the (a) uniform and (b) correlated Laplacian
distributions versus ε.

Cd,ε bounds the number of leaf cells visited by the algorithm. However, this factor
is a crude worst-case bound, which ignores a number of important practical issues.
To get a more accurate sense of what sort of factors could be expected in practice,
we ran an experiment to measure how the number of cells visited by the algorithm
varies as a function of d and ε. We also sought an analytical explanation of these
results.

We chose a relatively well-behaved case to consider for these experiments, namely
uniformly distributed points in a unit hypercube, and the L∞ metric. Because of
the negligible differences in the various data structures for uniformly distributed
data (as evidenced by Figure 9 above), we ran experiments only for the kd-tree
using a bucket size of 1. We considered dimensions varying from 1 to 16, and
values of ε varying from 0 to 10. We considered data sets of size 100,000, and for
each data set averaged results over 1000 queries.

A plot of the relationship between the logarithm (base 10) of the number of
leaf cells visited versus ε and dimension is shown in Figure 14(a). Indeed, the
figure shows that the number of cells is significantly smaller than the huge values
predicted by the above formula. For example, for ε = 1 and dimension 16, the
formula provides the unusable bound of 1032, whereas the plot shows that the
number of cells is roughly 100 for this distribution.

0
4

8
12

16

Dimension

0
2

4
6

8
10

Epsilon

1

10

100

1000

Cells

1

10

100

1000

1 1.2 1.4 1.6 1.8 2

C
el

ls

(2 + Epsilon) / (1 + Epsilon)

dim16
dim14
dim12
dim10
dim8
dim6
dim4
dim2

(a) (b)

Fig. 14. Number of cells visited versus ε and dimension.

30 · S. Arya, et al.

We can provide an informal analytical justification for these empirical results.
We follow the general structure of the analysis by Friedman, Bentley, and Finkel
[1977]. For large uniformly distributed data sets, it is reasonable to model a kd-
tree’s decomposition of a unit hypercube as a regular grid of n hypercubes where
each hypercube has side length of roughly a = 1/n1/d. Ignoring boundary effects,
the expected side length of the L∞ nearest neighbor ball for a random query point
is also 1/n1/d. For ε > 0, our algorithm will need to visit any leaf cell that overlaps
a shrunken nearest neighbor ball whose side length is b = a/(1+ ε). It is easy to see
that the expected number of intervals of width a that are overlapped by a randomly
placed interval of width b is (1 + b/a). It follows that the number of grid cubes of
width a that are overlapped by a randomly placed cube of width b is(

1 +
b

a

)d

=
(

1 +
1

1 + ε

)d

=
(

2 + ε

1 + ε

)d

.

From this it follows that for any fixed dimension, a linear relationship is to be
expected between the logarithm of the number of cells and the logarithm of (2 +
ε)/(1+ ε). This relationship is evidenced in Figure 14(b). (Note that both axes are
on a logarithmic scale.) Boundary effects probably play a role since the empirically
observed values are somewhat smaller than predicted by the formula [Arya et al.
1995].

6.5 Summary of Experiments

A number of conclusions can be drawn from these experiments. First, in moderate
dimensions, significant savings in running time can be achieved by computing ap-
proximate nearest neighbors. For the ε = 3 cases, improvements in running time
on the order of factors of 10 to 50 over the exact case were common. For clustered
data sets, significant improvements were seen for even smaller values of ε. The al-
gorithm’s average error seems to be significantly smaller than that predicted by the
user-supplied bound of ε. Even for ε as high as 3 (implying that a relative error of
300% is tolerated) average relative errors were typically at most 10%, and the true
nearest neighbor was found almost half of the time. For many distributions there
was relatively little difference in running time and effective performance between
different splitting rules, even for the kd-tree, for which upper bounds on search time
cannot be proved. However, the BBD-tree retains the efficiency of the kd-tree in
these cases, and is more robust for highly clustered data sets, where the kd-tree’s
performance can be much worse. Finally, the dependencies on dimension and ε,
seem to be much lower than the bounds presented in Theorem 1.

7. CONCLUSIONS.

We have showed that through the use of the BBD-tree, (1+ ε)-approximate nearest
neighbor queries for a set of n points in Rd can be answered in O(cd,ε log n) time,
where cd,ε ≤ d d1 + 6d/εed is a constant depending only on dimension and ε. The
data structure uses optimal O(dn) space and can be built in O(dn log n) time. The
algorithms we have presented are simple (especially the midpoint splitting rule)
and easy to implement. Empirical studies indicate good performance on a number
of different point distributions. Unlike many recent results on approximate nearest
neighbor searching, the preprocessing is independent of ε, and so different levels

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 31

of precision can be provided from one data structure. Although constant factors
in query time grow exponentially with dimension, constant factors in space and
preprocessing time grow only linearly in d. We have also shown that the algorithms
can be generalized to enumerate approximate k-nearest neighbors in additional
O(kd log n) time. Using auxiliary data structures, it is possible to handle point
insertions and deletions in O(log n) time each.

A somewhat simplified version of the BBD-tree has been implemented in C++.
The software is available on the web from http://www.cs.umd.edu/~mount/ANN/.

There are a number of important open problems that remain. One is that of
improving constant factors for query time. Given the practical appeal of a data
structure of optimal O(dn) size for large data sets, an important question is what
lower bounds can be established for approximate nearest neighbor searching using
data structures of this size. Another question is whether the approximate kth
nearest neighbor can be computed in time that is polylogarithmic in both n and k.

ACKNOWLEDGMENTS

We would like to thank Michiel Smid for his helpful comments. We would also like
to thank the reviewers for a number of very useful comments and suggestions.

REFERENCES

Agarwal, P. K. and Matoušek, J. 1993. Ray shooting and parametric search. SIAM J.
Comput. 22, 4, 794–806.

Arya, S. and Mount, D. M. 1993a. Algorithms for fast vector quantization. In J. A.

Storer and M. Cohn Eds., Proc. of DCC ’93: Data Compression Conference (1993), pp.
381–390. IEEE Press.

Arya, S. and Mount, D. M. 1993b. Approximate nearest neighbor queries in fixed dimen-
sions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms (1993), pp. 271–280.

Arya, S. and Mount, D. M. 1995. Approximate range searching. In Proc. 11th Annu.
ACM Sympos. Comput. Geom. (1995), pp. 172–181.

Arya, S., Mount, D. M., and Narayan, O. 1995. Accounting for boundary effects in
nearest neighbor searching. In Proc. 11th Annu. ACM Sympos. Comput. Geom. (1995),
pp. 336–344.

Arya, S., Mount, D. M., Netanyahu, N., Silverman, R., and Wu, A. Y. 1994. An
optimal algorithm for approximate nearest neighbor searching in fixed dimensions. In Proc.
5th ACM-SIAM Sympos. Discrete Algorithms (1994), pp. 573–582.

Bei, C.-D. and Gray, R. M. 1985. An improvement of the minimum distortion encoding
algorithm for vector quantization. IEEE Transactions on Communications 33, 1132–1133.

Bentley, J. L., Weide, B. W., and Yao, A. C. 1980. Optimal expected-time algorithms
for closest point problems. ACM Transactions on Mathematical Software 6, 4, 563–580.

Berchtold, S., Böhm, C., Keim, D. A., and Kriegel, H.-P. 1997. A cost model for
nearest neighbor search in high-dimensional data space. In Proc. Annu. ACM Sympos.
Principles Database Syst. (1997), pp. 78–86.

Berchtold, S., Keim, D. A., and Kriegel, H.-P. 1996. The X-tree: An index structure
for high-dimensional data. In Proc. 22nd VLDB Conference (1996), pp. 28–39.

Bern, M. 1993. Approximate closest-point queries in high dimensions. Inform. Process.
Lett. 45, 95–99.

Bern, M., Eppstein, D., and Teng, S.-H. 1993. Parallel construction of quadtrees and
quality triangulations. In Proc. 3rd Workshop Algorithms Data Struct., Volume 709 of
Lecture Notes in Computer Science (1993), pp. 188–199. Springer-Verlag.

Bespamyatnikh, S. N. 1995. An optimal algorithm for closest pair maintenance. In Proc.
11th Annu. ACM Sympos. Comput. Geom. (1995), pp. 152–161.

32 · S. Arya, et al.

Callahan, P. B. and Kosaraju, S. R. 1992. A decomposition of multi-dimensional point-
sets with applications to k-nearest-neighbors and n-body potential fields. In Proc. 24th
Ann. ACM Sympos. Theory Comput. (1992), pp. 546–556.

Callahan, P. B. and Kosaraju, S. R. 1995. Algorithms for dynamic closest pair and
n-body potential fields. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms (1995), pp.
263–272.

Chan, T. 1997. Approximate nearest neighbor queries revisited. In Proc. 13th Annu. ACM
Sympos. Comput. Geom. (1997), pp. 352–358.

Chazelle, B. 1982. A theorem on polygon cutting with applications. In Proc. 23rd Annu.
IEEE Sympos. Found. Comput. Sci. (1982), pp. 339–349.

Clarkson, K. L. 1983. Fast algorithms for the all nearest neighbors problem. In Proc. 24th
Ann. IEEE Sympos. on the Found. Comput. Sci. (1983), pp. 226–232.

Clarkson, K. L. 1988. A randomized algorithm for closest-point queries. SIAM Journal
on Computing 17, 4, 830–847.

Clarkson, K. L. 1994. An algorithm for approximate closest-point queries. In Proc. 10th
Annu. ACM Sympos. Comput. Geom. (1994), pp. 160–164.

Cleary, J. G. 1979. Analysis of an algorithm for finding nearest neighbors in Euclidean
space. ACM Transactions on Mathematical Software 5, 2, 183–192.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms.
MIT Press, Cambridge, MA.

Cost, S. and Salzberg, S. 1993. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning 10, 57–78.

Cover, T. M. and Hart, P. E. 1967. Nearest neighbor pattern classification. IEEE Trans.
Inform. Theory 13, 57–67.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 1997. Computa-
tional Geometry: Algorithms and Applications. Springer-Verlag, Berlin.

Deerwester, S., Dumals, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R.

1990. Indexing by latend semantic analysis. J. Amer. Soc. Inform. Sci. 41, 391–407.

Devroye, L. and Wagner, T. J. 1982. Nearest neighbor methods in discrimination. In
P. R. Krishnaiah and L. N. Kanal Eds., Handbook of Statistics, Volume 2. North-
Holland.

Duda, R. O. and Hart, P. E. 1973. Pattern Classification and Scene Analysis. John Wiley
& Sons, NY.

Edelsbrunner, H. 1987. Algorithms in Combinatorial Geometry, Volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany.

Farvardin, N. and Modestino, J. W. 1985. Rate-distortion performance of DPCM
schemes for autoregressive sources. IEEE Transactions on Information Theory 31, 3 (May),
402–418.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. 1996. Advances
in Knowledge Discovery and Data Mining. AAAI Press/Mit Press.

Feder, T. and Greene, D. H. 1988. Optimal algorithms for clustering. In Proc. 20th
Annu. ACM Sympos. Theory Comput. (1988), pp. 434–444.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M.,

Hafner, J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. 1995. Query by
image and video content: The QBIC system. IEEE Computer 28, 23–32.

Frederickson, G. N. 1985. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput. 14, 781–798.

Frederickson, G. N. 1993. A data structure for dynamically maintaining rooted trees. In
Proc. 4th ACM-SIAM Sympos. Discrete Algorithms (1993), pp. 175–194.

Fredman, M. L. and Tarjan, R. E. 1987. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM 34, 209–221.

Friedman, J. H., Baskett, F., and Shustek, L. J. 1975. An algorithm for finding nearest
neighbors. IEEE Trans. Comput. C-24, 10, 1000–1006.

An Optimal Algorithm for Approximate Nearest Neighbor Searching · 33

Friedman, J. H., Bentley, J. L., and Finkel, R. A. 1977. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software 3, 3,
209–226.

Galperin, I. and Rivest, R. L. 1993. Scapegoat trees. In Proc. 4th ACM-SIAM Sympos.
Discrete Algorithms (1993), pp. 165–174.

Gersho, A. and Gray, R. M. 1991. Vector Quantization and Signal Compression. Kluwer
Academic, Boston, MA.

Guan, L. and Kamel, M. 1992. Equal-average hyperplane partitioning method for vector
quantization of image data. Pattern Recognition Letters 13, 693–699.

Indyk, P. and Motwani, R. 1998. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput. (1998). (to
appear).

Kleinberg, J. M. 1997. Two algorithms for nearest-neighbor search in high dimension. In
Proc. 29th Annu. ACM Sympos. Theory Comput. (1997), pp. 599–608.

Kushilevitz, E., Ostrovsky, R., and Rabani, Y. 1998. Efficient search for approximate
nearest neighbor in high dimemsional spaces. In Proc. 30th Annu. ACM Sympos. Theory
Comput. (1998). (to appear).

Lee, C.-H. and Chen, L.-H. 1994. Fast closest codeword search algorithm for vector quan-
tisation. IEE Proc.-Vis. Image Signal Process. 141, 143–148.

Lin, K. I., Jagdish, H. V., and Faloutsos, C. 1994. The TV-tree: An index structure for
high-dimensional data. VLDB Journal 3, 4, 517–542.

Meiser, S. 1993. Point location in arrangements of hyperplanes. Information and Compu-
tation 106, 2, 286–303.

Mount, D. M., Netanyahu, N., Silverman, R., and Wu, A. Y. 1995. Chromatic nearest
neighbor searching: A query sensitive approach. In Proc. 7th Canad. Conf. Comput. Geom.
(1995), pp. 261–266.

Preparata, F. P. and Shamos, M. I. 1985. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY.

Rivest, R. L. 1974. On the optimality of Elias’s algorithm for performing best-match
searches. In Information Processing (1974), pp. 678–681. North Holland Publishing Com-
pany.

Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proc.
ACM SIGMOD Conf. on Management of Data (1995), pp. 71–79.

Samet, H. 1990. The Design and Analysis of Spatial Data Structures. Addison Wesley,
Reading, MA.

Schwarz, C., Smid, M., and Snoeyink, J. 1994. An optimal algorithm for the on-line
closest-pair problem. Algorithmica 12, 18–29.

Sleator, D. D. and Tarjan, R. E. 1983. A data structure for dynamic trees. J. Comput.
Syst. Sci. 26, 362–391.

Sproull, R. L. 1991. Refinements to nearest-neighbor searching. Algorithmica 6, 579–589.

Vaidya, P. M. 1989. An O(n log n) algorithm for the all-nearest-neighbors problem. Dis-
crete Comput. Geom. 4, 101–115.

White, D. A. and Jain, R. 1996. Similarity indexing with the SS-tree. In Proc. 12th IEEE
Internat. Conf. Data Engineering (1996), pp. 516–523.

Yao, A. C. and Yao, F. F. 1985. A general approach to d-dimensional geometric queries.
In Proc. 17th Ann. ACM Sympos. Theory Comput. (1985), pp. 163–168.

