International Journal of Computational Geometry & Applications Vol. 2, No. 2 (1992) 191-214
@World Scientific Publishing Company

A PARALLEL ALGORITHM FOR ENCLOSED AND ENCLOSING
TRIANGLES

SHARAT CHANDRAN*

NTT Data Communicetions Systems Corporation
66-2 Horikawa-cho, Saiwai-ku, Kawasaks
Japan 210.

and

DAVID M, MOUNT?
Department of Computer Science and Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland 20742, USA.

Received 30 November 1990
Revised 25 September 1991

ABSTRACT

We consider the problems of computing the largest area triangle enclosed within
a given n-sided convex polygon and the smallest area triangle which encloses a given
convex polygon. We show that these problems are closely related by presenting a single
sequential linear time algorithm which essentially solves both problems simultaneously.
We also present a cost-optimal parallel algorithm that solves both of these problems in
O(loglogn) time using n/loglogn processors on a CRCW PRAM. In order to achieve
these bounds we develop new techniques for the design of parallel algorithms for com-
putational problems involving the rotating calipers method.

Keywords: Minimum enclosures, convex polygons, parallel algorithms, rotating calipers.

1. Introduction

The problems of finding minimum area enclosing and maximum area enclosed k-
gons arise from the desire to approximate many-sided convex polygons by polygons
with fewer sides. One application is in the area of collision avoidance in robotics.*®
It is easier to test interference of objects with fewer sides, and once interference is
established, a more refined analysis can be made.

Algorithms for finding maximal enclosed k-gons and minimal enclosing k-gons
were presented by Boyce, et al.® and subsequently were improved by Aggarwal and
Park.? In the latter case the maximum area inscribed k-gon, as well as the minimum

*Most of this work was completed when this author was with the Center for Automation
Research, College Park, MD 20742-3411, USA. Author’s current address is: Computer Science
and Engineering Department, IIT Powai, Bombay, India 400076.

TThe work of this author was supported by National Science Foundation Grant CCR-89-08901.

191

192 S. Chandran & D. M. Mount

area circumscribed k-gon can be computed in O(kn + nlogn) time where n is the
number of vertices in the polygon.

These sequential algorithms are not known to be optimal for general values of k
and n. The cases of finding the minimum enclosing and maximum enclosed triangles
(k = 3) are the only cases where optimal sequential algorithms are known. An O(n).
algorithm for computing the largest area triangle enclosed in a given convex polygon
was given by Dobkin and Snyder.® The problem of finding the minimum area triangle
enclosing a given convex polygon was first considered by Klee and Laskowski where
an O(nlog® n) algorithm was given.® This was subsequently improved to O(n) by
O’Rourke, Aggarwal, Maddila and Baldwin.!!

Both linear time sequential algorithms are roughly based on the method of “ro-
tating calipers”!? to generate a finite set of intermediate triangles from which the
optimum is selected. In spite of the outward similarity between the two problems,
there is quite a difference in the details of the algorithms and their proofs of cor-
rectness. As an indication of the dissimilarity, an O(log n) time and O(n) processor
parallel algorithm was given by Aggarwal, Chazelle, Guibas, O’Dunlaing and Yap!
for finding the minimum enclosing triangle; however, they state that their methods
do not yield a better than O(log2 n) parallel algorithm for the problem of finding
the maximum enclosed triangle. The model of parallel computation that they use
is the CREW PRAM, a parallel shared memory machine with concurrent-read and
exclusive-write,

In this paper, we consider the problem of computing the maximum area enclosed
triangle and the minimum area enclosing triangle for a given convex polygon. We
show that these problems are much more closely related than had been previously
thought. Both can be solved easily once a particular set of O(n) intermediate
triangles, which we call P-stable triangles, have been computed. These interme-
diate triangles are a superset of the P-anchored triangles introduced by Klee and
Laskowski® for finding minimum enclosing triangles.

We prove that given a convex polygon P, the set of P-stable triangles can
be computed in O(n) sequential time and O(loglogn) parallel time on a CREW
PRAM with n/loglogn processors. We show that by generating these triangles
in O(loglogn) time, we can determine the family of all minimum enclosing and
maximum enclosed triangles for a convex polygon. On the CREW PRAM we can
find the extremum of n numbers in O(logn) time. As a consequence, we have
improved the parallel complexity of finding maximum enclosing triangles on this
model, and matched the complexity of finding minimum enclosed triangles. If we
use a stronger model, such as the CRCW (concurrent read, concurrent write) PRAM
machine, we have an algorithm that runs in O(loglogn) time using O(n/ loglogn)
processors for both problems. Note that concurrent writes are resolved by the rule
that two processors writing to the same memory cell must both write the same
value, and is thus the weakest of all concurrent write models.” Thus, we have also
substantially improved the CRCW result of Aggarwal and Park? which considers
our problems amongst others.

The approach of generating O(n) triangles and then computing the extremum

A Parallel Algorithm for Enclosed and Enclosing ... 193

has a lower bound of Q(logn) on the CREW PRAM model (derived from the
lower bound of Q(logn) for finding the extremum of n numbers). We are therefore
essentially limited by this bottleneck. On the CRCW model, as simple a problem as
computing the parity of n bits requires Q(log n/ loglog n) time with any polynomial
number of processors. It is therefore no surprise that very few parallel algorithms
achieve a sublogarithmic time bound. Our parallel algorithm, however, belongs to
this category.

In the next section we introduce P-stable triangles, and present a series of lem-
mas that characterize the geometry of the problem. In the development of efficient
parallel algorithms, it is often the case that we need a sequential algorithm for the
problem as a subroutine. To this end, the results of Section 2 are exploited in the
development of the sequential algorithm that we sketch in Section 3. In Section 4
we present a series of increasingly efficient parallel algorithms. Finally, we make
some concluding remarks in the last section.

2. Preliminaries

Throughout this paper, when referring to maximum and minimum triangles,
we mean triangles of maximum or minimum area. Throughout, P will denote a
convex polygon with n vertices. When referring to P we mean the boundary of
P formed from the clockwise circular sequence of its vertices and edges. For two
distinct points a and b on P, we use the notation (a, b) to denote the open interval
of points lying strictly between a and b on P clockwise from a to b, and [a, b] is the
closure of this interval. Note that a and b need not be vertices, that is, they may
lie on the interior of edges of P

It is easy to show that the vertices of any maximum triangle enclosed in a convex
polygon must contact the polygon’s boundary, as must the edges of any minimum
enclosing triangle. We will assume that any triangle that encloses P or is enclosed
in P is represented so that its points of incidence with P (vertices or edges) can be
determined in O(1) time. We say that a triangle that encloses P is flush with P if
some edge of P is a subsegment of one of the sides of the triangle. A line L is said
to support a convex polygon P if P and L intersect, and P lies entirely in one of
the closed halfspaces defined by L. We begin with two lemmas that summarize the
local properties of maximum enclosed and minimum enclosing triangles.

Lemma 2.1 (Dobkin and Snyder, 1979)

(i) Ift is a mazimum enclosed triangle for a conver polygon P then for each
vertez v of t, the line drawn through v and parallel to the opposile side of t is
a line of support for P.

(ii) Given a convez polygon P, there exists a mazimum enclosed triangle in P
whose vertices are a subsel of the vertices of P.

The second statement is a restatement of Theorem 2.1 from Dobkin and Snyder.®
The first statement follows from the unimodality observation: If z;zy, is a chord of P,
then the function area(z;z;x;) is unimodal as z; assumes values on the perimeter
of the polygon. Suppose t is a maximum enclosed triangle with z; = a and z = b.

194 S. Chandran & D. M. Mount

If the line through the third vertex and parallel to the chord ab is not a line of
support, from the above, the area can always be increased by moving the third
vertex along the perimeter.

Lemma 2.2 (Klee and Laskowski, 1985)

(1) If T is a minimum enclosing triangle for P then the midpoint of each side
of T intersects P.

(i) If T is a minimum enclosing triangle then at least one side of T is flush
with P,

With respect to part (ii) above, Depano® has shown that there is a minimum
enclosing triangle having at least two sides flush with P. We bégin by considering
a class of enclosing triangles, from which we will later extract enclosed triangles.
When solving a problem by rotating calipers, it is often convenient to consider a
larger class of triangles, which include all local minima as a subset. For this reason
we introduce the notions of P-supported and P-stable triangles.

Definition 1 Given a convez polygon P, an enclosing triangle is P-supported if
the midpoints of two of its sides, called the legs, contact P. (The third side, called
the base, may contact P arbilrarily.)

Observe that the condition for local minima is enforced only on two sides, rather
than all three. When referring to a P-supported triangle, ABC, we will adopt
the naming convention that C is the vertex opposite the base. We will assume
throughout that P-supported triangles are represented so that we know which sides
are its legs and which side is its base. It follows from elementary geometry that the
midpoints a and b of the legs AC' and BC, respectively, form a line segment that is
parallel to and is half the length of the base AB.

Given the line L supporting P, there is, in general, an infinite family of P-
supported triangles whose base lies on the line L. There is a sense in which all such
triangles are equivalent, which was observed earlier.!

Lemma 2.3 Given a conver polygon P and a supporting line L, lel S denotle the
set of P-supported triangles whose bases lie on L.

(1) S is nonempty, and all the elements in S have the same area, and their
corresponding legs share the same points as midpoints.

(i) If S contains more than one element then the midpoints a and b are vertices
of P, and the set of apexes of S form a line segment, parallel to L, and at
twice the height above L as the line segment ab. The endpoints of this segment
can be found in O(1) time (see Figure 1).

Since we are interested in the areas of enclosing triangles, any local transforma-
tion that preserves the area of a P-supported triangle will not affect the final output.
Thus, given a P-supported triangle, in O(1) time we can select one endpoint (the
rightmost, say) of the set of allowable apexes to form the canonical P-supported
triangle having this base direction (see Figure 1).

The computational difficulty with P-supported triangles (even in canonical form)
is that there are an infinite number of them, corresponding to each possible line of
support for P forming the base of the triangle. To limit the set to a finite collection

A Parallel Algorithm for Enclosed and Enclosing ... 195

of triangles, but encompassing enough to contain all locally minimum enclosing
triangles, Klee and Laskowski introduced the notion of a P-anchored triangle.>'!
Such a triangle is simply a P-supported triangle whose base 1s flush with P. One
notable feature of the definition of P-anchored triangles is its asymmetry, in that
the anchoring condition applies only to the base edge and not to the legs. In the case
of minimum enclosing triangles this condition is sufficient to solve that problem. To
encompass the set of triangles needed for the maximum enclosed triangle problem
we generalize this definition as follows.

Figure 1: The canonical P-supported triangle ABC.

Definition 2 A P-supported triangle is P-stable if either

(i) the base is flush with P, or
(i) one of the legs is flush with an edge of P and has as ils midpoint a vertez
of this edge.
Clearly every P-anchored triangle is P-stable and every P-stable triangle is P-
supported. To draw the connection between enclosing and enclosed triangles we
introduce the notion of an inner triangle.

Figure 2: The inner triangle abe.

196 S. Chandran & D. M. Mount

Definition 3 Given a P-supported triangle ABC, let a and b be the midpoinis of
the legs BC and AC, respectively, and let ¢ be any point on the base AB that also
lies on P. The triangle abc is an inner triangle of ABC. The base of the inner
triangle is the edge ab, the remaining sides are the legs, and ¢ is the apex (see
Figure 2).

If the base of a P-supported triangle is flush with an edge of P, then there are an
infinite number of inner triangles all of equal area (by sliding the apex of the inner
triangle along the edge of P parallel to the base of the inner triangle) and hence we
will adopt the convention of selecting the furthest eligible clockwise point for the
apex of the inner triangle. Thus we can talk about “the” inner triangle for a given
P-supported triangle. Note further that the operation of mapping a P-supported
triangle into a canonical form does not alter its inner triangle. A number of simple
observations regarding inner triangles can be made at this point.

Lemma 2.4 Let P be a convex polygon, let T be a P-supported triangle, and let
be the inner triangle for T. Then

(i) t is uniquely determined from the orientation of T'’s base,
(i1) the bases of T' and t are parallel, and
(iii) the area of T is four times the area of t.

Proof. Observation (i) follows from Lemma 2.3 and the fact that the inner
triangle is defined by the P-supported triangle. Observation (ii) follows from the
elementary fact that the line joining the midpoints of two edges of a triangle is
parallel to the other edge. Observation (iii) follows by observing that the inner
triangle has a base parallel to and one half the width of the base of the outer
triangle, and has height one half the height of the outer triangle. O

H

Figure 3: Generating an outer triangle ABC' from an inner triangle abc.

It is obvious how to generate the unique inner triangle for a given P-supported
triangle (given P). Conversely, given an inner triangle abc (of some P-supported
triangle), the unique canonical outer triangle ABC can be found in O(1) time as
follows. Think of ab as being horizontal, and directed from left to right. The base

A Parallel Algorithm for Enclosed and Enclosing ... 197

AB is parallel to ab and passes below through c¢. The apex C' lies on a line H at
twice the height of ab above this base. Extend the edges of P lying just clockwise
from a and b until they intersect H. The leftmost of these two intersection points
is the apex C of the outer triangle in canonical form (see Figure 3). (If the line
from C' through b is not a line of support for P then it follows that abe cannot be
an inner triangle.)

The fundamental observation linking the two problems of finding minimum en-
closing and maximum enclosed triangles is the following.

Lemma 2.5

(i) There exists a minimum enclosing triangle that is a canonical P-stable tri-
angle.

(ii) There exists a mazimum enclosed triangle that is an inner iriangle of some
canonical P-stable triangle.

Proof. Observation (i) is an immediate consequence of Lemma 2.2 together with
the fact that all P-anchored triangles are P-stable. To prove the second observation,
let abc be a maximum enclosed triangle such that a, b and ¢ are vertices of P. Form
a triangle T = ABC by drawing a line through each vertex of abc that is parallel to
the side opposite the vertex. By Lemma 2.1(i), the sides of triangle T' support P,
hence T encloses P. It is easy to derive from elementary geometry that the sides of
T have their midpoints at @, b and ¢. (For example, to see that ¢ is the midpoint
of AB observe that abAc and abcB are parallelograms sharing the common edge
ab). Now map abc into canonical form (if needed) by sliding ¢ parallel to ab. This
does not alter the area of abe. Similarly map triangle T' into canonical form (if
needed) by sliding the vertex C parallel to edge AB. Let us assume without loss of
generality that side BC becomes flush with P. Since a is a vertex of P and since
BC is flush with P, T is a canonical P-stable triangle, and abc is its inner triangle.
]

Thus, to determine the minimum enclosing triangle and maximum enclosed tri-
angle it suffices to compute the set of canonical P-stable triangles (which we show
later to be a finite set) and to select the outer triangle of minimum area and the
corresponding inner triangle of maximum area. In order to proceed we must first
introduce the following interspersing property, which is basic to all rotating calipers
algorithms.1'®%11 This property states that as the orientation of the base edge ad-
vances in a clockwise direction, the vertices of the corresponding inner triangle move
clockwise about P. This lemma is not stated in exactly this form by O’Rourke, et
al.,!! but it follows directly from the proof of their Lemma 2, together with the
simple observation that as the orientation of the base turns clockwise, the point of
contact with the base, ¢, also moves clockwise around P. We may associate any
directed line segment AB with an angle of orientation by considering the angle of
the vector B — A.

Lemma 2.6 (O’Rourke, Aggarwal, Maddila, and Baldwin,1986)

Let ABC be a P-supported triangle with base AB and inner triangle abc. (See
Figure 4.) Let A'B'C’ be a P-supported triangle whose base A'B’ lies between AB
and BC in clockwise angular orientalion. Further, let a'b'c’ be the latter’s inner

198 S. Chandran & D. M. Mount

triangle. Then ' € [c,a], V' € [b,c'] and a’ € [a, V).

Figure 4: Interspersing property.

3. Sequential algorithm

It follows from Lemma 2.5 that, in order to find the maximum enclosed and
minimum enclosing triangles, it suffices to generate all the canonical P-stable tri-
angles. We first develop a sequential algorithm for this problem. As in O’Rourke,
1.,1* our algorithm is an example of the rotating calipers technique, generating
all P-anchored triangles in clockwise order according to the orientation of the base
edge. Due to the more general class of triangles being generated, the algorithm is
somewhat more involved than theirs.

The rotating caliper method by which we generate the set of canonical P-stable
triangles is to imagine the following continuous process. Consider a support line
“rolling around” the boundary of P clockwise through every angle through 360
degrees. For each angle of orientation, there is a unique canonical P-supported
triangle having its base lying on the support line of this orientation. To simulate
this process discretely we consider only those orientations at which the the triangle
is P-stable. We will show that there are only O(n) such anchoring orientations and
show how to move from one anchoring orientation to the next in a constant amount
of time. Finally we will select the smallest among all the P-stable triangles, and
the largest among the corresponding inner triangles.

The algorithm begins by generating one P-anchored triangle ABC whose base
is flush with some edge of P. This can be done in O(log? n) time by the algorithm
given by Klee and Laskowski® (but see also Lemma 4.2). ABC is transformed into
canonical form if it is not already in this form, and the corresponding inner triangle
abc (see Figure 2) is computed in O(1) time. Recall that ¢ is a vertex of P, but a
and b need not be vertices. Let e,, e;, and e, denote the edges of P on which a, b
and c lie, respectively (taking the next clockwise edge if they lie on vertices). Since

et a

A Parallel Algorithm for Enclosed and Enclosing ... 199

ABC is in canonical form, at least one of the sides of BC or C'A is flush with e, or
ey respectively (as, for example, in Figure 2). We describe how to generate the next
P-stable triangle ordered clockwise by the angle of the base in O(1) time. We will
show that after O(n) iterations we will have generated all P-stable triangles. Let
a’ and ¥ and ¢’ be the vertices of P which (strictly) follow @, b and ¢ in clockwise
order, respectively. In other words, a’, b’ and ¢’ are the clockwise endpoints of e,
ey and e, (see Figure 5).

c

-
o,
-
s,

N pe
Figure 5: The case of two flush legs.

Case 1: Two flush legs. For the first case, assume that triangle leg BC is flush
with the polygon edge €4, and leg C'A is flush with e;. Recall that if the base is
flush with an edge, then c is the extreme clockwise vertex of the edge, so that any
small incremental clockwise rotation of the base revolves about ¢. Let & denote the
midpoint of the segment Cc. Since a and b are midpoints of BC and CA4, it follows
that z is also on the base ab of the inner triangle. As the base rotates clockwise
around ¢ through a small clockwise angle 8, the legs of the P-supported triangle
will remain flush with the same edges, implying that the apex of the P-supported
triangle will remain fixed at C. Since ¢ will lie on the base and the apex C'is fixed,
it follows that the line segment joining the midpoints of the legs will pass through
z. Thus as 6 rotates through a small clockwise angle, the midpoints of the resulting
inner triangle, a(f) and b(f), will travel clockwise around the boundary of P (as
predicted by the interspersing property), so that the segment joining them passes
through 2 and is parallel to the rotating base. Observe that the angular change of
g is equal to the angular change of a(f) and b(#) with respect to & (see Figure 5).
The next anchoring event occurs either when the base rotates so far as to become
flush with e., or when a(6) = a’, or when b(f) = b'. The other two events occur when

200 S. Chandran & D. M. Mount

the rotating line that passes through « intersects one of the vertices a’ or §'. Observe
that in all three cases the resulting triangle is P-stable (although not necessarily in
canonical form). Thus, we compute three clockwise angles corresponding to these
events. Let 0, = /Bcc/, be the angle of rotation of the base of the P-supported
triangle that aligns the base with e, let §; = Zaza’ be the angle of rotation of
the line through « for which this line passes through a’ and let 8, = Zbzb’ be the
corresponding angle for &', Let ¢ = min(fq, 6;,0.). The next P-stable triangle is
found by rotating the base clockwise through the angle 8. Depending upon the
value of 0, eq and/or ey, or ¢ and e are updated.!® If the resulting triangle is not
canonical, it is converted into canonical form in constant time.

Case 2: One flush leg. The second case is if one of the legs is flush and the
other is not. Let us first assume that BC is flush with e, = aa’, but C 4 is not flush
with e, = bb’. This implies that b is a vertex of P. As the base rotates through a
small clockwise angle 6, the leg BC' will remain flush with the same edge, and as a
result the other leg must rotate to maintain b as its midpoint. In order to explain
this rotation, consider a line L passing through A and parallel to BC. Observe that
cvery line segment passing through b and having its endpoints on the lines L and
(the linear extension of) BC has b as its midpoint. As the base edge of the outer
triangle rotates through a small clockwise angle # about ¢, the point A(B) of the
outer triangle will necessarily travel along L and the point B(6) will travel along
BC (from B towards C). The location of the third vertex C(6) of the outer triangle
is determined by shooting a ray from A(6) through b until it hits the line BC. The
moving vertex of the inner triangle a(6) lies on the edge e, clockwise from a, such
that the base of the inner triangle a(6)b is parallel to the base of the outer triangle.

The next anchoring event occurs either when the base rotates so far as to become
flush with e, when a(6) = o/, or when the leg passing through b becomes flush with
edge ey. Observe that in all three cases the resulting triangle is P-stable (but may
not be in canonical form in the second case). The first two events occur at the
angles . = LBcc' and 6, = Zaba'. Let D be the line extending the edge €5, and let
z be the point at which D intersects the the extension of BC. (See Figure 6). At
the moment of the third event, C(6) coincides with z. Let y be the unique point
on D such that b is the midpoint of zy. The third event will occur when the base
has rotated through the angle 6, = ZAcy.

Let 6 = min(fg, 6y, 0.). The next P-stable triangle is found by rotating the base
clockwise through the angle 6.1 Depending upon the value of 6, e, and/or ey, or
c and e are updated. The resulting triangle is not necessarily canonical, in which
case it is converted into canonical form.

The other case of a single flush edge is if C A is flush with e;, but BC is not flush
with e;. This case is symmetric to Case 2 with the roles of A, a and o’ swapped
with B, b, and b’ respectively, with the only exception that 6, is still defined to be
the angle ZBecc'.

The above algorithm runs in O(1) time per case. Also observe that it provides
an alternative proof of the interspersing lemma, since in each case it can be observed

A Parallel Algorithm for Enclosed and Enclosing ... 201

Figure 6: The case of one flush leg.

that the contact points of the inner triangle move monotonically clockwise. We can
now establish the total time needed to generate all the P-stable triangles as O(n),
by proving that there are O(n) P-stable triangles.

Lemma 3.1 Given a conver polygon P with n vertices, there are at most 5n P-
stable triangles and at most 3n canonical P-stable triangles.

Proof. Consider a sequence of the P-stable triangles ordered by the angle of the
base edge and the corresponding inner triangles. As seen from the algorithm which
has just been outlined, each inner triangle differs from its predecessor in the sequence
by advancing at least one of its contact points clockwise along an edge of the polygon
to a vertex of the polygon, followed possibly by a canonical shift in the case that
one of the legs’ contact points that reaches a vertex. (It is trivial to see that in the
process of advancing from one P-stable triangle to another that we do not skip over
any P-stable triangles.) By the interspersing property, each of the contact points
can be advanced through n vertices before returning to the initial configuration.
Hence, there are at most 3n canonical P-stable triangles (one for each advance of
a contact point) and at most 5n P-stable triangles (allowing for each of the 2n
advances of a leg’s contact point to be followed by a canonical shift). O
Summarizing the results of this section we have.

Theorem 3.1 Given a convex n-sided polygon P, both the largest area enclosed
triangle and the smallest enclosing triangle can be computed in O(n) (sequential)
time by computing the set of P-stable triangles.

202 S. Chandran & D. M. Mount

4. Parallel algorithm

In this section we present a parallel algorithm that computes all of the O(n)
canonical P-stable triangles. Given n/loglogn processors, our algorithm achieves
a running time of O(loglogn) in generating a set of candidate triangles. Observe
that it is nontrivial to generalize the sequential algorithm given in the previous sec-
tion, since the rotating calipers approach seems inherently sequential. The parallel
algorithm is similar in structure to the \/n-divide and conquer algorithm presented
by Aggarwal, et al.! for solving the restricted problem of finding all the P-anchored
triangles, but the “back-and-forth subdivision” used by their algorithm has been re-
placed by simpler redundancy scheme (owing in part to the more symmetric nature
of P-stable triangles over P-anchored triangles). Once all of the P-stable triangles
have been computed, it is an easy matter to determine the triangles of maximum
and minimumarea in O(log n) time on the CREW (concurrent read, exclusive write)
model. On the more powerful CRCW (concurrent read, concurrent write) model,
the time to compute the maximum is O(loglogn), where concurrent writes are al-
lowed only if the processors writing to the shared memory cell all write the same
value.

Letting T1(n) denote the time taken to solve the problem using a single processor,
then a parallel algorithm is cost-optimal, or simply optimal, if the time-processor
product (or cost) p(n)T,(n) is O(Ti(n)). We first present a non-optimal n processor
O(log n) time algorithm. Later, we improve the algorithm to make it faster, with a
running time of O(loglog n) still using the same number of processors. Finally, we
present a cost-optimal improvement using only O(n/loglogn) processors.

4.1. A logarithmic time algorithm

Our first parallel algorithm operates in a series of O(log log n) stages. Intuitively,
the algorithm exploits the interspersing lemma (Lemma 2.6) at each stage to com-
pute the P-stable triangles. During successive stages we compute ever larger sub-
sets of the P-stable triangles whose corresponding inner triangles are interspersed
according to Lemma 2.6. Thus, later stages can refine their search in the ever
narrowing gaps between cyclically adjacent inner triangles.

The key to the efficiency of the algorithm will be the need to guarantee that
between any cyclically adjacent pair of triangles at each stage, there are at most
a small number (made precise below) of vertices of P. To see the difficulty in
maintaining this condition, consider the case of two inner triangles, abc and a’b'¢’.
By judiciously choosing a’ to be close to a, we can guarantee that the number of
vertices of P in the range [a, a’] is small. However, we cannot infer that the number
of vertices of P within [b, 5] and [c, '] are correspondingly small since these depend
on subtle relationships between the shape of the polygon and the distribution of
vertices. In order to circumvent this problem, we use a redundancy scheme, by
producing three new triangles, one whose first vertex is close to a, one whose second
vertex is close to b, and one whose third vertex is close to c. Irrespective of how
these three triangles intersperse, this will guarantee that there are a small number

A Parallel Algorithm for Enclosed and Enclosing ... 203

of vertices between every pair of adjacent inner triangles.

To define how these inner triangles are generated we will need to introduce the
notion of a P-stable triangle that is anchored in a particular way to a side of P and
investigate how to generate these triangles. We say that a P-stable triangle is a-
anchored at a vertex v, if v is the midpoint of the leg BC (implying that the vertex
a of the inner triangle coincides with v) and the leg BC' is flush with one of the
two edges incident to v. The notion of a b-anchored triangle is defined analogously
for side CA. A P-stable triangle is e-anchored at v if its base AB is flush with the
edge lying counterclockwise from v (recalling that the midpoint anchoring condition
for P-stable triangles does not apply to the base). Figure 8 shows an a-anchored
triangle anchored at vertex v, and Figure 3 shows a c-anchored triangle anchored
at vertex ¢. Since these three cases encompass all the possible anchoring conditions
for P-stable triangles we have, it is clear that every P-stable triangle falls into one
of these three categories.

Observe that there are actually two a-anchored triangles and two b-anchored
triangles at a given vertex v, owing to the fact that the triangle may be flush with
either incident edge about v. To simplify the presentation we will only consider the
a- and b- anchored triangles only for the edge lying counterclockwise from v, since
the other case is similar. Note that these triangles may not be in canonical form.

To present the idea for the parallel algorithm more formally, for each stage s,
s>1,letn, = '_nl/sz. Thus, n; = |/n], n2 = [/n], and so on. Define V; to be
the subset of vertices consisting of every n,-th vertex in P. We compute an a-, b-,
and c-anchored triangle at every vertex in V,. We will maintain these three types
of triangles in a single merged sequence. By applying the interspersing lemma,
it follows that for any pair of triangles, which are consecutive in this sequence,
the corresponding inner triangles abe and a’b’c’ will define three (possibly empty)
intervals along the boundary of P, [a, a'], [b, '] and [c, ¢] such that each interval will
contain at most O(n,) vertices. After O(loglogn) stages, we will have computed
a P-stable triangle anchored (in every possible way) at every vertex, implying that
we have computed all the P-stable triangles.

Since we shall be shifting our attention from P-stable triangles as defined ear-
lier to P-stable triangles that are anchored, we need the following observations to
characterize these triangles and to discuss the computational complexity our our
algorithms. First we observe that for c-anchored triangles, by fixing the direction
of the base edge and applying Lemma 2.3(i) we have the following.

Lemma 4.1 Given a convez polygon P and a vertez v on P, there exisls a unique
(canonical) P-stable triangle T, that is c-anchored at v.

Likewise, there exists unique P-stable triangle T, and T} that are, respectively,
a-anchored and b-anchored. This is not immediately obvious because of the asym-
metry in the definition, but later in Lemma 4.3 we will give a constructive proof
that triangles T, and T} also exist, and are unique.

It follows therefore that it is enough to focus on generating all anchored triangles.
The next set of lemmas discuss the complexity of the generation. In previous works,
it was discussed in detail how to find c-anchored triangles.®!! In particular, the

204 S. Chandran & D. M. Mount

following result was given by Klee and Laskowski® in a restricted form for edges
rather than points.

Lemma 4.2 Given a conver polygon P, and given a vertex v of P, each of the
endpoints of the inner triangle of the c-anchored triangle anchored at v can be found
in O(log® n) time by a binary search that uses O(logn) time per probe.

Proof. The vertex ¢ of the inner triangle is just » and hence can be found in 0(1)
time. Let e be the edge whose clockwise endpoint is v. To find the vertex a of
the inner triangle, consider the line D containing e. (Let us assume that P is so
oriented that D is horizontal and P is above D. See Figure 7.) For each point
on P, let h(x) denote the height of ¢ above D. The function A induces two closed
clockwise intervals on P, the left interval L along which A is strictly increasing and
the right interval R along which h is strictly decreasing. Clearly a € L and b € R,
since the directed line segment ab is horizontal and directed from left to right.

hl

H(x)
H*(x)

Figure 7: Height of support functions.

Let h* be the maximum height of P, that is, h* is the height of the first and
last endpoints of R and L, respectively. For each point & € L, let R(z) be the
unique point in R whose height above D is the same as z’s. Let H~(z) denote the
height of the lowest point (with respect to D) that lies above D from which a line of
support can be drawn through both 2 and R(z), and let H*(z) denote the height
of the highest point from which a line of support can be drawn through both « and
R(z). (Observe that H~(z) and H*(z) will be identical unless either z or R(z)
is a vertex.) If there is no such point or if this point lies below D let H~(z) or
H™(z) be positive infinity (see Figure 7). By convexity, as « varies clockwise along
L, H™ (z) and H*(z) decrease monotonically from +oo to h*. It follows that there
exists a unique point a € L such that H~(a) < 2h(a) < H*(a). Let b = R(a). It
follows from convexity that there are two lines of support passing through a and b,
respectively, that intersect at the height 2h(a). The triangle defined by these lines

A Parallel Algorithm for Enclosed and Enclosing . .. 205

of support and D define a c-anchored P-supported triangle, and the points a and b
are the vertices of its inner triangle.

Given an arbitrary point &, we can determine R(z) in O(logn) time by binary
search through R, and we can determine H~ () and H*(z) in O(1) additional time
by considering the lines of support formed by extending the edges lying just above
and below z and R(z). By applying binary search along L, we can find ¢ and b in
O(log® n) time. O

This Lemma provides the basis for Klee and Laskowski’s O(n log® n) algorithm
for finding the smallest enclosing triangle, since from Lemma 2.2, it suffices to
determine the P-supported triangle that is c-anchored at each vertex.

We also need supplementary results on finding a-anchored and b-anchored tri-
angles. We will state the result for a-anchored triangles, and an analogous result
holds for of b-anchored triangles by a symmetric argument.

Lemma 4.3 Given a convez polygon P and a vertez v on P, each of the endpoinis
of the a-anchored triangle anchored at v can be found in O(log® n) time by a binary
search that uses O(logn) time pér probe.

Proof. Let D denote the line extending the edge e whose clockwise endpoint is v.
Assume that P is oriented so that D is vertical directed upwards with P lying to its
right (see Figure 8). Let ¢’ be the edge whose counterclockwise endpoint is v. If abe
is an inner P-supported triangle that is a-anchored at v, then b cannot lie on e. If
the point b lies on ¢’ then b is the other endpoint of ¢'. Let fo denote the clockwise
angle from D to e’. For each angle 8, o < 6 < 7 there is a unique point x4 on P
such that the clockwise angle from D to the segment vag is 6. Let By denote the
lowest point on line D lying above v such that there is a line of support from By
through zg. (Observe that it is only when x4 is a vertex that there is any choice
for By. If there is no such point then let By be a point at infinity above v. For
each angle §, 0 < 6 < m, there is a unique line of support Sp whose angle is @ with
respect to D such that P lies above this line. Let Cy denote the point (necessarily
on or below a) at which this line of support intersects D.

As 0 increases from 6 to 7, the length of the segment vCy decreases strictly
and continuously from some finite value to 0, whereas the length of vBy increases
(discontinuously) from 0 to infinity. There exists a unique minimum angle ¢ for
which the length of vBy is greater than or equal to the length of vCy. Let b=y,
and let ¢ be the leftmost point at which Sy touches P from below. It follows that
there exists a unique line of support passing through b that equalizes the distances
vBy and vCs. This line of support, together with D and Sy define a unique P-stable
triangle that is a-anchored at v, and whose inner triangle consists of a = v, b, and
c.

For an arbitrary angle § we can determine whether 6 < ¢ by constructing the
points Bs and Cy and comparing their distances from v. To do this we need to locate
the point z¢ and determine the support line Sy, each of which can be performed in
O(logn) time by the convexity of P. By applying binary search, we can determine
the edges or vertices of P on which b and ¢ must lie. It is a straightforward exercise
to determine the exact location of these points in O(1) additional time (based

206 S. Chandran & D. M. Mouni

on a case analysis of whether b and ¢ are known to lie on edges or vertices or a
combination of the two). 0

D

By

Co

Figure 8: Generating the a-anchored P-stable triangle.

We now have the necessary machinery to describe the basic structure of the
parallel algorithm. Let the current stage be s > 1, and recall that n, = {nl/zaJ .
We maintain the invariant that at the end of stage s, for each vertex v € V, we
compute an a-anchored, b-anchored and c-anchored triangle at v. Thus there will
be 3|V;| = 3n/n, triangles computed altogether by the end of stage s (not all
necessarily distinct). These triangles are maintained in cyclic order according to
the angles of their base edges (thus the three triangles anchored at a given vertex
may be quite far apart in this ordering). For each vertex in v € V, we allocate n,
processors with which to compute a-, b-, and c-anchored triangles at v. This implies
that n processors are used altogether at any stage. As mentioned earlier, within
O(loglogn) stages, we will have computed all the P-stable triangles. The largest
and smallest of these triangles can be determined easily in O(logn) time using n
processors on the CREW model, and in O(loglogn) time on the CRCW model.

At the beginning of stage s the cyclically ordered inner triangles generated so
far define three separate partitions of the boundary of P into closed intervals. In
particular, if ag, a1, ..., @;n—1 are the a-vertices of the 3|V;| inner triangles generated
so far, the a-partition consists of the half-closed intervals {a;, a;11) (indices taken
modulo m). (Initially, all three partitions are trivial, consisting of a single interval.)

A Parallel Algorithm for Enclosed and Enclosing ... 207

There is an analogously defined b-partition and a c-partition. It follows from the
interspersing lemma that the inner triangle of any subsequent P-stable triangles will
lie within the closures of some three intervals corresponding to cyclically adjacent
triangles [a;, @41, [bi,bi+1], and [c;, ciq1]. Each a-interval (an interval of the a-
partition) has at most n,_1 vertices of P, since we explicitly constructed a-anchored
triangles at the points of V;_; during the previous stage. Similar bounds hold for
the b- and c-intervals. Thus, by the interspersing lemma, as more and more triangles
are generated, the location of subsequent inner triangles becomes more and more
constrained.

The data are stored as follows. Each cyclically adjacent pair of inner triangles
abe and a'b'¢’ that have been generated so far define three corresponding intervals
[a,a’), [b,}), and [c, ¢’), one in each of the three partitions. These three intervals are
linked to each other, and each vertex of P contains three pointers to the intervals
in each of the three partitions containing this vertex. Vertices of inner triangles are
labeled as either a-, b-, or c-vertices.

The processing at stage s is as follows. Each vertex v € V; — V,_1 is allocated
n, processors with which to compute its a-, b-, and c- anchored triangles.

Let us first consider the case of finding the c-anchored triangle. We determine
the c-interval [c, ¢/) that contains v and access the corresponding - and a-intervals
[b,b') and [a,a’). There are at most n,_; = n} vertices of P in each of the two
intervals. Lemma 4.1 and Lemma 2.6 assures us that there is a unique c-anchored
triangle whose b vertex lies among those n,_; points.

Let V, denote the sequence of vertices in [a, a] and [b, b']. Each of these sequences
contains at most n2 + 2 vertices. By Lemma 4.2, for each 2 € V,, we can determine
in O(logn,) sequential time whether or not the a vertex of the c-anchored triangle
satisfies a € [c,z]. Further, we can determine two vertices of V, bounding a in
O(log2 ns) time. However, we can employ n, processors, and the following result due
to Kruskal® to reduce the time complexity for the complete operation to O(logn,)
for this step. (We set Q(n) = logn, in the application of the result.)

Lemma 4.4

(i) Consider a soried lista;, 1 <i< n, and a value z, a1 <z < an. Let Q(n)
denole the sequential time needed 1o access an arbitrary member a;. We can
find the index i such that a; < 2 < az41 in O(Q(n)) time on ¢ CREW PRAM
using \/n processors.

(ii) Two sorted lists of size m each may be merged in O(loglogm) time using
m processors on the CREW PRAM.

Once the triangles have been computed, we need to update the ordered set of
triangles, and hence refine the three partitions. First note that the number of
vertices of V, in any interval is at most n,_1/n; = n,. Let us consider the case
of an a-interval, since the other cases are similar. By the interspersing lemma,
there are three new sets of inner triangle endpoints that might fall into the interval
[a,a’). They are the a-vertices of each of the following: (1) the a-anchored triangles
generated in [a,a’), (2) the b-anchored triangles in [b,b’), and (3) the c-anchored
triangles in [c, ¢/). We can maintain three sorted lists containing these a-vertices.

208 S. Chandran & D. M. Mount

Each list is associated with the sorted list of vertices of V, lying within each of the
three intervals that was responsible for generating this triangle vertex. Each list,
can have at most n, elements in it. Using the processors allocated to one of the
vertices of V, in one of the three intervals, we merge these three lists into one sorted
list and replace the single interval [a, a’) with the refined list of intervals. (Note
that at least one of the three intervals must contain a vertex of V;, for otherwise no
new triangles would be generated in any of the intervals.) This stage requires no
more than O(loglogn,) time (Lemma 4.4(ii)).

Another update of the data structures is necessary. For every vertex v € Vs+1
we seek the appropriate partition in each of the three lists. That is, for each vertex
of P € V441 in [a, a’) a new label is desired indicating its new interval membership.
This is done by yet another merge as follows. We assign n, processors to each
vertex v € V. These are responsible for updating the pointers of at most n,4; new
vertices. The partition that these vertices belong is necessarily in the refinement of
[a,a’) and the size of this is at most 3n,. From Lemma 4.4, we can complete this
in O(loglogn,) time.

This leads us to
Theorem 4.1 The largest area triangle enclosed within a given n-sided convez poly-
gon and the smallest area triangle which encloses a given convez polygon may be
computed in O(logn) time using n processors.

Proof. The algorithm to compute these triangles has been given above. To analyze
its complexity, we note that the running time of stage s is O(logn,_1). The total
running time for all the loglogn stages is

log logn
s 1
Z logn,_; < Zlogns < Z:lognl/2 < Z% € O(logn).
s=1 520 $>0 s2>0

0

4.2. An O(loglogn) time algorithm

In the previous section, we presented a parallel algorithm that runs in logarith-
mic time. In order to reduce the running time, we focus on the part that dominates
the running time, which is in the generation of new anchored triangles. For exam-
ple, in the generation of c-anchored triangles, the point ¢ is known, and we have
to find the remaining two vertices, say, a* and bx. We use processors in parallel in
the search for b%, but not in the search for a*. The crucial observation here is that
using the convexity of the polygon P, we may use more than one processor even in
the search for ax*.

Consider the development of the algorithm in Lemma 4.2. (In the following, we
use the terminology in the proof of Lemma 4.2.) Given an arbitrary point & € L,
we can determine R(2) in O(logn) time. If this point 2 does not satisfy the relation
H™(z) < 2h(z) < H*(z) we move the point z either close to ¢ or farther from c.
Depending upon the direction in which we choose to move from the point z, we may
introduce the notion of low and high points.®!! In the cited work, the formulation

A Parallel Algorithm for Enclosed and Enclosing ... 209

is in terms of edges of P but here we choose to describe it in terms of the points of
(the boundary of) P.

Informally, a point « is low if the binary search procedure along L decides to
move in a direction clockwise from z. More formally, given a point z € L, let v, be
the point along the edge clockwise from x such that h(vys) = 2h(z). The point z is
said to be low if 7, R(z) intersects P above R(z), high if v,_1 R(x — 1) intersects
P below R(z — 1) and critical if it is neither low nor high. (Here z — 1 is the first
vertex counterclockwise from z. Incidentally, this notion of low and high is further
exploited by O’Rourke, et al.,'! which uses geometric characterization to determine
low or high status information for an edge on the left chain L without examining
points at the same height on the right chain, even though the definition is in terms
of the points along R. We do not use this refined characterization in our parallel
algorithms.)

By a regular sample of vertices of P, we refer to a subset of the vertices of P by
taking every k-th vertex of P for some value 1 < k < n — 1. Suppose we are given
a regular sample of points along the left chain. Let us call each sampled point as
distinguished, and assume that we have the low or high status information for each
distinguished point. The observation that we need is the following:

Lemma 4.5 Suppose the transilion between low and high occurs at two distin-
guished vertices z and y on the left chain. Then the true unique c-anchored triangle
has ils a-vertez in the interval [z,y] and the b-vertez in the interval [u,v] where u
is the first vertez anticlockwise from and including R(z) and v is the firsl verlex
clockwise from and including R(y).

Proof. Klee and Laskowski® have shown that in order of increasing height from
the line D, the left chain consists of a sequence of low vertices followed by at most
three vertices which are critical, followed by a sequence of high vertices. From this
it follows that the c-anchored triangle will have its a-vertex in the interval [z, y].
From the definition of R(z), the third vertex is also in the claimed interval. (Note
that R(z) is unaffected by the sampling procedure, and that and y need not be
necessarily adjacent in the sampled set.) O

We are now in a position to reduce the running time for the construction
of c-anchored triangles, but first we need the following result, paraphrased from
Kruskal.®
Lemma 4.6 Let 0 < e< 1.

(i) Consider a sorted list a;, 1 <1 < n, and a value z, a; <z < ay. We can
find the index ¢ such that a; < & < aj41 in O(1) time on ¢ CREW PRAM
using n¢ processors.

(i1) Two sorted lists of size m each may be merged in O(1) time using mite
processors on the CREW PRAM.

Note that these results are stronger forms of Lemma 4.4.

Lemma 4.7 Given a conver polygon P with n vertices, and given vertez v of P,
each of the endpoints of the inner triangle of the c-anchored triangle anchored at v
can be found in O(1) time with \/n processors.

Proof. As before, the computation of vertex ¢ is trivial. To find the vertex a of

210 S. Chandran & D. M. Mount

the inner triangle for T, consider the line D extending the edge e whose clockwise
endpoint is v. (Let us assume as before that P is so oriented that D is horizontal,
and P is above D). Using the ordinates of the vertices of L, the left chain of P, and
the ordinates of the vertices of R, the right chain of P, as keys, we merge the two
sets in parallel. This allows us to compute the point R(z) for each vertex z. In O(1)
time we can check in parallel if the vertex z is low, high, or critical. Since there are
exactly three vertices on L that are critical, one processor can report the critical
point a*, and the point b* such that the triangle with vertices ¢, a* and b is the
desired P-stable triangle (in its canonical form). The time for this computation is
dominated by the merging operation which can be done in O(loglogn) time using
7 Processors.

To reduce the running time still using n processors, we sample every \/n vertices
along L to produce a chain L; with \/n vertices. We assign 1/n processors to each
vertex of L;. For each distinguished vertex z, we obtain R(z) in O(1) time (¢ = 0.5
in Lemma 4.6(i) above). Next, we determine the low or high status of each of these
vertices in O(1) time. Lemma 4.5 assures us that the true critical points will lie
in the transition from a low vertex ! to a high vertex r. There are O(y/n) points
between two such distinguished vertices that mark the transition. We perform
another search in the range [I, 7], once again in O(1) time. At this point, we would
have obtained three consecutive vertices of L that are neither low or high. The
search for a* can be then completed in O(1) time using one processor.

To further reduce the running time, we bootstrap the n-processor, O(1) time
algorithm above, reducing the processor count to /n. This process is described
below in more detail.

As above, we form the chain L;. Now, with a pool of \/n processors, we can
assign only one processor to each vertex z of L and the search for R(x) will take
too long. Therefore we further sample every n'/4 vertex of chain L; to produce
the chain Ly consisting of at most n!/4 vertices. We assign n'/* processors to each
vertex z of Ly and obtain R(x) for each of them. This takes O(1) time using
Lemma 4.6(i) with ¢ = 0.25. At this point the transition between a low vertex and
a high vertex contains O(n'/4) vertices of Ly, and so we can apply this procedure
again to find two consecutive points of L; to find the transition from a low vertex
to a high vertex. This whole procedure takes O(1) time using /n processors.

Recall that between two consecutive points of L; that mark the transition,
there are O(/n) points of L. We have just finished describing an algorithm that
determines the transition between low and high with \/n points of L using +/n
processors that takes O(1) time. We apply this algorithm again to find two vertices
that mark the transition from low to high such that the interval consists of O(1)
vertices of P. It is then easy to determine the unique points a* and b that determine
the canonical c-anchored triangle using a single processor. O

In order to complete the improvement of the algorithm, we need a notion of low
and high for the case of ¢-anchored triangles as well, and we need to be able to com-
pute these fast. The general strategy we follow in the computation is similar to one
adopted for computing the c-anchored triangles. However, due to the asymmetrical

A Parallel Algorithm for Enclosed and Enclosing ... 211

nature of the two kinds of triangles (the line segment be of the inner triangle need
not be parallel to the anchored edge), the restatement of this problem as a merge
problem is slightly more complicated.

Consider, as in the proof of Lemma 4.3, the point 29. We can now specify it as
low if the binary search procedure moves in the clockwise direction. More formally,
zg is low if the length of segment vBy is less than the length of the segment vCY
and is high if the length is strictly greater than the length of the segment vCy.

Suppose that in the process of computing the a-anchored triangles we are given
a regular sample of points which constitute points for the b-vertices. If we were
given the two vertices z and y where a transition occurs between low and high,
then the unique b-vertex of the a-anchored triangle must lie in the interval [z, y].
Furthermore, the c-vertex of the a-anchored triangle must lie in the interval spanned
by the c-vertices of the triangles generated for the points z and y. These statements
follow from convexity and arguments presented in the proof of Lemma 4.5.

We can now state the result for a- and b-anchored triangles.

Lemma 4.8 Given a conver polygon P with n vertices, and given vertezr v of P,
each of the endpoints of the inner triangle of the a- and b-anchored triangle anchored
at v can be found in O(1) time with /n processors.
Proof. Consider Figure 8. We are interested in determining whether the candidate
point x4 is a low point or a high point. We need this information without doing
a binary search. Given the third vertex (c), we can draw a line of support and
then compare the distances vBy and vCy. If vBy < vCp then the point is low. If
vBy > vCy the point is high. If they are exactly equal, we have the desired triangle.
Next, we use the same idea as in Lemma 4.7, but first we need to know how to
compare two vertices of P. We used the vertex closest (in the sense of ordinate
distance, assuming as in the construction that the base is horizontal) in the case of
c-anchored triangles. Here, this is decided as follows. The point zy defines By. We
compare distances along a line perpendicular to the line segment vy and passing
through By. Thus, following the sampling procedure, and using Lemma 4.6, we can
compute the a-anchored triangle in constant time. The b-anchored triangle can be
computed likewise. O

We now describe stage s of the algorithm. At this point the data consists of
three separate partitions of a, b and c-vertices. They satisfy the following condi-
tions: (i) Each cyclically adjacent pair of inner triangles abc and a'b’c¢’ define three
corresponding intervals, which are linked together, (i) Each of these intervals con-
sists of at most 3n,_; points, (iii) Each vertex of P contains three pointers to the
intervals in each of the three partitions containing this vertex.

We perform the following three steps. For illustrative purposes, we describe
c-anchored triangles and c-vertices.

Step 1: Compute anchored triangles. We allocate n, processors to each vertex
v € V, —V,_1. Consider, for example the computation of the c-anchored triangle at
a vertex v. Since each vertex points to the c-interval, we know the interval [c, ¢/] that
contains v. Using the links between intervals, we know the bounding intervals [b, b']
and [c,¢']. Each contain at most n? points of P. We use Lemma 4.7 to compute

212 S, Chandran & D. M. Mount

the c-anchored triangle in O(1) time. Note that when we compute the triangles,
the links necessary in the invariant (i) above are satisfied.

Step 2: Refine partitions. We now have freshly computed n, new c-anchored
triangles, and hence generated, e.g. n, c-vertices of P. As before, we had n,
processors standing by each of these vertices, for a total of n? vertices. We have
also geners ed n, c-vertices from the c-points of a-anchored triangles, and c-vertices
from b-anchored triangles. The processors are used to merge thesc three lists in O(1)
time. (Lemma 4.6(ii), with ¢ = 1).

Step 3: Update membership. Each vertex of P € V,4; necds to be informed
which ¢ interval it belongs to. We have now computed the ¢ interval for the n,-th
vertex that bounds this set. To extend this information for other vertices in V4,
we again merge this set of vertices with the at most n, vertices in O(1) time, as
described before.

At the end of these three steps, we 'would have maintained the invariant needed
for stage s 4+ 1. To analyze the running time of stage s, we note that we have
essentially reduced the problem to merging. Since there are O(loglog n) stages, and
each stage takes constant time, the procedure we have described runs in O(loglogn)
time.

4.3. A cost-optimal O(loglogn) time algorithm

In the previous section we described an algorithm that runs in O(loglog n) time
using n processors. Such an algorithm does not have a processor-time product equal
to the time for the sequential algorithm and therefore is not cost-optimal.

Cost-optimality is achieved by noting that we have essentially reduced the prob-
lem to problems of parallel searching, and parallel merging. Although the sorted
lists that are being merged have different significance, the essential point to be noted
is that we are merging two lists of size n, using the processors available at stage s,
which is n2. Suppose we try to adopt our previous algorithm and allocate at stage
s, ns—1/loglog n processors instead of n,_; processors to perform the merge. The
total number of processors used is O(n/loglogn) since the number of such lists to
be merged is n/n,—1. We note from Kruskal’s result® that the time for each stage
is asymptotically O(logloglogn) and since the total number of stages is loglog n,
we do not have a cost-optimal result. Thus, we need a better processor allocation
strategy.

We first note from Lemma 4.6 that to achieve a running time of O(1) per stage
requires us to have a superlinear number of processors. In our algorithm in the
previous section, we achieved this superlinearity very easily; in particular, we had
quadratic number of processors. However, we note that with our pool of n/loglogn
processors, we will be unable to sustain this superlinearity for O(loglogn) stages.
In later stages we are forced to deal with an increasingly large number of points.

Instead, we run the above parallel algorithm for a certain number of stages.
After that time, we will have generated many P-stable triangles. We switch over
to a different algorithm to generate all remaining P-stable triangles.

Specifically, for any fixed §, 0 < 6§ < 1, we will run the parallel algorithm

A Parallel Algorithm for Enclosed and Enclosing ... 213

described above for S stages, where S is the greatest integer less than §(loglogn —

Joglogloglogn). Note that after S stages, every ng-th vertex has its anchored
triangles generated. Between any two vertices, the number of vertices ng that do
not have their anchored triangles generated is at most n'/2° Tt can be verified
that this number is O(loglogn). Thus there are n/ng groups each of size ng whose
triangles have not been generated. We allocate one processor to each group and
this processor uses the sequential algorithm of Section 3 to generate the triangles
for its group. Clearly this stage runs in O(loglogn) time.

It remains to describe the process for the first S stages. At the start of each
stage s we note that we have n/n,_; groups and there are n, points within each
group that we seek to merge. We assign n2-% processors to each group. From
Lemma 4.6(ii), the time to perform the merge is O(1). The computation of the
anchored triangles may also be done in O(1) time using ni=¢ processors working in
parallel. At each stage s we utilize no more than n/ n¢ processors. Since we run the
algorithm for S stages, this quantity is less than n/loglogn.

Since each stage s < S of the algorithm runs in O(1) time, the time for the
entire algorithm is O(loglogn). The optimal algorithm for the CREW PRAM is
very similar, and it runs in O(logn) time. We therefore have the following theorem:
Theorem 4.2 Ii is possible to generate all P-stable triangles for an n-sided convez
polygon in O(loglogn) time using n/loglogn processors on a CREW PRAM.

As a consequence of Theorem 4.2 and Lemma 2.5 and existing results in the
literature, we report the following results:
Corollary 1 The iargest area triangle enclosed within a given n-sided convex poly-
gon, and the smallest area triangle which encloses the given polygon may be com-
puted in O(logn) time using n/logn processors on a CREW PRAM.
Corollary 2 The largest area triangle enclosed within a given n-sided convez poly-
gon, and the smallest area triangle which encloses the given polygon may be com-
puted in O(loglogn) time using n/loglogn processors on a CRCW PRAM.

5. Concluding remarks

Given a convex n-sided polygon, we have shown that we can compute either
an inscribed triangle (whose area is the maximum among all enclosed triangles),
or an enclosing triangle (whose area is the minimum among all enclosing triangles)
using a single algorithm. Although these problems are “duals” in some sense, earlier
algorithms for the two problems were quite different. We are able to provide a new
geometric characterization that enables us to show that these two problems are
more similar than was thought earlier. Our sequential algorithm runs in optimal
O(n) time

Sublogarithmic time parallel algorithms are difficult to achieve. We provide
a parallel algorithm for the two problems that runs in O(loglogn) time using
n/loglogn processors on a CRCW model. We hope that our treatment for the
parallel algorithm will provide a systematic mechanism to solve other problems
which use the “rotating calipers” technique.

214 S. Chandran & D. M. Mount

It is interesting to contrast our treatment of the problem with the presentation
described in Aggarwal and Park? and Aggarwal, et al.! In the former we have a gen-
eral strategy of converting the geometrical problem to the combinatorial problem of
searching in monotone three-dimensional arrays. The problem is solved in O(log® n)
time using O(n) processors. The latter uses a somewhat involved “back-and-forth”
subdivision method and results from geometry to obtain a O(log n) time algorithm
(but are unable to extend this to the case of the maximum enclosed triangle). Our
results follow from geometrical considerations. However, the algorithm does not
extend directly to searching in totally monotone arrays because of the fact that a
totally monotone two-dimensional array is not made up of many totally monotone
one-dimensional sets.

References

1. A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap, “Parallel compu-
tational geometry”, Algorithmica, 3 (1988) 293-327.

2. A. Aggarwal and J. K. Park, “Sequential searching in multidimensional monotone
arrays”, 29th Annual IEEE Symposium on Foundations of Computer Science, White
Plains, New York, Oct. 1988, pp. 497-512.

3. J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L. J. Guibas, “Finding extremal
.polygons”, SIAM Journal on Computing 14 (1985) 134-147.

4. J. 8. Chang and C. K. Yap, “A polynomial solution for potato-peeling and other
polygon inclusion and enclosure problems”, 25th Annual IEEE Symposium on Foun-
dations of Computer Science, Singer Island, Florida, Oct. 1984, pp. 408-416.

5. N. A. N. DePano, “Polygonal Approximations with Optimal Polygonal Enclosures”,
PhD thesis, Department of Computer Science, The Johns Hopkins University, 1987.

6. D. P. Dobkin and L. Snyder, “On a general method for maximizing and minimizing
among certain geometric problems”, 20th Annual IEEE Symposium on Foundations
of Computer Science, Oct. 1979, pp. 9-17.

7. F. Fich, P. Ragde, and A. Wigderson, “Relationships between concurrent models of
parallel computations”, SIAM Journal on Computing 17 (1988) 606-627.

8. V. Klee and M. L. Laskowski, “Finding the smallest triangles containing a given
convex polygon”, Journal of Algorithms 6 (1985) 359-375.

9. C. Kruskal, “Searching, merging and sorting in parallel computation”, JEEE Trans.
Comput. C-32 (1983) 942-946.

10. D. M. Mount and S. Chandran, “A unified approach to finding enclosing and en-
closed triangles”, Proceedings of the 26th Allerton Conference on Communications,
Control, and Computing, 1988, pp. 87-96,

11. J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, “An optimal algorithm for
finding minimal enclosing triangles”, Journal of Algorithms 7 (1986) 258-269.

12. G. Toussaint, “Solving geometric problems with the ‘rotating calipers’ ”, Proceedings
of the IEEE MELECON 83, 1983.

