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A covering of the Euclidean plane by a polygon P is a system of translated copies
of P whose union is the plane, and a packing of P in the plane is a system of
translated copies of P whose interiors are disjoint. A lattice covering is a covering in
which the translates are defined by the points of a lattice, and a lattice packing is
defined similarly. We show that, given a convex polygon P with n vertices, the
densest lattice packing of P in the plane can be found in O(n) time. We also show
that the sparsest lattice covering of the plane by a centrally symmetric convex
polygon can be solved in O(n) time. Our approach utilizes results from classical
geometry that reduce these packing and covering problems to the problems of
finding certain extremal enclosed figures within the polygon. © 1990 Academic Press,
Inc.

1. INTRODUCTION

The problems of packing a set of geometric objects into a space and
covering a space with a set of objects arise frequently in applications of
computational geometry. A family of sets S;, S,,... covers a space § if
S c US;. The family of sets forms a packing of S if the sets of the family
have pairwise disjoint interiors and US; € S. It is well known that many
packing and covering problems are NP-complete. Examples include the
knapsack problem, bin-packing problem, and set cover problem [9]. Al-
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though these problems have natural geometric interpretations, they remain
NP-complete even as numeric or discrete problems, ignoring the added
intricacies of geometry. Thus, it is of interest to investigate natural geomet-
ric packing and covering problems that are solvable in polynomial time.

To motivate the problems considered in this paper, consider an applica-
tion in stock cutting where the objective is to cut as many identical oriented
objects as possible from a flat sheet that has a directional grain, preventing
rotation of objects (the oriented cookie cutter’s problem). One strategy for
solving this problem is to find the densest packing of translates of the
object in the plane and then to truncate the optimum plane packing at the
sheet’s boundary. If the size of the sheet is much larger than the size of
the objects being cut out, this strategy will yield a good approximation,
since optimizing the utilization of the middle of the sheet will be more
important than the wastage caused near the sheet’s outer boundary. We will
assume that the object to be packed is modeled by a simple polygon.
Although it is of interest to solve this problem for arbitrary polygons, in
this paper we limit our attention to convex polygons, since it is for these
objects that the mathematics of packing is best understood.

A natural dual to the packing problem is the corresponding covering
problem. The problem of covering the plane by translated copies of a
polygon arises in applications such as vision where a camera with a fixed
orientation and a small polygonal field of view must take a series of
pictures covering every point of a large planar region. Finding the sparsest
covering corresponds to minimizing the overlap between pictures.

Obviously, packing and covering the entire plane implies that the number
of objects involved with the solution will be countably infinite; hence the
issue of representing the solution is important. Given a convex polygon P
and a vector a, the translate P + a consists of the set of points p + a,
where p € P. A lattice in the Euclidean plane generated by two linearly
independent vectors a; and a, is the set of vectors of the form ua; + va,,
where u and v range over the integers. Let ay, a,, a,,... denote an
enumeration of the elements of the lattice. The system of translates { P + a;}
forms a lattice covering if each point of the plane lies in at least one of the
members of the system (see Fig. 1a). The system of translates {P + a;}
forms a lattice packing if no two members of the system share a common
interior point (see Fig. 1b). A set P is centrally symmetric with respect to a
point c if for each point p € P, the reflection of p about ¢,2¢ — p, isin P.
The point ¢ is called the center of P. Throughout, we will use the term
symmetric to mean centrally symmetric.

The density of a packing or covering (see Rogers [15] for exact defini-
tions) can be thought of roughly as the ratio of the sum of the areas of the
translates to the area of the entire space. This density is at most 1 for a
packing and at least 1 for a covering. Densities of 1 are attainable for
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FIGURE 1

parallelograms and symmetric hexagons since translates of these polygons
can tessellate the plane.

Lattice packings and lattice coverings are special cases of packings and
coverings, respectively. The density of the lattice covering or lattice packing
of a polygon P generated by {a;, a,} is easily seen to be the ratio of the
area of P to the area of the parallelogram generated by a, and a,, that is
det(a,, a,). It has been shown that the densest packing by translates of a
convex set in the plane is a lattice packing [14]. It is also known that the
densest packing by translates of a nonconvex object need not be generated
by a lattice [2]. The sparsest covering of the plane by translates of a
symmetric convex set is a lattice covering [6, 7].

Our main results are that the densest lattice packing by translates of an
n-sided convex polygon in the plane and the sparsest lattice covering of the
plane by translates of a symmetric convex polygon are both solvable in
O(n) time. Using the same techniques given in [13] it can be shown that
this is optimal in the worst case.

To find the sparsest lattice covering by a symmetric convex polygon we
employ a result that reduces this problem to finding the largest symmetric
hexagon or parallelogram enclosed in the polygon. In Section 2 we give a
simple reduction of this problem to the problem of finding the largest
triangle enclosed in the polygon, for which an O(n) algorithm exists [4].
Throughout, n denotes the number of vertices of the polygon.

We exploit two results to find the densest lattice packing of a convex
polygon. The first result, due to Minkowski, reduces the problem to that of
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finding the densest packing of a symmetric convex polygon [12], and the
second result, attributed to Minkowski (see Rogers [15, p. 6]), reduces this
problem to that of finding the smallest parallelogram with one vertex at the
center of the symmetric polygon and the other three vertices on the
boundary of the polygon. We give an O(n) algorithm that finds this
parallelogram. The algorithm works by the method of rotating calipers
[17, 13] based on an interspersing condition and finiteness criterion, which
we prove in Section 3.

2. COVERING THE PLANE WITH A SYMMETRIC CONVEX POLYGON

In this section we show that the sparsest lattice covering of the plane by a
symmetric convex polygon P can be found in O(n) time. The method used
is to determine the symmetric hexagon of largest area contained in P. (A
parallelogram is considered to be a degenerate case of a hexagon.) It is easy
to show that this hexagon will have its vertices on the boundary of P and
will share the same center as P [5]. It is a well-known result from the theory
of packing and covering that the sparsest lattice covering is uniquely
determined by tessellating the plane with this symmetric hexagon [6, 7].

We show that the problem of finding the largest symmetric convex
hexagon contained in P can be reduced to the problem of finding the
largest triangle contained in P. Let us assume that P is translated so that
its center coincides with the origin. The relationship between the largest
inscribed triangle and covering density was reported first by Bambah,
Rogers, and Zassenhaus [1]. However, their theorem, while quite a bit more
general than ours (it applies to asymmetric convex bodies as well), does not
directly provide this simple reduction. In Lemma 2.1 we show that the
triangle of maximum area contained in P contains the origin in its interior.
Clearly the largest triangle contained in P has its vertices on the boundary
of P. In Lemma 2.2 we show that given a triangle T inscribed in P (that is,
with vertices on the boundary of P) that contains the origin, the convex
hull of T and — T defines a symmetric convex hexagon inscribed in P with
twice the area of T. Thus, there is a symmetric convex hexagon contained in
P with twice the area of the largest triangle contained in P.

Conversely, consider a symmetric convex hexagon H contained in P,
where H is centered at the origin and has its vertices on the boundary of P.
It is a simple observation that any triangle T formed by selecting alternat-
ing vertices of H contains the origin and that the convex hull of 7 and — T
equals H. It follows immediately that the largest inscribed symmetric
hexagon in a symmetric convex polygon P can be found by computing the
largest inscribed triangle T in P and computing the convex hull of T and
—T. Dobkin and Snyder {4] show that given a convex polygon P, the
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inscribed triangle T of maximum area can be found in O(n) time. The
convex hull of T and — T can be computed in O(1) additional time. It only
remains to prove the two lemmas.

LeMMA 2.1.  Let P be a symmetric convex polygon centered at the origin,
and let T be the largest triangle contained in P. Then T contains the origin.

Proof. Suppose that T does not contain the origin. Then one of the sides
of the triangle, say ab, would separate the remaining vertex ¢ from the
origin. However, the triangle (a, b,— ¢) has the same base as (a, b, ¢), by
symmetry, and has a larger altitude, violating maximality. O

LEMMA 2.2. Let P be a symmetric convex polygon centered at the origin,
and let T be a triangle contained in P so that the vertices of T lie on the
boundary of P and T contains the origin. Then the convex hull of T and —T is
a symmetric convex hexagon (degenerating possibly to a parallelogram)
inscribed in P and of twice the area of T (see Fig. 2).

Proof. Let a, b, ¢ be the points on the boundary of P forming the
clockwise triangle T. Since T contains the origin, it follows that a, —c¢, b,
—a, ¢, —b is a cyclic order of the points about the origin. By symmetry, all
six of these points lie on the boundary of P; thus by convexity these points
form the boundary of the convex hull of T and — 7. Let H denote this
convex hull.

The fact that H is symmetric is trivial. Thus, either H is a parallelogram
or H is a hexagon. We wish to show that the area of H is twice the area of
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FIGURE 3

T. If H is a hexagon, we map H to a parallelogram H’ of equal area and
map T to T’ of equal area. Otherwise let H' = H and 7" = T. We then
show that the area of H’ is twice the area of 7".

Translate the point ¢ along the direction of line ab until reaching a point
¢’ that is collinear with line a(—b) (see Fig. 3). (Note that lines ab and
a(—b) are not parallel) Symmetrically map —c to —c¢’. Clearly, the
triangle 7” with vertices a, b, and ¢’ has the same area as 7. It is easy to
verify that the parallelogram H’ = (a, ¢/, —a, —c¢’) is equal in area to H.
Finally, H’ has twice the area of T because they share the common base
ac’ and the common altitude from b to ac’. O

3. PACKING A CONVEX POLYGON IN THE PLANE

In this section we consider the problem: given a convex polygon P,
determine the densest packing of translates of P in the plane. Unlike the
previous section, we do not assume that P is symmetric, but, as we will see
next, this generalization causes no real problems. The difference body of P
is the convex sum of polygons P and — P; that is, the set

P—P={x~—y|x,y€P}.

The difference body is clearly symmetric and has at most twice as many
vertices as P [18, p. 45]. It can be computed in O(n) time with the
procedure given by Schwartz [16] for computing the Minkowski sum of two
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convex polygons. Let 3(P — P) denote the difference body of P scaled by
a factor of one half. The following result, due to Minkowski [12], shows that
the problem of packing a convex set can be reduced to the problem of
packing a symmetric convex set. A proof can be found in Rogers [15, p. 69],
and the theorem is illustrated in Fig. 4.

THEOREM 3.1 (Minkowski). Let P be a bounded convex set in the plane
with positive measure. The system { P + a,} is a packing of P if and only if
the system {5(P — P) + a;} is a packing of 5(P — P).

Let us assume that the polygon P to be packed is symmetric and
centered at the origin with n vertices. It is well known that the densest
packing of P results by tessellating the plane with the smallest symmetric
hexagon (or parallelogram) that encloses P [8, p. 86]. This suggests that the
problem can be solved by a method analogous to that of the previous
section by reducing the problem to that of finding the smallest triangle
enclosing the object. We know of no such transformation (although the
interested reader is referred to DePano’s thesis in which such a transforma-
tion is used for generating efficient packings of polygons [3]). Alternatively,
since a symmetric hexagon is determined by only three vertices, one would
expect that the known algorithms for computing smallest enclosing trian-
gles [10, 13] could easily be adapted to find smallest enclosing symmetric
hexagons. Unfortunately, the critical monotonicity properties of anchored
triangles that are exploited by these algorithms do not seem to hold for
their generalization to anchored symmetric hexagons.

We solve this problem by reducing the packing problem to an alternative
characterization, which was first given by Minkowski [15, p. 6]. Define a
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central parallelogram for the symmetric convex set P to be a parallelogram
with one vertex at the center of P and the other three vertices on the
boundary of P. Minkowski’s theorem shows that the problem of finding the
densest packing of a convex symmetric set in the plane can be reduced to
the problem of finding the smallest central parallelogram in P.

THEOREM 3.2 (Minkowski). Let P be a symmetric convex set centered at
the origin, and consider a lattice packing of P generated by some pair of
vectors a, and a,. This packing is the densest lattice packing for P if and only
if the origin together with the points %a, ya,, and 3(a; + a,) define a central
parallelogram for P of minimum area.

Let O denote the origin. Let us assume that P is a symmetric convex
polygon centered at O. We use the notation (O, a, b, c¢) to denote the
central parallelogram whose clockwise vertices are O, a, b, and c. If
{0, a, b, c) is a central parallelogram, then b = a + c.

Thus our objective is to find the smallest central parallelogram for P. We
begin with some observations about the structures of these parallelograms.
Our approach is quite similar in structure to the algorithms for computing
enclosed and enclosing triangles [4, 13] based on the ideas of rotating
calipers [17]. We first define the notion of a central parallelogram anchored
at a given point and then prove the fundamental interspersing property
needed for the rotating caliper. This property states that as the anchored
point moves clockwise around the boundary of the polygon, the other
points of the anchored central parallelogram also move clockwise. We show
that there are finitely many anchor points (in fact, only linearly many) that
might lead to the smallest central parallelogram.

Our first lemma formalizes the notion of an anchored central parallelo-
gram by stating that once the first boundary point of a central parallelo-
gram is fixed, then either the other two boundary points are uniquely
determined or there are infinitely many such pairs lying on a common edge,
all generating parallelograms of equal area. Let |a| denote the length of
vector a.

LemMa 3.1. Let P be a symmetric convex polygon, and let C =
{0, a,b,c) and C' = {0, a’, b, ¢’y be two distinct central parallelograms
for P. Then a = a’ if and only if b, ¢, b’ and ¢’ all lie on a common edge of P.
If a = a’ then C and C’ have equal area.

Proof. Suppose that a = a’. Let us assume that P is oriented to that a
is directed upwards along the y-axis. Because the orientation of points is
clockwise, b, b’, ¢, and ¢’ all lie on the positive side of the y-axis. Let
L(x,) denote the intersection of the vertical line x = x, with P. Let x,
denote the maximum x for which L(x) is nonempty. By convexity, as x
varies from —x, to x, the length of L(x) as a function of x is unimodal.
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By symmetry, this function achieves its maximum at x = 0. Thus, as x
varies from O to x,, the length of L(x) may remain constant at 2|a| for
some period, and then decreases strictly monotonically to some minimum
value at x,. Let d be this minimum value.

If d < |a|, there is exactly one value of x for which the length of L(x)
equals |a|, and for this one value of x the upper and lower endpoints of
L(x) complete a central parallelogram (see Fig. 5a). If 4 > |a| then 4 is
the length of a vertical edge, and the central parallelogram can be com-
pleted if and only if its other two vertices lie along this edge at distance |a|
from each other. Clearly all parallelograms generated in this way have the
same area (see Fig. 5b).

Conversely, if b, ¢, b’, and ¢’ all lie on a common edge, then a and a’
both lie on the intersection of the boundary of P and a ray directed as
b — ¢ (which equals the direction of " — ¢’). Since P is convex, this point
is unique. O

With the above result in mind, for an arbitrary point a on the boundary
of P, we define a central parallelogram anchored at a to be any central
parallelogram (O, a, b, ¢) with a as its first boundary point. If the central
parallelogram anchored at a is not unique, Lemma 3.1 shows that, with
respect to area, it does not matter which one we use. In this case a canonical
parallelogram can be chosen by shifting the edge bc of the parallelogram as
far clockwise as possible, so that ¢ is a vertex of P.

Next we show that as the point a moves clockwise along the boundary of
P the points b and ¢ in the central parallelogram anchored at a also move
clockwise (or remain fixed). This is the interspersing condition will be
exploited in our algorithm. For two distinct points ¢ and b on the
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FIGURE 6

boundary of P, let (a, b) denote the open clockwise arc from a to b along
the boundary of P, and let [a, b] denote its closure.

LeEMMA 3.2. For any point a on the boundary of a symmetric convex
polygon P, let (O, a, b, ¢) be the canonical central parallelogram anchored at
a, and let a’ be any point in (a, b). If (O, a’, V', ¢’} is the canonical central
parallelogram anchored at a’, then b’ € [b, c] and ¢’ € [¢,— a] (see Fig. 6).

Proof. For apoint g, let g, and g, denote the x and y coordinates of g.
By rotating P we may assume that the vector a’ is directed upwards along
the y-axis, implying that the segment b’c’ is vertical. This also implies that
a, < 0and b, > 0. Since ¢ = b — a, we have ¢, > max(—a,, b,).

It follows by convexity and symmetry that any point on the contour
[a, b] is contained in the triangle T = (a, a + b, b). Thus, &’ is contained
in the triangle 7. We divide the proof into two cases, depending on the
location of c. If ¢ is a point on a vertical edge e of P, and |e| > |a’|, then
b’ and ¢’ lie on this edge as shown in Lemma 3.1. Neither » nor —a can
lie on this edge, since ¢, > max(—a,, b ). Thus, b € [a,b'] and —a €
[¢’,— a']. By the definition of a canonical anchored central parallelogram,
¢’ must be the lower endpoint of the edge e. If |c — ¢'| < |a'|, then
¢ € [P, ¢'] and the conclusion follows (see Fig. 7a). If |c — ¢'| > |a’| then,
since a' € T, the point ¢’ lies within or below the triangle ¢ — T = (¢ —
a,— a,— 2a), whose intersection with P is empty, contradicting the fact
that ¢’ lies on the boundary of P.

On the other hand, if ¢ does not lie on a vertical edge e of P where
le] = |a’|, then by Lemma 3.1 there is exactly one central parallelogram
anchored at a’. We demonstrate the existence of such a parallelogram
satisfying the required conditions. Let B denote the contour of the bound-
ary of P in the positive-x halfplane, that is, B = [a’,— a’]. For each point
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g on B, let L(q) denote the intersection of P with the vertical line passing
through ¢. By convexity and symmetry, as ¢ travels along B from a’ to
—a’, the length |L(g)| is a continuous unimodal function, decreasing from
|2a’| at a’ to a minimum at those points of vertical tangency and then
increasing back to |2a’| at —a’. Since ¢, > max(—a,, b,), it follows that b
is the upper endpoint of L(b) and —a is the lower endpoint of L(—a).

To show that there is a point b’ € [b,c] and ¢’ € [c,— a] such that
b’ — ¢' = a', it suffices by unimodality to show that [L(b)| > la'|, |L(c)|
< la'|, |L(—a)| = |a’'|. The first assertion follows noting that b is the
upper endpoint of L(b), and since a' € T = (a,a + b, b) we have that
b — a' lies in the triangle b — T = (c,— a, O) C P (see Fig. 7b). The third
assertion follows, since —a is the lower endpoint of L(—a), and so
—a + a'lies in the triangle —a + T = (O, b, ¢) € P. If ¢ lies on a vertical
edge e (implying |le| < |a’]) then |L(c)| < |a’|. Otherwise, ¢ is the upper
or lower endpoint of L(c). However, ¢ — a' lies in the triangle ¢ — T =
(¢c — a,— 2a,— a) and ¢ + a' lies in the triangle ¢ + T = (b,2b,¢ + b),
and neither of these triangles intersects the interior of P. O

Lemma 3.2 suggests that we can imagine a point a rotating clockwise
around the boundary of the polygon P and for each such point computing
a central parallelogram anchored at a. However, we need to limit the search
to a finite set of points a at which the minimum area central parallelogram
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may occur. Consider an arbitrary point a on the boundary of P generating
a canonical central parallelogram (O, a, b, ¢}, where a, b, and c lie on the
interior of the edges e,, ¢,, and e, respectively. By extending these edges
and their negations until they meet, we form a symmetric convex hexagon
circumscribing P, called the extension of a, b, and ¢ (see Fig. 8). We say
that the point a is viable if either

(i) a, b, or c is a vertex of P, or

(il) a, b, and ¢ are the midpoints of the sides of their extension.

(Notice that although the anchoring condition applies to the parallelogram
in general, only the anchoring vertex a is defined as being viable.) Viable
points of the second type are not as rare as one might think, because it is
easy to show that the midpoints of any three consecutive sides of a
symmetric hexagon form a central parallelogram. The viable points provide
us with the finite and, in fact, linear sized set of candidates for the smallest
central parallelogram. These facts are presented in our next lemma.

LemMA 3.3. (i) Every minimum area central parallelogram for P is an-
chored at a viable point.

(ii) Given a convex polygon P with n vertices, the number of viable points
on P is at most 6n.

Proof. To prove (i), suppose to the contrary that the minimum central
parallelogram (O, a, b, ¢) is not anchored at a viable point. This implies
that the points a, b, and ¢ are not vertices of P. Form the hexagonal
extension H of these points. Clearly P € H. Since (O, a, b, ¢) is minimum
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over all central parallelograms in P, it must be a minimum among the
central parallelograms for H. Since H is a symmetric hexagon, its unique
densest packing results by tessellating the plane with H, which in turn is
generated by the central parallelogram whose points are the midpoints of
H. Thus, the points a, b, and ¢ are the midpoints of their extension,
implying that a is viable. (In fact, it can be shown that the only viable
points that can really lead to the minimum central parallelogram are either
of this second type, or else they are the viable points of the first type for
which H degenerates to a parallelogram. This result is somewhat analogous
to Theorem 1.1 in [10] that states that the minimum enclosing triangle of a
polygon touches the polygon at the midpoints of its sides. We introduce
viable points of the former type to facilitate description of the algorithm.)

To prove (ii), note that the boundary of P consists of n vertices and n
edges. Each central parallelogram (O, a, b, ¢) can be identified with a
triple consisting of the names of the edges or vertices that are incident with
a, b, and c, respectively. Let S, denote the clockwise sequence of central
parallelograms (in canonical form) where either a, b, or ¢ is a vertex and let
S, denote the sequence of central parallelograms in which all the vertices lie
in the interiors of edges of P. By Lemma 3.1, once one point of a canonical
central parallelogram is fixed, the other two points of the parallelogram are
determined. Thus there are at most 3n parallelograms in set S;; »n for each
of the points a, b, and c¢. On the other hand, if all three points lie in the
interiors of edges, then by the definition of viability, this is the only central
parallelogram incident on this triple of edges. Between every two consecu-
tive parallelograms in S, there is at least one vertex, hence at least one
member of S;. Therefore the number of parallelograms in S, is no greater
than S,, implying that the total number of parallelograms is at most 6n. O

We can now describe the algorithm for finding the smallest central
parallelogram. As mentioned earlier, for some vertex a, let B = [ay,— a,]
be a half-boundary of P. The algorithm operates by visiting each viable
point along B in clockwise order and generating the canonical central
parallelogram anchored at that point. (By symmetry the viable points on
the remaining half-boundary can be ignored.) We compute the area of this
parallelogram and advance the scan to the next viable point in clockwise
order. We will show first that the central parallelogram anchored at a, can
be generated in O(n) time, and second that all subsequent viable points as
well as their corresponding central parallelograms can be generated in O(1)
time each. Thus the overall running time will be O(»), by Lemma 3.3(ii).

The proof of Lemma 3.1 provides an algorithm for generating the
canonical central parallelogram (O, a, b, ¢) anchored at vertex a,. The
segment byc, is the unique (furthest clockwise) segment whose endpoints
are on the boundary of P and which is parallel to and of equal length with
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the vector a,. Assume as we did in the proof of Lemma 3.1 that the vector
a, is directed upwards. The vertical length function L(x), introduced in
the proof of Lemma 3.1, is monotonically decreasing from 2|a,| and
piecewise linear. This function can be constructed in linear time by
merging the vertices in the half-boundary [a,,— a,] according to the
x-coordinates. After merging, between any two consecutive vertices, the
function L(x) is linear and computable in O(1) time. Once the function
has been constructed, it is a simple matter to find the largest point x for
which L{x) = |a,|. The vertex ¢, is the lowest point on the boundary of P
at x, and the b, is the point ¢, + a,. (In fact, a single central parallelo-
gram can be found in only O(log? n) time by binary search, but this simple
linear time algorithm suffices for our purposes.)

Given an arbitrary central parallelogram (O, a, b, ¢) we wish to find the
canonical central parallelogram (O, a’, b’, ¢") anchored at the next viable
point a’. Let us assume that (O, a, b,c) is in canonical form. If not,
convert it to canonical form in O(1) time. By Lemma 3.2, the points a,’, b,
and ¢’ are all clockwise from or equal to their corresponding points a, b,
and c. Let e, ¢,, and e, be the edges lying just clockwise from a, b, and c,
respectively, and let a”, b”, and ¢” denote the clockwise endpoints of these
edges. By the choice of edges, each point like a” is distinct from the
corresponding point a. The edges e, and e, cannot be equal because
{0, a,b, ¢) is in canonical form. Let H denote the hexagonal extension of
these edges, which can be constructed in O(1) time.

If H degenerates to a parallelogram then either e, and e, are equal, or e,
and —e_ are equal. In the first case the next central parallelograms in
clockwise order result by translating the side ab clockwise along this
common edge until b coincides with »”. This operation is analogous to the
sliding operation used to transform a parallelogram into canonical form.
All parallelograms formed in this way have equal area. In the second case
H is a parallelogram centered at the origin and a, b, and ¢ lie on three
consecutive edges of H. There is a similar sliding movement here. It follows
from elementary geometry that b is fixed as the midpoint of its side of H,
and as a moves clockwise by a given distance on its side, ¢ must move
clockwise by an equal distance to preserve the parallelogram. All the
parallelograms that arise from this sliding operation have equal area, so we
slide a and ¢ until one first encounters a vertex, a” or ¢”, respectively.

On the other hand, if H is a hexagon, then there are four candidates for
the next anchoring point. Let a, be the midpoint of the side of H
extending e,. Clearly a, is viable by the midpoint criterion, and hence a
candidate for the next anchoring point provided that a, lies on edge e,
strictly clockwise from a about P. (Note that we do not need to consider
corresponding points b, and c,, which lie at the midpoints of their
respective edges of the hexagon, because once a, is fixed to be the
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FIGURE 9

midpoint of its side we force the other two vertices of the central
parallelogram to lie on the midpoints of their respective sides.) To deter-
mine the other three anchor candidates we use the fact that as the anchor
point moves continuously clockwise along the segment aa", the corre-
sponding points of the resulting central parallelograms move continuously
along the segments bb" and cc”. The next significant event occurs when
any one of the vertices of the central parallelogram first encounters one of
the vertices a”, b", or ¢". Our strategy is to construct three central
parallelograms, one having its first vertex at a”, one having its second
vertex at b”, and one having its third vertex at ¢”, and then select that
parallelogram whose anchor is closest to a.

To determine these parallelograms, let T = (v,, v,, v,.) denote a triangle
(of unspecified size and location) whose sides are parallel to ¢,, ¢,, and e..
Since H is a hexagon no two of these sides are parallel. The vertices of T
are named, for example, so that vertex v, is opposite the side parallel to
e, (see Fig. 9). Thinking of the vertices of 7' as vectors, we claim that
(0,(a + vy, —v),(b+v, —v),(c+v, — 1) is a central parallelogram
whose vertices lie on the lines extending e,, e,, and ¢, respectively. It is
easy to see that the points have all been translated along their respective
edges. These four points form a parallelogram because (a+v, —v)+
(c+v,—vy)=b+v,—0,.

By increasing the scale factor of T upwards from zero, we can generate
the local clockwise transformations of the central parallelogram (O, a, b, ¢).
We wish to determine the smallest scale factor for which the transformed
parallelogram encounters one of the vertices a”, b”, or ¢”. Let T, be
triangle T scaled so that the side opposite v, has length |aa”|, let T, be T
scaled so that the side opposite v, has length |bb”|, and let T, be T scaled
so that the side opposite v, has length |cc”|. All of these triangles result by
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a nonzero scaling factor. It follows easily that the parallelograms generated
by T,, T,, and T, have vertices coinciding with a”, b”, and ¢”, respectively.
Among these triangles, select the side opposite vertex v, whose length is
minimum. The central parallelogram resulting by translating a through this
length is the next anchored central parallelogram having a vertex that
coincides with a vertex of P, and hence is viable. By selecting the minimum
of this translation (which is necessarily strictly clockwise) and the transla-
tion a, — a (provided it is strictly clockwise) we have the next viable point
a’. The corresponding points b’ and ¢’ are determined by the appropriate
scale factor applied to 7. The time required to determine this next viable
point and the corresponding central parallelogram is O(1). Since there are
O(n) viable central parallelograms, the algorithm’s overall running time is
O(n).

4. REMARKS

We have shown that the problems of finding the sparsest covering of a
symmetric convex polygon and the densest packing of a (general) convex
polygon in the plane are both solvable in O(n) time. The covering problem
was solved by a simple reduction to the problem of finding the maximum
enclosed triangle, and the packing problem was solved by an algorithm that
finds the smallest central parallelogram by the method of rotating calipers.

We know of no general bounds relating the densities of lattice packings
and coverings to more general packings and coverings where, for example,
rotating the object is permitted. Without rotation a triangle can be packed
with density no greater than 3, but allowing for a rotation of 180° the
triangle can tile the plane. G. Kuperberg and W. Kuperberg have shown
that by using a double-lattice packing, in which at even points in the lattice
the object is placed, and at odd points of the lattice a 180° rotation of the
object is placed, any convex set can be packed in the plane with density at
least V3 /2 [11]. An interesting open problem is to determine an efficient
algorithm for computing the densest double lattice packing for a convex
polygon.

There are a number of other interesting open problems raised by this
work. The first question is, can the results of this paper be extended to
more general polygons, for example, to covering the plane by convex
asymmetric polygons or packing star-shaped polygons? Unfortunately the
techniques of this paper rely heavily on both convexity and symmetry to
reduce the number of degrees of freedom in selecting the minimum and
maximum enclosing symmetric hexagons. Finally, a very interesting practi-
cal question is whether these techniques can be extended to packing systems
of multiple objects.
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