
A Fast Implementation of the ISOCLUS Algorithm
Nargess Memarsadeghi
NASA/GSFC, Code 588
Greenbelt, MD 20770

nargess@cs.umd.edu

David M. Mount
University of Maryland

College Park, MD 20742

mount@cs.umd.edu

Nathan S. Netanyahu
Bar-Ilan University &

University of Maryland
College Park, MD 20742

nathan@cfar.umd.edu

Jacqueline Le Moigne
NASA/GSFC, Code 935
Greenbelt, MD 20770

lemoigne@backserv.gsfc.nasa.gov

I. I NTRODUCTION

Unsupervised clustering is a fundamental tool in numerous
image processing and remote sensing applications. For exam-
ple, unsupervised clustering is often used to obtain vegetation
maps of an area of interest. This approach is useful when
reliable training data are either scarce or expensive, and when
relatively little a priori information about the data is available.
Unsupervised clustering methods play a significant role in the
pursuit of unsupervised classification [1].

One of the most popular and widely used clustering schemes
for remote sensing applications is the ISOCLUS algorithm
[2], which is based on the ISODATA method [3]–[5]. The
algorithm is given a set ofn data points (or samples) ind-
dimensional space, an integerk indicating the initial number
of clusters, and a number of additional parameters. The general
goal is to compute a set of cluster centers ind-space. Although
there is no specific optimization criterion, the algorithm is
similar in spirit to the well knownk-means clustering method
[4] in which the objective is to minimize the average squared
distance of each point to its nearest center, called theaverage
distortion. One significant feature of ISOCLUS overk-means
is that clusters may be merged or split, and so the final number
of clusters may be different from the numberk supplied as
part of the input. This algorithm will be described in later
in this paper. The ISOCLUS algorithm can run very slowly,
particularly on large data sets. Given its wide use in remote
sensing, its efficient computation is an important goal.

We have developed a fast implementation of the ISOCLUS
algorithm. Our improvement is based on a recent acceleration
to thek-means algorithm, thefiltering algorithm, by Kanungo
et al. [6]. They showed that, by storing the data in a kd-tree
[7], it was possible to significantly reduce the running time
of k-means. We have adapted this method for the ISOCLUS
algorithm. For technical reasons, which are explained later, it is
necessary to make a minor modification to the ISOCLUS spec-
ification. We provide empirical evidence, on both synthetic and
Landsat image data sets, that our algorithm’s performance is
essentially the same as that of ISOCLUS, but with significantly
lower running times. We show that our algorithm runs from
3 to 30 times faster than a straightforward implementation of
ISOCLUS. Our adaptation of the filtering algorithm involves
the efficient computation of a number of cluster statistics that
are needed for ISOCLUS, but not fork-means.

II. PRELIMINARIES

A. k-Means and Lloyd’s algorithm

Lloyd’s algorithm (often called thek-means algorithm) is
a widely used heuristic fork-means clustering [8], [9]. It
iteratively repeats the following two steps until convergence.
First, for each cluster center, it computes the set of points for
which this center is the closest. Next, it moves each center to
the centroid of its associated set. It can be shown that with
each step the average squared distortion decreases and that the
algorithm converges to a local minimum [10].

The running time of the algorithm is dominated by the time
to compute the nearest cluster center to each data point. As
mentioned above, Kanungoet al. [6] presented a fast imple-
mentation of Lloyd’s algorithm, called thefiltering algorithm.
Here is a high-level description of the algorithm. (See [6]
for details and analysis.) The algorithm preprocesses the data
points by storing them in a kd-tree [7]. This data structure
hierarchically aggregates points into rectangular cells, one
cell associated with each node of the tree. As part of the
preprocessing, the weighted centroid of points lying within
each cell is computed. The filtering algorithm visits the nodes
of the tree in a top-down manner. For each node, it maintains
the subset of centers, calledcandidates, that are closest to
some point of the cell. If there is only one candidate center,
then by using the weighted centroid, all the points of this
node can be assigned to this center in constant time. If there
are multiple centers, the algorithm propagates the candidates
to the two children of this node in the kd-tree. It then uses a
simple geometric test to prune the set of centers.

The filtering algorithm achieves its efficiency by assign-
ing many points at once to each center. A straightforward
implementation of Lloyd’s algorithm requiresO(kn) time to
compute the distance from each of then points to each of the
k centers. In contrast, if we consider the comparable quantity
for the filtering algorithm, that is, the number of interactions
between nodes and candidates, the number is smaller by
factors ranging from 10 to 200 (for low dimensional clustered
data sets). Even considering the additional preprocessing time
and overhead, the speed-ups in actual CPU time are often quite
significant. (See [6] for further details.) Other algorithms for
acceleratingk-means have been given by Pelleg and Moore
[11] and Phillips [12].



B. ISOCLUS Algorithm

ISOCLUS is a clustering algorithm based on the ISODATA
clustering algorithm [4], [13] with minor modifications [2].
Like the k-means algorithm, ISOCLUS tries to find the best
cluster centers through an iterative approach, until some con-
vergence criteria are met. ISOCLUS uses different heuristics to
determine when to merge or split clusters. There are a number
of user-supplied parameters. These include the following.

• The desired number of clusters (NumClus).
• The minimum number of samples in a cluster (SampRm).
• The maximum number of iterations (MaxIter).
• The maximum standard deviation per cluster (StdDev).
• The lumping parameter (Lump) and the maximum num-

ber of pairs that can be lumped per iteration (MaxPair).
Here is an overview of the ISOCLUS algorithm. (See [2] for

details.) Since the algorithm can run very slowly on large data
sets, the algorithm first samples points randomly from the orig-
inal data set. Then, it randomly selectsNumCluscenters from
the samples. After inputting the parameter values (Step 1), the
following steps are then repeated until termination. First, the
distances from points to the centers are calculated, and points
are assigned to their closest centers (Step 2). Next, clusters
with fewer thanSampRmsamples are deleted (Step 3), and the
cluster centers are moved to the mean (centroid) of the samples
in the remaining clusters (Step 4). Steps 2–4 are repeated until
no clusters are deleted in Step 3. Observe that Steps 2 and 4
together constitute one iteration of Lloyd’s algorithm. The
algorithm calculates the average distances of samples from
their nearest cluster center (Step 5) and computes the overall
average distance (Step 6).

Next, the algorithm considers splitting and merging clusters.
Depending on the relationships between the number of clusters
andNumClusand the number of iterations andMaxIter, the al-
gorithm may skip one or more of the following steps (Step 7).
For each cluster, the standard deviation along each of the
coordinate axes is computed (Step 8), as well as the maximum
standard deviation value along each coordinate (Step 9). Based
on this information and the parametersStdDevandNumClus,
the algorithm splits large clusters with high standard deviations
(Step 10). If a cluster was split, the algorithm returns to Step 2.
Otherwise, the parametersLump and MaxPair are used to
merge pairs of nearby clusters (Steps 11–13). The final stage
(Step 14) determines whether to terminate the algorithm or
increment the number of iterations and return to Step 2.

The main difference between ISODATA and ISOCLUS is
in Steps 2–4 (Lloyd’s algorithm). In ISOCLUS these steps are
repeated until no cluster is deleted in Step 3, while ISODATA
performs these steps only once during each iteration.

III. O UR IMPROVEMENTS

Most of the computational effort in the ISOCLUS algorithm
is spent calculating and updating distances and distortions
in Steps 2–5. These steps takeO(kn) time, whereas all the
other steps can be done inO(k) time, wherek is the current
number of centers. Our improvement is achieved by adapting
the filtering algorithm to compute the desired information.

There is one wrinkle, however. The filtering algorithm
achieves its efficiency by processing points in groups, rather
than individually. We can preprocess the data set to compute
the sums ofsquaredEuclidean distances (and in general, any
polynomial function of the input coordinates). In contrast,
Steps 5 and 6 of ISOCLUS involve computing the sum of
(unsquared) Euclidean distances. We know of no way to
preprocess the data to compute sums of distances exactly,
because of the square roots involved.

Thus, rather than implementing ISOCLUS exactly as de-
scribed in [2], we modified Steps 5 and 6 to use sums of
squared distances, rather than the sums of distances. Note
that this can produce different results. Nonetheless, based on
many executions on both synthetically generated data and real
images, we have found that our algorithm’s performance is
quite similar to that of ISOCLUS, in terms of the number
of clusters obtained and the positions of their centers. Thus,
we believe that this modification does not significantly alter
the nature of ISOCLUS. In order to calculate the coordinate
standard deviations in Step 8, we need to add additional
information to the kd-tree. In particular, each cell maintains the
sum of squared coordinates for the points in each cell. Thus,
we have three versions of the ISOCLUS algorithm which we
will refer to as follows in the rest of this paper:

• Standard version (Std): The straightforward imple-
mentation of ISOCLUS as described [2], which uses
Euclidean distances in Steps 5–6.

• Regular version (Reg): A modification using squared
Euclidean distances in Steps 5–6.

• Efficient version (Eff): An implementation of the Reg-
ular version based on the filtering algorithm.

IV. EXPERIMENTS

All experiments were run on a SUN Ultra 5 running Solaris
2.8, using the g++ compiler (version 2.95.3).

A. Synthetic data

We ran a number of different experiments to analyze the
performance of our algorithm. For the first three experiments
we generatedn = 10, 000 data points in 3-space. The points
were distributed evenly among 25, 50, and 100 Gaussian
clusters with a standard deviation ofσ = 0.005 along each
coordinate. The cluster centers were sampled uniformly at
random from a hypercube of side length 2. The remaining
three experiments were conducted the same way, but in 5-
space. We ran the ISOCLUS algorithms withMaxIter = 15,
StdDev= 2σ = 0.01, Lump= 0.001. The initial number of
centers,NumClus, was set to 25, 50, and 100, respectively,
and SampRm= n/(5 · NumClus). In each case, results were
averaged over three runs using different random seeds.

The results are shown in Table I. For each run, we computed
the running time in CPU seconds, the final number of centers,
and the final average distortion. Since the regular and efficient
versions implement the same functional specifications, the
final numbers of centers and final distortions are almost
identical. (Small differences were observed, due to floating



TABLE I

RESULTS OFSYNTHETIC DATA TEST INPUTS

Dim NumClus Final No. of Centers Avg. Distortion×1000 CPU Seconds Speed-up
Std Reg/Eff Std Reg/Eff Std Reg Eff

25 29 29 0.07242 0.07242 0.9018 0.8244 0.0751 10.98
3 50 54 54 0.07407 0.07407 1.7147 1.5813 0.0778 20.33

100 114 114 0.07213 0.07213 3.7593 3.4598 0.104 33.27

25 27 27 0.1238 0.1238 1.2489 1.1716 0.0969 12.09
5 50 58 58 0.1216 0.1216 2.7633 2.5807 0.1233 20.93

100 115 115 0.1205 0.1205 5.4737 5.1534 0.1816 28.38

TABLE II

RESULTS OFLANDSAT DATA TEST INPUTS

Dim NumClus Final No. of Centers Avg. Distortion×1000 CPU Seconds Speed-up
Std Reg/Eff Std Reg/Eff Std Reg Eff

3 25 9 9 46.83 46.96 3.385 3.30 0.533 6.19
7 25 14 14 59.08 58.19 2.994 2.95 0.886 3.33

point round-off errors.) So, we list them together in the table
(under the heading “Reg/Eff”). We also computed thespeed-
up, which is defined as the ratio between the CPU times of
the regular and the efficient versions.

In support of our claim that using squared distances does not
significantly change the algorithm’s clustering performance,
observe that both algorithms performed virtually identically
with respect to average distortions and the final number of
centers. Also observe that the standard and regular versions
run in roughly the same time, whereas the efficient version
runs around 10 to 30 times faster than the other two.

B. Image data

For image data we ran two tests on a256 × 256 Landsat
image of Ridgely, Maryland (n = 65, 536). The first involved
3-dimensional data using bands 3, 4, and 5, and the second
used all seven bands. We ran both tests with all three versions
of ISOCLUS, each for 20 iterations and withStdDev =
Lump = 10 and SampRm= 100. The results are presented
in Table II. As with the synthetic tests, all versions performed
essentially equivalently with respect to the number of centers
and final distortions. The efficient version was faster by a
factor of roughly 3 and 6. We believe that the differences
in speed-up between the synthetic and real images are due to
the fact that the clusters are fewer and not as well separated
as in the synthetic case. The filtering algorithm performs best
when there are many clusters that are well separated [6].

V. CONCLUSION

We have demonstrated the efficiency of a new implementa-
tion of the ISOCLUS algorithm, based on the use of the kd-
tree data structure and the filtering algorithm. Our algorithm
is a slight modification of the original ISOCLUS algorithm,
because it uses squared, rather than unsquared, Euclidean
distances in cluster splitting.

Our experiments indicate that using squared distances yields
essentially the same results. The experiments on synthetic
clustered data showed speed-ups in running times ranging from
10 to 30, while the experiments on Landsat image data showed
speedups of 3 to 6.

REFERENCES

[1] J. Richards and X. Jia,Remote Sensing Digital Image Analysis. Berlin:
Springer, 1999.

[2] PCI Geomatics Corp., “ISOCLUS–Isodata clustering program,” http://
www.pcigeomatics.com/cgi-bin/pcihlp/ISOCLUS.

[3] G. H. Ball and D. J. Hall, “Some fundamental concepts and synthesis
procedures for pattern recognition preprocessors,” inIntl. Conf. on
Microwaves, Circuit Theory, and Inform. Theory, Tokyo, Japan, Sept.
1964.

[4] A. K. Jain and R. C. Dubes,Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[5] J. T. Tou and R. C. Gonzalez,Pattern Recognition Principles. London:
Addison-Wesley, 1974.

[6] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman,
and A. Y. Wu, “An efficientk-means clustering algorithm: Analysis and
implementation,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp.
881–892, 2002.

[7] J. Bentley, “Multidimensional binary search trees used for associative
searching,”Commun. ACM, vol. 18, pp. 509–517, 1975.

[8] S. P. Lloyd, “Least squares quantization in PCM,”IEEE Trans. Inform.
Theory, vol. 28, pp. 129–137, 1982.

[9] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” inProc. 5th Berkeley Symp. Math. Stat. Prob.,
vol. 1, Berkeley, CA, 1967, pp. 281–296.

[10] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality,”IEEE
Trans. Patt. Anal. Mach. Intell., vol. 6, pp. 81–87, 1984.

[11] D. Pelleg and A. Moore, “Accelerating exactk-means algorithms with
geometric reasoning,” inProc. ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, San Diego, CA, Aug. 1999, pp. 277–281.

[12] S. Phillips, “Reducing the computation time of the ISODATA andk-
means unsupervised classification algorithms,” inProc. 22nd IEEE Intl.
Geosci. and Remote Sensing Symp., Toronto, Canada, June 2002.

[13] G. H. Ball and D. J. Hall, “ISODATA, A novel method of data analysis
and pattern classification,” Stanford Research Institute, Menlo Park, CA,
Tech. Rep. AD 699616, 1965.


