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Abstract

WLAN location determination systems are gaining in-
creasing attention due to the value they add to wireless
networks. In this paper, we present a multivariate analy-
sis technique for enhancing the performance of WLAN lo-
cation determination systems by taking the correlation be-
tween samples from the same access point into account. We
show that the autocorrelation between consecutive samples
from the same access point can be as high as 0.9. Giv-
ing a sequence of correlated signal strength samples from
an access point, the technique estimates the user location
based on the calculated probability of this sequence from
the multivariate distribution. We use a linear autoregres-
sive model to derive the multivariate distribution function
for the correlated samples. Using analytical analysis, we
show that the proposed technique provides better location
accuracy over previous techniques especially for the highly
correlated samples in a typical WLAN environment. Imple-
mentation of the technique in the Horus WLAN location de-
termination system shows that the average system accuracy
is increased by more than 64%. This significant enhance-
ment in the accuracy of WLAN location determination sys-
tems helps increase the set of context-aware applications
implemented on top of these systems.

1. Introduction

As 802.11-based wireless LANs become more ubiqui-
tous, the importance of WLAN location determination sys-
tems [4-7,11,14,16,20-22,26-33] increases. Such systems

are purely software based and therefore add to the value of
the wireless network. A large class of applications, includ-
ing [8] location-sensitive content delivery, direction finding,
asset tracking, and emergency notification, can be built on
top of such systems. This set of applications can be broad-
ened as the accuracy of WLAN location determination sys-
tem increases.

WLAN location determination systems usually work in
two phases: offline training phase and online location de-
termination phase. During the offline phase, the signal
strength received from the access points (APs) at selected
locations in the area of interest is tabulated, resulting in a so-
called radio map. During the location determination phase,
the signal strength samples received from the access points
are used to “search” the radio map to estimate the user lo-
cation.

Radio-map based techniques can be categorized into two
broad categories: deterministic techniques and probabilis-
tic techniques. Deterministic techniques [4,5,14,22] repre-
sent the signal strength of an access point at a location by
a scalar value, for example, the mean value, and use non-
probabilistic approaches to estimate the user location. For
example, in the Radar system [4, 5] the authors use nearest
neighborhood techniques to infer the user location. On the
other hand, probabilistic techniques [6,7,16,20,21,26-33]
store information about the signal strength distributions
from the access points in the radio map and use probabilis-
tic techniques to estimate the user location. For example,
the Horus system [26-33] uses a Bayesian-based approach
to estimate the user location.

WLAN location determination systems need to deal with
the noisy characteristics of the wireless channel to achieve
higher accuracy. In this paper, we analyze one aspect of the
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temporal characteristics of the wireless channel: samples
correlation from the same access point. We show that con-
secutive samples can have correlation as high as 0.9. The
main challenge is how to use multiple samples to obtain a
better location estimate technique despite this high corre-
lation value. Our approach is to start from an autoregres-
sive model that captures the correlation of samples from the
same access point. Based on the autoregressive model, we
present a technique that derive the multivariate distribution
for multiple consecutive samples from each access point.
This multivariate distribution is used to estimate the proba-
bility of any sequence of signal strength samples.

We quantify the advantage of the multivariate analysis
technique over the simple samples averaging technique ana-
lytically and by testing them in an actual testbed in Sections
4 and 5 respectively. The advantage of the multivariate anal-
ysis technique increases with the increase in the correlation
value. This shows the importance of the proposed technique
especially for the high correlation values in typical WLAN
environments. We also show that the proposed technique,
when implemented in the context of the Horus probabilistic
WLAN location determination system, enhances the accu-
racy by more than 64%. This significant enhancement in
accuracy helps in increasing the set of applications that can
be built on top of the WLAN location determination sys-
tems and hence increases their value.

The rest of the paper is structured as follows: in the
next Section, we present a brief introduction to probabilis-
tic WLAN location determination systems and analyze the
autocorrelation of samples from the same access point. We
describe our multivariate analysis technique that handles the
correlation between signal strength samples in Section 3.
Section 4 analytically quantifies the advantage of the mul-
tivariate analysis technique over the simple samples aver-
aging technique. In Section 5, we present the results of
implementing the new technique and compare its accuracy
to the accuracy of the original Horus technique and sam-
ples averaging technique. Section 6 discusses related work.
Finally, Section 7 highlights the main findings of the paper
and provides concluding remarks.

2. Introduction

2.1. Probabilistic WLAN Location Determination
Systems

The basic approach used in probabilistic WLAN loca-
tion determination systems, e.g. [6, 7, 16, 20, 21, 26-33],
is Bayesian-inversion. Let S = [31,..., ;] be the signal
strength matrix from % access points, where each entry is
a column vector representing N consecutive signal strength
samples from an access point (3; = [s;[1]...s;[N]]T), where
()T denotes the transpose of a vector. The system returns

the location = among the set of radio map locations X that
maximizes P(z|S5), i.e.

argmax|P(z|S)] (1
zeX

Using Baye’s theorem, this can be rewritten as:

argmax|P(z|S)] = argmax[w]

2
T @

Since P(.S) is constant for all ;, we can rewrite Equation 2
as:
argmax[P(x|S)] = argmax[P(S|z).P(z)] 3)
zeX reX
where P(x) represents the probability of finding the user at
location z (the user profile), P(S|x) is calculated by:

k
P(S|z) = [ [ P(silx) )
i=1
and
Si[l]—‘rA/Q Sl[N]—‘rA/Q
P(s]z) = f(@z)dg  (5)
S,[l]—A/Q S,[N]—A/Q

where f(-) is the probability density function (PDF) at lo-
cation z for AP i. The value A used in the integration limits
denotes the quantization error of the wireless interface card
in use.

In this paper, we focus on developing a mathematical
representation of P(S;|x) for N consecutive correlated sig-
nal strength samples. Also, we assume that the user profile,
i.e. the distribution of P(z), is computed offline !. For the
rest of the paper, we will drop the subscript ¢ for sake of
clarity.

2.2. Samples Correlation

Figure 1 shows the autocorrelation function of the sam-
ples collected from one access point (one sample per sec-
ond) at a fixed position. The figure shows that the autocor-
relation of consecutive samples (lag = 1) is as high as 0.9.
This high autocorrelation is expected as over a short period
of time the signal strength received from an access point at
a particular point is relatively stable (modulo the changes in
the environment).

This high autocorrelation value should be considered
when using the methods that use multiple samples, espe-
cially for probabilistic location determination techniques.

!Interested readers can find more details about estimating the user pro-
file and its effect on accuracy in [25].
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Figure 1. An example of the autocorrelation
between samples from an access point. The
sub-figure shows the autocorrelation for the
first 10 lags.

Figure 5 shows the effect of averaging samples on the accu-
racy of a probabilistic WLAN location determination sys-
tem that assumes the independence of samples®. The fig-
ure shows that although averaging increases accuracy, the
wrong independence assumption leads to increasing aver-
age distance error increases as the number of averaged sam-
ples increases. The goal of this paper is to take the high
samples correlation into account to further enhance the per-
formance of probabilistic WLAN location determination
systems.

3. Multivariate Analysis of Signal Strength
Samples

Due to the random nature of the wireless medium, the
samples collected from each access points can be viewed as
a sequence of random variables. Such sequence collected
in time forms a stochastic process denoted in the rest of
the paper as s[n]. In this Section, we present the statistical
characterization of N consecutive samples of the stochastic
process s[n] collected in the signal strength column vector
5 defined as,
sIv 1" (©)
To this end, we first present the temporal characteristics of
s[n]. Then, we exploit such characterization to determine
the probability density function (PDF) and cumulative dis-
tribution function (CDF) of the signal strength vector 5 at

s=1[ s[1] s[2]

2The figure is discussed in more details in Section 5.

a fixed location = which are required to compute P(5|x)
defined in Equation 5.

3.1. Temporal Characteristics of Signal Strength
Samples

As shown in [27], analyzing the signal strength samples
collected from an access point leads to the following prop-
erties about the process s[n],

e The process s[n] is wide sense stationary process
where each sample follows a Gaussian distribution
with mean i, and variance o2

s

e The samples of s[n| are highly correlated and its tem-
poral variations can be modeled as a first order autore-
gressive process as follows,

s[n] = asln—1]+ V1 — a?ov[n] + ps(1 —a) (7)
where a denotes the degree of correlation between
two consecutive samples taking the values 0 < o <
1 and v[n]’s are independent identically-distributed

(i.i.d) samples with zero-mean unit-variance Gaussian
distribution and are independent of s[n].

In the next Section, we exploit such properties to derive the
probability density function and the cumulative distribution
function for the signal strength vector 5 of N consecutive
samples from the same AP.

3.2. PDF of the Signal Strength Vector

We start by proving that the PDF of the signal strength
vector 5 is a multivariate Gaussian. Then we develop ex-
pressions of the mean and the covariance of s required to
compute the Gaussian PDF. Without loss of generality, we
assume that the process s[n] has zero mean, i.e., us = 0.

To prove that the PDF of the signal strength vector 5 is a
multivariate Gaussian, we use the following theorem [18]:

Theorem 1 The signal vector s is a multivari-
ate Gaussian iff for any constant vector a =

[ a[l] a[2] a[N] ]T, the dot product a's has
a Gaussian distribution.

Using the autoregressive model in Equation 7, the

nth signal sample s[N] of the vector § can be repre-
sented in terms of the first sample s[1] and the N samples
{v[1],v[2],...,v[N]} as follows,

N
s[N] = a"s[1] + /(1 — a?)o, ZaN*jv[j]. (8)
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The term a* 5 can be represented as follows,

<

= Z ali]a’s[1]+ )

Equation 9 shows that the term @’ 5 is represented by a lin-

ear sum of the independent Gaussian variables: s[1] and
{v[1],v[2],...,v[N]}. Since the sum of independent Gaus-
sian variables is a Gaussian variable, the term @ 5 is Gaus-
sian for any selection of the vector a. Therefore, from The-
orem 1, the signal vector 5 has a multivariate Gaussian dis-
tribution.

The multivariate Gaussian PDF f(3) of the signal
strength vector 5 is then given by [18]:

1 -5'y;1s
5) = ex & (10)
165) =~ ()
where 3.5 is the covariance matrix given by
¥; = E [357] (11)

with determinant |Xs| and inverse X3!

The elements of the covariance matrix can be repre-
sented in terms of the variance o and the correlation factor
a. The (i, k) element of the covariance matrix X5(i, k) =
E [s[i]s[k]] is expressed using the autoregressive model
(Equation 7) as:

E [s[i]s[k] =E[(s[i]) (" s[i]+
k
V(L —a?)os Zak‘iv[j])]

Since s[i] and {v[1],v[2],..
E [s[i]s[k]] = a=" 52 (13)

12)

., v[k]} are independent, then

Hence, the covariance matrix >3 can be formulated as fol-
lows,

1 o ooalNo
) o 1 cooalN—?
Y5 =o0; ) ) . . (14)
aN-1 oN-2 1

We remark that the covariance matrix ¥ is a symmetric
semi-definite Toeplitz matrix [12]. Moreover, the covari-
ance matrix is highly structured as it can be calculated by
knowing only the value of o4 and o. This means that the
storage requirement for this matrix and the computational
requirements for the typical values of NV are minimal.

3.3. CDF of the Signal Strength Vector

In this Section, we show how to compute the distribution
function F'(S) of the multivariate Gaussian random vector
3, defined as follows,

s[1] s[2]  s[N]

/ f(3)ds. (15)

— 00 —O0 — 00

F(s) =

where as shown in Section 3.2, f(5) is given by:
1 —5T'v; 15
ex s (16)
Ve o !

2
Since X3 is a symmetric semi-definite Toeplitz matrix, then
using Chelosky decomposition [12], ;! can be decom-
posed as follows:

f(5) =

;' =HI'H;, (17)
where H; is an upper diagonal matrix computed as follows
Hs = A2V, (18)

where A is a diagonal matrix whose elements are the eigen-
values of ;' and V is the eigenvector matrix of ;! re-
spectively.
Substituting Equations 17 and 18 in Equation 15, and

applying the following transformation of variables

g = Hs5 19)
the exponent term in the PDF equation f(5) can be ex-
pressed in terms of the vector ¢ as:

s'y's=5THTHys

= (Hs3)" (Hs3) (20)

=77
Hence, the PDF f(S) can be rewritten as follows,

1

_ -1 5
= — 21
f(5) R exp(—-9y) 2D

Applying transformation of variables requires expressing
the differential ds in terms of dy which can be achieved by
using the following equation:

ds =J.dy (22)
where J is the Jacobian matrix defined as follows [13],
r 9s[1] 9s(1] 9s[1] 7
ayH Byﬂ T 9y[N]
ds|2 ds|2
gyﬁ oy[2]
J=1| & (23)
9s[N] asiN] Os[N]
L oyl1]  oy[2] Oy[N]
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Computing the differential elements of the Jacobian matrix
yields J = |H;|~1. Hence, the distribution function can be
rewritten as follows,
y[1] y[2]  y[N]

F(5) = .

“oo—oo  —oo (24)
|Hs| "

(2m)N|H{ || Hs]

_]_ o B
eXp(7yTy)dy.

By using the relation |Hg|T = |Hj| [12], the distribution
function is given as follows:

y[1] y[2] y[N]

F(3) = / / / ﬁexp(%lyTy)dy. (25)

— 00 —0O0

Finally, F'(5) can be directly computed in terms of the com-
plementary error function erfc(x) as follows,

N
F(5) = (05N ] erfe(ylil/v2) (26)

=1

To summarize, given a signal vector 5 and its covariance
matrix Xz, we obtain § from Equation 19 and computes
F'(5) using Equation 25. We emphasize that the above ex-
pression for computing F'(5) also holds if the signal vector
5 has a non-zero mean .

We note that the computational requirements for calcu-
lating F'(S) are minimal due to the fact that the covariance
matrix is a Toeplitz matrix and the value of NV is typically
less than 5 samples.

3.4. Modified Horus Algorithm

In this Section, we use the results of the previous Section
to obtain the probability of a given vector of [V consecutive
correlated signal strength samples. We use this probability
to determine the most probable user location. The technique
works as follows:

e Offline phase: the system calculates the parameters of
CDF for the multivariate distribution of N samples for
each access point in the radio map.

e Online phase: Given a vector of N consecutive sam-
ples from an access point, the algorithm obtains the
probability of this vector using the radio map con-
structed in the offline phase.

Algorithm 1 shows the details of the modified Horus al-
gorithm. Note that the value of « is implicitly used in the
online phase as the multivariate distribution of the average
of N samples depends on the value of « as discussed in
Section 3.3.

Alg. 1 [,,,,= Multi_Horus_GetLocation (N, S, X,P())

Input:
N : Number of samples from each access point.
S : Measured signal strength vectors from k access

points (S = [$1, ..., §x)). Each §;,1 < i < k is a vector
containing N samples from access point ¢.

X : Radio map locations.

P(-) : A radio map based function, where P(5;|z) re-
turns the probability of receiving the signal strength
vector 5; from the 7th access point at location x € X.

Output:
The location ly,ax € X that maximizes P(z/5).
1: Max «— 0
2: for z € §k§ do

p < Il P(silz)
i=1
if p > Max then

[95]

4
5 lmax — T
6: Max — p
7 end if
8: end for

4. Multivariate versus Averaging

In this Section, We use the information theory frame-
work [9] to quantify the advantage of the amount of in-
formation revealed by the full strength vector compared to
averaging the samples, taking correlation into account, as
discussed in [27]. In addition, we show that such informa-
tion increases as the degree of correlation between samples
increases which motivate the advantage of using the multi-
variate analysis in the typical wireless environment where
samples are highly correlated. Specifically, we define /g,
the information gain achieved using the multivariate analy-
sis technique, as follows,

Iy =logy—— —logy——— 2
B IO o

1 1
S
where Savg = Zfil s[t] is the average of vector 5 de-
fined in Equation (6).

From equations 10 and 5, P(5) is given by,

s[1]+A/2 s[2]+A/2 s[N]+A/2
P(s) =
s[1]=A/2 s[2]-A/2  s[N]-A/2 (28)

1 -1

NOAE R

and s,y is a Gaussian variable with zero mean and variance

yeiy)dy
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Figure 2. Information gain I, as a function of
the correlation factor « for various values of
the sample difference, s, = 0,1,2. The sub-
figure shows the values for o« = 0 — 0.9.
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Figure 3. A typical sample difference his-
togram collected from one access point at
one location. For 68% of the time, the sample
difference is greater than zero. The higher
the the sample difference, the higher the in-
formation gain.

Tspogs L-€os

Savg+A/(2N)

P(Savg) = - exp(

Savg—A/(2N)
(29)

A detailed analysis of how to compute P(5) and P(Savg) is
give in Section 3.3 and Reference [27] respectively. For the
sake of simplifying the analysis, we only show the analysis
for the case of 2 samples only. In addition, we approxi-
mate the probabilities defined in Equations (28) and (29) by
assuming that the PDFs are constant within the range of in-
tegration. Such assumption is valid for the typical values of
variance in an actual wireless environment where the ratio
of variance of the signal o to A is large enough to guaran-
tee that the PDF is constant over the integration range. Ap-
plying these approximations, the probabilities can be rewrit-
ten as follows:

-1
P~ AN — —3sTs 30
(5) TN exp( 5 5%59) (30)

and

A -1
P(Savg) & — 2 31
(s g) N (27)02 exp(20'3avg Savg) GD

Savg

Substituting the from equations 30 and 31 in equation 27
for N = 2, we obtain the following,
Iy ~ logy - (32)
=~ 10 —_—
470829 Psy)
where sq = s[1] — s[2] is the sample difference and P(sq)
is given by:
1 —(sa)®

Pl = i it Y

Figure 2 shows the information gain, 14, as a function of
the correlation factor « for various values of the sample dif-
ference (sq = s[1] — s[2]) (for 02/A = 10). The Figure
reveals the following remarks about the performance of the
multivariate analysis technique compared to the samples av-
eraging technique:

e For the valid range of our approximation (i.e. high val-
ues of o/A), 1, is positive for all values of o which
shows that using the multivariate analysis technique
yields more information compared to the samples av-
eraging technique.

e The behavior of the information gain I; varies based
on the value of the sample difference. Figure 3 shows
an example of the histogram of the sample difference
from an AP at a particular location. For the frequent
case of sample difference of one or higher (68% of the
time), I, increases as the correlation increases till it
reaches infinity at o = 1.

For sample difference value of zero, we observe that
1 is still positive. However, it decreases as the corre-
lation factor « increases till it reaches zero at o = 1.
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This can be explained by noting that for a correlation
of one, @ = 1, the probability of receiving two iden-
tical samples is one for both the multivariate analysis
technique and the samples averaging technique. This
means that both techniques give zero information and
therefore, the information gain is zero.

In summary, the amount of information used by the mul-
tivariate analysis technique is more than that available for
the samples averaging technique especially for highly corre-
lated samples. In the next Section, we confirm our findings
through testing in an actual environment.

5. Experimental Evaluation

In this Section we present the result of implementing the
multivariate analysis technique in the context of the Horus
system.

5.1. Experimental Testbed

We performed our experiment in the south wing of the
fourth floor of the Computer Science Department building.
The layout of the floor is shown in Figure 4. The wing has
a dimension of 224 feet by 85.1 feet. The technique was
tested in the Computer Science Department wireless net-
work. The entire wing is covered by 12 access points in-
stalled in the third and fourth floors of the building.

For building the radio map, we took the radio map loca-
tions on the corridors on a grid with cells placed 5 feet apart
(the corridor’s width is 5 feet). We have a total of 110 loca-
tions along the corridors. On the average, each location is
covered by 4 access points. The value of «, autocorrelation
degree, for these access points was approximately 0.9 for
all access points.

Using the device driver and the API we developed [1],
we collected 300 samples at each location, one sample per
second. The cards used were Lucent Orinoco silver NICs
supporting up to 11 Mbit/s data rate [2]. To test the perfor-
mance of the system, we used an independent test set that
was collected on different days, time of day, and by different
persons than the training set.

5.2. Multivariate Analysis Results

We start by showing the effect of the wrong indepen-
dence assumption on the performance of the original Horus
system. Figure 5 shows the average distance error for dif-
ferent values of NV 3 for the multivariate analysis technique.
We can see that using more samples can significantly im-
proves performance (average error decreases by about 2 feet

3The case of N = 1 is equivalent to the original Horus system.

4169 I#\171|41T’3|||\4175 Ir4\179|4131|4133i 4185 |

4157 |a161f4163}416%

LA %

4172 4176 | 4180

HS
<
4122 4120 | 4116 4104
P rdnJat0s

4143 4141|4139|4137|4135I 4131\’||4/129|412\7'||4J125| 4121 |4119|4117|4115 4113] 4111

851 feet

- 224 feet

Figure 4. Plan of the south wing of the
4th floor of the Computer Science Depart-
ment building where the experiment was con-
ducted. Readings were collected in the corri-
dors (shown in gray).

from N = 1to N = 2). However, as the number of used
samples increases, the performance degrades. The mini-
mum value at N = 3 can be explained by noting that there
are two opposing factors affecting the system accuracy:

1. as the number of the samples used (V) increases, the
accuracy of the system should increase.

2. as N increases, the estimation of the multivariate dis-
tribution becomes worse due to the wrong indepen-
dence assumption.

At low values of N the first factor is the dominating factor
and hence the accuracy increases. Starting from N = 4, the
effect of the bad estimation of the distribution becomes the
dominating factor and accuracy degrades.

Figure 6 shows the average distance error for different
values of  and N. The figure shows that as the value of «,
used in calculating the parameters of the distribution of the
average of IV samples, approaches the true « value (0.9),
the system accuracy increases.

Note that at low values of « using samples lead to worse
accuracy, as shown in Figure 5, till we reach a switch-over
point between o = 0.4 and o = 0.5 where using more
samples starts to give better accuracy. Using the modified
technique, the system can achieve an average accuracy of
about 1.6 feet, better than the original system by more than
2.95 feet. This represents an accuracy enhancement of more
than 64% from the original Horus algorithm.

5.3. Comparison with Samples Averaging Tech-
nique

Figure 7 compares the performance of the simple sam-
ples averaging technique and the multivariate analysis tech-
nique. The figure shows that the multivariate technique
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assumption on the average distance error. As
the dimension of the multivariate distribution
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samples, the average system error increases.
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Figure 6. Average distance error for different
values of o« and N. As the value of o ap-
proaches the true value of 0.9, the system
performance increases. The case for N = 1
(original Horus system performance) is shown
in Figure 5 for clarity.

gives a performance enhancement of more than 25% over
the samples averaging technique. This confirms our previ-
ous conclusion in Section 5.2.

02 03 04 05 06 07 08 09

A\)g-Corr —_—
45 Multi-Corr_-----se----

Average distance error (foot)
w

1.5

Figure 7. Comparison between the accuracy
of the multivariate analysis technique and
samples averaging technique. The multivari-
ate analysis technique has a performance ad-
vantage of more than 25%

6. Related Work

Many systems over the years have tackled the prob-
lem of determining and tracking the user position. Ex-
amples include GPS [10], wide-area cellular-based sys-
tems [23], infrared-based systems [3,24], ultrasonic-based
systems [19], various computer vision systems [15], phys-
ical contact systems [17]. WLAN location determination
systems provide more ubiquitous coverage and do not re-
quire additional hardware for user location determination,
thereby enhancing the value of the wireless data network.

In the rest of this Section, we describe techniques that
use multiple samples to enhance the performance of WLAN
location determination systems. We show how the proposed
technique relates to them.

6.1. Physical Location Space Averaging

Different systems, e.g. [4, 5, 16,20, 21], proposed to use
averaging in the physical-location space. The system uses
a moving time-average of multiple consecutive location es-
timates to obtain a better location estimate.

Our technique uses multiple samples in the signal-
strength space to obtain a better location estimate. More-
over our technique can be used in conjunction with the
physical-location space averaging to further enhance their
accuracy.
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6.2. Signal Strength Space Averaging

The authors of the Radar [4, 5] system, a deterministic
location determination technique, were the first to propose
using multiple signal strength samples to obtain better esti-
mation accuracy. Their technique is to average the received
samples and use the average value in the k-nearest neigh-
borhood algorithm to determine the best location estimate.
Their results indicate that using more samples in the aver-
aging process leads to better accuracy.

The work in this paper is concerned with probabilistic
location determination techniques in which the process of
using multiple samples to obtain a location estimate is more
involved.

In [27], we discuss how to use the distribution of the av-
erage of N correlated signal strength distribution to obtain
a better estimate of the user location. In this paper, we ex-
tend our previous work to take more information into the
estimation process and hence achieve better accuracy. We
quantified the advantage of the multivariate analysis tech-
nique over the samples averaging technique through analyt-
ical analysis and experimental evaluation. The results pre-
sented in this paper show that we gain more than 25% per-
formance enhancement when using the multivariate analy-
sis technique over the samples averaging technique.

The proposed technique is unique in using the multivari-
ate analysis technique to enhance the accuracy of proba-
bilistic location determination systems faking into account
the high correlation degree between samples from the same
access point.

7. Discussion and Conclusions

The main contribution of this paper is three fold: (a) We
applied the multivariate analysis technique to the problem
of handling high correlation of samples form the same ac-
cess point (b) We quantified the advantage of using the mul-
tivariate analysis technique over samples averaging tech-
nique and (c) we analyzed the performance of the proposed
technique by implementing it in the context of the Horus
system and comparing it with previous techniques that use
multiple samples to enhance accuracy.

Since samples autocorrelation can be as large as 0.9, it
becomes crucial to take this high autocorrelation into ac-
count when designing location determination algorithms
that uses more than one samples. We presented a tech-
nique that uses a linear autoregressive model to estimate the
multivariate distribution of N samples from the same ac-
cess point, taking samples autocorrelation into account. We
used the multivariate distribution to enhance the accuracy of
the probabilistic WLAN location determination systems by
calculating the probability of any sequence of N samples
from an access point. The results of testing the proposed

technique in the context of the Horus WLAN location de-
termination system show that the average distance accuracy
is enhanced by more than 2.95 feet (64%).

We also quantified the advantage of using the multi-
variate analysis technique over the samples averaging tech-
nique. Analysis using the information theory framework
shows that the amount of information the multivariate tech-
nique uses in the estimation process is more than that of the
samples averaging technique. This difference in the amount
of information increases as the samples autocorrelation in-
creases. This is particularly useful in a typical WLAN en-
vironment where the samples are highly correlated. Ex-
perimental evaluation shows that the multivariate analysis
technique is better than the samples averaging technique by
more than 25%.

We believe that the multivariate analysis technique pre-
sented in the paper is general and can be applied to other
probabilistic WLAN location determination techniques to
further enhance their accuracy.
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