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Abstract. We present images with binary codes in a way that balances discrim-
ination and learnability of the codes. In our method, each image claims its own
code in a way that maintains discrimination while being predictable from visual
data. Category memberships are usually good proxies for visual similarity but
should not be enforced as a hard constraint. Our method learns codes that max-
imize separability of categories unless there is strong visual evidence against it.
Simple linear SVMs can achieve state-of-the-art results with our short codes. In
fact, our method produces state-of-the-art results on Caltech256 with only 128-
dimensional bit vectors and outperforms state of the art by using longer codes.
We also evaluate our method on ImageNet and show that our method outper-
forms state-of-the-art binary code methods on this large scale dataset. Lastly, our
codes can discover a discriminative set of attributes.

1 Introduction

This paper describes a method that represents images with binary codes. In training, we
infer codes for training images, and learn classifiers to predict the codes; in testing, we
apply those classifiers to a test image to produce a code. An established literature shows
how such binary codes can be used for image retrieval (e.g via hashing) and for image
classification (e.g, via multi-class classification).

Image retrieval emphasizes appearance similarity, and many similar looking objects
belong to the same category. This means that images that look similar (resp. dissim-
ilar) should have similar (resp. dissimilar) codes. We call this property unsupervised
similarity. These kinds of appearance similarity are not particularly discriminative. To
ensure discrimination one needs to produce same (resp. dissimilar) codes for members
of same(resp. different) categories. We call this property discriminative similarity.
Our code construction balances unsupervised similarity with discriminative similarity.

Our codes are learned from category information on a per-image basis, meaning
that training images within the same category may have different codes. We see this as
an important innovation. It is natural, because not all objects within a category share all
properties. Furthermore, doing this allows us to balance the discriminative information
in a particular bit with our ability to predict the bit. One might try to train a system to
predict a fixed code for each image within a category; however, there is no evidence
that one can predict these codes accurately from images. Each bit in our codes can be
thought of as a visual attribute whose name is not known. Like attributes, our codes lead
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to natural models of categories. Later in the process, we infer what is shared within each
category by selecting the most informative bits per category.

Our experimental evaluations show that our codes can produce state of the art re-
trieval and classification performance results on Caltech256. We also perform exten-
sive evaluations on ImageNet. Our bit codes behave like attributes, and we show that
our method has discovered visual attributes (Figure 8). Like attributes, our bit codes
can be used as features to recognize objects in categories not used for training the
code (Figure 9). We show that learning codes on a per-image basis outperforms that
of category-based codes. Finally, the space produced by our learned codes can model
within category variations (Figure 10).

2 Related Works

Binary codes are attractive image representations for image search and retrieval, be-
cause they are easy to match, and the capacity of the space of very short binary codes is
so large that all of the digital images in the world can be indexed with relatively short
binary codes. 64-dimensional codes can index about 1019 images; 5 times the estimated
number of bits created in 2002 and likely similar to the number of digital images in ex-
istence [1]. Unfortunately, it is not known how to perfectly encode visual information
into the binary codes to enable efficient search and retrieval.

Binary codes have been usually used as hash keys where the hashing functions are
learned to preserve some notion of similarity in the original feature space. Important ex-
amples include: locality sensitive hashing [2], where similar objects have high probabil-
ity of collision; parameter sensitive hashing [3], where the hash code is adjusted to im-
prove regression performance; kernelized locality sensitive hashing [4], which results in
fast image search and retrieval; binary reconstructive embedding [5], which encourages
distances between binary codes to mirror distances in the original image feature space;
efficient retrieval [6]; and semantic hashing [7], which encourages distances between
codes to mirror semantic similarities, approximated by category memberships. Seman-
tic hashing methods can produce very efficient image search methods for collections of
millions of images [8]. Semantic hashing methods use a restricted boltzman machine;
extensions include stacking multiple restricted boltzmann machines [9]. Alternatively,
Norouzi and Fleet [10] model the problem of supervised compact similarity-preserving
binary code learning as a Latent SVM problem and defined a hashing-specific class
of loss functions. None of these approaches would necessarily result in discrimina-
tive codes. In fact, Figure 5 shows that preserving patterns in the original feature space
may hurt discrimination in both supervised and unsupervised methods. Our experiments
demonstrate that our codes achieve significantly better performances compared to state
of the art supervised and unsupervised binary code methods.

Rotating the original feature space, then quantizing, is another approach. In spectral
hashing [11], compact binary codes are calculated by thresholding a subset of eigenvec-
tors of the laplacian of the affinity graph. Spectral hashing has been shown to outper-
form RBM and boosting SSC in [3]. Raginsky and Lazebnik [12] project the data to a
low dimensional space and then use random quantizations, after [13]. Lin et al [14] use
an iterative learning method to produce binary codes whose hamming distance corre-
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lates to the similarities explained by the affinity matrix of the data in the original feature
space; doing so requires long codes. Jégou et al. [15] jointly optimize for the search ac-
curacy, search efficiency and memory requirements to obtain their binary codes. Gong
and Lazebnik [16] iteratively minimize (ITQ) the quantization error of projecting ex-
amples from the original feature space to vertices of a binary hypercube. This method is
capable of incorporating supervision by using CCA instead of PCA. ITQ has shown to
produce state of the art results. Our experiments show that ITQ follows the patterns in
the original feature space very well. This, however, may result in poor discrimination.
We show that our binary codes consistently outperforms ITQ.

Many methods are unsupervised [11, 16, 12]. Some methods use a notion of sim-
ilarity between labeled pairs of examples [10, 16, 14, 7]. Further, Wang et al. [17] get
improvements over LSH and spectral hashing from a semi-supervised approach that
minimizes the empirical loss over the labeled examples and maximizes the variance
and independence of unlabeled examples. In either case, all methods assume that im-
ages that look “similar” should have the same label, but this is not always true for object
categories.

Each bit in a binary code can be thought of as a split of the feature space into two
half-spaces. Farhadi et al. [18, 19] construct thousands of random splits of the data, then
pick the most predictable ones to generate random codes. Their splits are predictable
and have high validation-set accuracy, but are not necessarily discriminative. Classeme
features [20] are splits of data that produce state of the art results, but again there is no
explicit discriminative component to the construction.

Alternatively, one could build codes out of object attributes [21] [22]. Such codes
are easily interpreted semantically, but no explicit discriminative construction is yet
known. Semantic attributes can also be discovered by selecting attributes that reduce
the amount of confuision and are nameable[23, 24]. In terms of supervision, attributes
are typically supervised or as recently shown they can be used in a semi-supervised
fashion [25]. We do not use any supervision in terms of attributes. There is good evi-
dence that random splits of data can produce informative bit strings [18, 20]. We differ
from these constructions, because our method is explicitly discriminative. Furthermore,
instead of learning bits independently, we learn bit vectors as a whole. Wang et al. [26]
implicitly learns for discriminative codes by learning for hash functions that can se-
quentially correct the mistakes of the previous codes. We differ from them, because we
explicitly optimize for discrimination in a max margin framework, we learn for the bi-
nary codes as a whole (not one by one), and we optimize jointly for discrimination and
predictability.

3 Learning Discriminative Binary Codes

Our goal is to learn codes for each instance in the training set such that a) the codes
can be reliably predicted from the visual data and b) if we represent each image with
its learned codes then discrimination becomes easier. Our system consists of two main
parts: learning binary codes for each instance and then performing search or classifica-
tion in the space of binary codes. For learning our binary codes, we optimize for two
criteria jointly: we want our codes to be as discriminative as they can, while maintain-
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Fig. 1. Each bit in the code can be thought of as a hyperplane in the feature space. We learn
arrangements of hyperplanes in a way that the resulting bit codes are discriminative and also
all hyperplanes can be reliably predicted (enough margin). For example, the red hyperplanes
(II,V) are not desirable because II is not informative(discriminative) and IV is not predictable
(no margin). Our method allows the green hypeplanes (good ones) to sacrifice discrimination
for predictability and vice versa. For example, our method allows the green hyperplane (I) to go
through the triangle class because it has strong evidence that some of the triangles are very similar
to circles.

ing predictability of the codes. The most discriminative codes (like assigning unique
codes to examples of the same category) are extremely hard to predict from visual data.
And the most predictable codes may contain very little information about categories
resulting in poor discrimination. Our model balances between discrimination and pre-
dictability of the codes. In our view a code is discriminative if examples of different
categories appear far away from each other and instances of the same category lie close
by. However, we don’t enforce these discriminative constraints as hard constraints but
assign codes to each image in a way that the resulting codes have enough discrimi-
native power and yet can be reliably predicted from images. Such a code allows for
simple, efficient and very accurate classification and searches. For performing search
and classification in the space of binary codes we use KNN and linear SVM. In Sec-
tion 3, we demonstrate that KNN search in the space of our binary codes outperforms
KNN on other state-of-the-art binary code spaces on Caltech256. We also show that
linear SVM classifiers using our codes results in even higher accuracies with very few
training examples per category.

Throughout this paper we use the term “splits” when we refer to bits of a code.
Each bit can be visualized as a hyperplane that separates instances that have value 0
versus the ones that have value 1. Each bit of our codes is generated by checking which
side of a hyperplane an instance lie. In [18], the splits are learned by randomly setting
a subset of examples to positive and another subset to negative. Some of these splits
can be reliably predicted from data. In [18], the splits are sorted based on how well
they can be predicted from the data. The top K splits produce a K dimensional binary
code. This procedure does not necessarily result in discriminative binary codes and the
codes may need to be very long to ensure good performance. We believe the procedure
to learn the splits and the procedure to find good binary codes should be learned jointly.
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This results in binary codes that are predictable and have built-in margins. This means
that each code is associated with a cell in an arrangement of hyperplanes in the feature
space (Figure 1). The family of such arrangements is rich, meaning that we can find
good codes.

Assume that we are given a training set {xi, yi} where i ∈ {1, 2, ..., N}, xi ∈ Rd,
and yi ∈ {1, 2, ..., C} and we plan to learn k splits, meaning that our final binary code
is k-dimensional. To train each split s ∈ {1, 2, ..., k} we have to learn for labels to give
us positive and negative training examples ls where ls ∈ {−1, 1},−1 for negative and 1
for positive training examples. For each instance i in the training set, we are learning for
lsi indicating which side of the split s the ith example should appear. When learning for
these codes our goal is to learn for a set of labels for each instance in a way that those
labels can be reliably predicted from visual data and the learned codes leave enough
space between categories. The final binary codes are the actual predictions of each split
classifier s trained with ls as training labels. We call these predictions bsi ∈ {0, 1}. bsi
indicates which side of the split s the ith example actually lies. In other words, bsi is
the prediction of a classifier that uses lsi as training labels; l is what we want and b is
what we can actually predict. We can stack all the labels and the predictions from all
the split classifiers to form the final binary vector for each instance i in the training set:
Li = [l1i , l

2
i , ..., l

k
i ], and Bi = [b1i , b

2
i , ..., b

k
i ].

We are looking for binary codes that (a) can be reliably predicted from the original
features and (b) provide enough margins between examples from different categories.
To do that we learn to allocate codes to instances by searching for the whole code that
jointly optimizes these two criteria. We do not optimize bits one by one as we can not
guarantee uncorrelated binary codes. Our formulation looks like a combination of max
margin models for linear SVMs to satisfy (a) and pushing for large inter class and small
intra class distances for (b). We achieve such codes by optimizing:

min
w,ξ,L,B

1

2

∑
c∈{1:C}

∑
m,n∈c

d(Bm, Bn) + γ
∑

s∈{1:k}

‖ws‖2 (1)

+λ1 ·
∑

i∈{1:N}

s∈{1:k}

ξsi −
λ2
2

∑
c′∈{1:C}

p∈c′

∑
c′′∈{1:C}

c′ 6=c′′,q∈c′′

d(Bp, Bq)

s.t. lsi (w
s
′

xi) ≥ 1− ξsi ∀i ∈ {1 : N}, s ∈ {1 : k}

bsi = (1 + sign(ws
′

xi))/2 ∀i ∈ {1 : N}, s ∈ {1 : k}
ξsi > 0 ∀i ∈ {1 : N}, s ∈ {1 : k}

where d can be any distance in the hamming space, Bi = [b1i , b
2
i , ..., b

k
i ], w

s is the
weight vector corresponding to the sth split, ξsi is the slack variable corresponding to
the sth split and ith example, C is the total number of categories, k is the number of
splits, N is the total number of examples in the train set, lsi is the training label for the
ith example to train the sth split, and bsi indicates the prediction results of ith example
using the split s.
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Algorithm 1 Optimization
Input: X = [x1, ...xN ] (xi is low-level feature vector for ith image).
Output: B (Bi = [b1i , b

2
i , ..., b

k
i ] is binary code for ith image ).

1: Initialize B by: B ← Projection of X on first k components of PCA(X)
2: Binarize B: B ← (1 + sign(B))/2
3: repeat
4: Optimizing for B in minB

1
2

∑
c∈{1:C}

∑
m,n∈c d(Bm, Bn)

−λ2
2

∑
c′∈{1:C}p∈c′

∑
c′′∈{1:C}c′ 6=c′′,q∈c′′ d(Bp, Bq) (see supplementary materi-

als for details )
5: lsi ← (2bsi − 1) ∀i i ∈ {1 : N}, ∀s s ∈ {1 : k}
6: Train k linear-SVMs to update ws ∀s, s ∈ {1 : k} using L as training labels (lsi : label

for ith image when training sth split)
7: bsi ← (1 + sign(ws

T

xi))/2 ∀i, s i ∈ {1 : N}, s ∈ {1 : k}
8: until Convergence on optimization 1

This is an extremely hard optimization problem, but we may not need to find the
global minimum to obtain good binary codes. “Good” local minima are capable of
producing promising discriminative binary codes. To go down the objective function in
the optimization 1 we use an iterative block coordinate descent method. In algorithm 1
we described our optimization steb-by-step.

We initialize by choosing B to form orthogonal codes that come from projections
along PCA directions. In our experiments we find that this initialization yields promis-
ing results. The supplementary material describes the (minor) effects of other choices
of initialization. We then initialize ws to predict these codes. Notice that the w’s are
independent given a fixed B, so we can use an SVM.

We now proceed by iterating three steps in sequence. First, we update B for fixed
wsi , ξsi ; this proposes an improvement in the codes that should achieve improved sep-
aration. This is an iterative procedure that is started at the current value of B. We use
stochastic gradient descent (step 4) with an important optimization. Since B is binary,
if bsi is 0 then the sum of differences is the number of 1s and vise versa. We can pre-
compute number of 0s and 1s for each sth element of B. This way, we decrease the
complexity of computing sum of differences from O(N2K) to O(NK). Second, we
update L using B and then (Fixing L,B) we update wsi , ξsi by training SVMs using L
as training labels. This produces a set of SVM’s to predict these improved codes. Each
bit of B represents a labeling of instances that we want an SVM to reproduce. We can
therefore compute optimal wsi and ξsi with an SVM code. Third, we update the current
value of B to reflect the codes that these SVM’s actually predict; this biases the update
of B in the direction of codes that can be predicted. While this optimization procedure
doesn’t guarantee descent in each iteration, we have found that we get descent in prac-
tice (Figure 3). This is most likely because the steps balance the goodness of the code
(updated in the first step), with our ability to predict it (second, third steps). In our ex-
periments, we did not tune the parameters; λ1,γ are set to 1 and λ2 is set to normalize
for the size of categories. Figure 3 shows the behavior of the objective function and all
the terms in equation 1 after each iteration.
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Fig. 2. We compare our binary codes(DBC) with Locality Sensitive Hashing(LSH), Spectral
Hashing(SpH), and supervised version of Iterative Quantization(ITQ) under several different set-
tings: changing the length of binary codes (32,64,128,256), classifiers (linear SVM or KNN),
original features (Classeme, ColorSift) and also with L1 selection of category specific bits (DBC-
L1). Our codes (DBC) consistently outperforms state of the art methods like SpH and ITQ by
large margins. The test set contains 25 examples per category. Due to space limitations only very
few of experimental settings can be showed in the paper. Please see supplementary material for
all plots.

Once converged, optimization 1 provides us the weight vectors ws∗ for split classi-
fiers that tend to produce binary codes with built-in margins. We use ws∗ to project the
data to the space of the binary codes.

Using Codes: There are several ways to use the resulting binary codes. We evaluate
our codes in a) using them as hash codes and performing KNN on the codes (called
KNN in our experiments), b) using them as features and learning SVM classifiers for
each category (called SVM), c) using the codes as features while accepting that these
features might be redundant and using L1 regularized models to pick category specific
codes (e.i. for each category we learn a L1-regularized SVM and pick the bits cor-
respond to larger absolut weight value of the L1-SVM) and then learn normal SVM
classifers using related bits.

4 Experimental Evaluations

Tasks: The main tasks of our experiments are in classification and category retrieval.
We compare our method in several different settings with the state of the art bit-code-
based methods. We also compare our method with state of the art classification tech-
niques. Our bit learning algorithm results in interesting observations about the data like
attribute discovery. Also, we qualitatively evaluate our method in retrieval and attribute
discovery. Our method is also applicable to novel category recognition.

Datasets: We test our method on Caltech256 [27], and ImageNet [28] (ILSVRC2010).
Both of these dataset have large number of categories (256 and 1000) with huge intra-
class variations. Category retrieval on Caltech256 is a challenging task because the
number of categories is much higher than typical experiments and also the intra-class
variations are much higher than typical datasets like MNIST. There are around 30000
images belonging to 256 categories [27]. On average, there are about 120 images per
category.
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Fig. 3. Our optimization procedure finds descent directions in our challenging objective function.
This figure shows that all terms in the objective function actually improves after each iteration.

Fig. 4. Our method outperforms state of the art binary code methods (LSH, SpH, and supervised
TTQ) on ImageNet(1000 categories, 20 per catgeory for training). Left plot compares precesion
@25 vs. the code length. The test set contains 150 images per category. The right plot shows
precision-recall curve for the same dataset using 512 dimensional codes. Our codes consistently
outperforms all other methods.

Features: For experiments on Caltech256 we use two different sets of features that
have been shown to produce state-of-the-art results on Caltech256: Classeme and Col-
orSift. We use Classeme features [20] because they have shown to outperform other
features [20]. The Classeme features are of 2659 dimensionality. We also use Color-
Sift features as they show promising performances on classification tasks [29]. We use
ColorSift bag-of-words features by building a 1000-word dictionary using ColorSift
features provided by [30]. To make these features more discriminative we use homoge-
neous kernel map [31] on top of SIFT-BoW. The homogeneous kernels have shown to
produce best results in many classification tasks [31]. Both of these features are among
the most discriminative features. For ImageNet experiments we also use Classeme fea-
tures.

Controls: To evaluate our method we perform series of extensive evaluations and
comparisons. For our method, we change the following settings: the length of binary
codes k (32, 64, 128, 256, 512), the number of training examples per category (5 0r 50),
the original features (Classemes or ColorSift), the classifier (LSVM [32] or KNN), and
the use of L1 selection of category specific bit strings. To compare with methods in the
literature we compare our results with Locality Sensitive Hashing(LSH) as a standard
baseline, with the supervised version of Iterative Quantization (ITQ) [16] as the best
supervised method and Spectral Hashing (SpH)[11] as the state-of-the-art unsupervised
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Fig. 5. Our method produces state of the art results on Caltech256. A linear SVM with only 128-
bit code is as accurate as multiple kernel learning method of LPBeta (marked with a big star)
that uses 13000 dimensional features. As we increase the size of the code we outperform the
LPBeta method significantly. This figure compares our category specific codes (DBC-L1) , our
codes without L1 selection (DBC), ITQ and SPH on precesion at 25 versus the number of training
examples per category on caltech 256. One interesting observation is that the ITQ method does
a great job in following the original features (Classeme) with 512 codes. This however hurts the
performance as 128 and 256 dimensional codes outperforms the original features. This confirms
our intuition that following the patterns in the original feature space does not necessarily result in
good performance numbers.

Fig. 6. This figure qualitatively compares the quality of retrieved images by our method com-
paring to that of ITQ and SpH. Each row corresponds to the top five images returned by three
different methods: ours, ITQ and spectral hashing. This retrieval is done by first projecting the
query image to the space of binary codes and then running KNN in that space. Notice how, even
with relatively short codes(32 bits), our method recovers relevant objects. This menas that the
discriminative training of the code has forced our code learning to focus on distinctive shared
properties of categories. Our method consistently becomre more accurate as we increase the code
size.

method in producing binary codes. Our experimental evaluations demonstrate that our
method consistently outperforms state-of-the-art methods under all the combinations of
above settings. To evaluate our method on a large scale dataset we test it on ImageNet.
We used 1000 category from ILSVRC2010 (ImageNet Challenge). For each category
we randomly chose 20 examples for training and 150 examples for testing. Our results
show that our codes also outperform state-of-the-art binary code results on this dataset.

Measurements: In case of SVM, we use the top k images to compute precision and
recall values. Varying k = [1 : 5 : 100] traces out the precision-recall curves. In case
of using KNN, for each number of nearest neighbors we can compute a precision and
recall. Varying this number makes a precision recall curve.

Results: There are four main categories of results. First, we compare our method
with the state of the art bit-code methods on Caltech256 and ImageNet. We also show
interesting qualitative results. Second, we compare our results with the state of the art
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Fig. 7. This figure qualitatively compares the quality of retrieved images by our method com-
paring to that of ITQ and SpH. Each row corresponds to the top five images returned by three
different methods: ours, ITQ and spectral hashing. This retrieval is done by first projecting the
query image to the space of binary codes and then running KNN in that space. Notice how, even
with relatively short codes(32 bits), our method recovers round objects. Our method is consistent
in terms of returned images as we increase the code size. With 256 dimensional code our method
returns 5 correct images.

method on Caltech256. Third, we compare our method on novel category recognition
with the state of the art method of [33]. Fourth, we show qualitative results that reveal
interesting properties of our method. We show promising attribute discovery results and
also projections of the resulting bit code space.

Comparisons to the state of the art bit-code methods: Figure 2 compares our
method (DBC, DBC-L1) with LSH,SpH, and supervised version of ITQ by varying the
number of binary codes. We perform extensive evaluations on all combinations of dif-
ferent settings. Space does not allow showing all comparisons in all settings, please see
supplementary material for all comparisons. The settings that we show here are: (from
left to right on Figure 2) using KNN on 512-dimensional bit coses when 50 training ex-
amples per category are observed during training using Classeme features, using SVM
on 128-dimensional bit codes when 5 training examples per category is observed during
training using Classeme features, and using SVM on 256-dimensional bit codes when
5 training examples per category is observed during training using ColotSift features.
In all possible settings, including these three, our method outperforms state of the art
bit code methods. We also show that DBC-L1 performs better than DBC in all settings.
The gap between the DBC and DBC-L1 increase as the number of bits decreases. The
huge gap in the lower number of bits is due to the fact that in DBC-L1 we chose the
bits to be specific at each category. In all of the experiments we use the same random
selection of train and test set.

Our experiments show that as we increase the neighborhood size in KNN our method
can still find the right categories (see supplementary materials). This implies that our
hash cells remain pure as we increase the size of the neighborhood. This confirms that
the optimization 1 managed to produce codes with enough margins. It is also worth not-
ing that with such small training set per category linear SVM achieves excellent results
using our codes.

In figure 5 we compare all the methods in terms of the precision at top-25 ranked
images with different code length. We also compared our method with product quanti-
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Fig. 8. Discovering attributes: Each bit corresponds to a hyperplane that group the data according
to unknown notions of similarity. It is interesting to show what our bits have discovered. On two
sides of the black bar we show 8 most confident images for 5 different hyperplanes/bits (Each
row). Note that one can easily provide names for these attributes. For example, the bottom row
corresponds to all round objects versus objects with straight vertical lines. The top row has silver,
metalic and boxy objects on one side and natural images on the other side, the second row has
water animals versus objects with checkerboard patterns. Discovered attributes are in the form
of contrast: both sides have its own meaning. These attributes are compact representations of
standard attributes that only explain one property. For more examples of discovered attributes
please see supplementary material.

zation [34] for 5tr/cl and follow the same experimental setup. Product quantization got
the precision of 0.04, 0.05, 0.064, 0.08, 0.09 for 32, 64, 128, 256, 512 bits repectively.
Our method outperforms all the methods in all different code lengths. The Left plot in
Figure 4 shows this comparison on ImageNet. For all other comparisons on Caltech256
please see the supplementary material. In these experiments, the test set contains 25
images per category . Figure 6 and 7 qualitatively compare our discriminative binary
codes with ITQ and SpH in an image retrieval task. We show the top five retrieved im-
ages for the query image. It is interesting to see that even with 32 dimensional code our
method is capable of extracting relevant properties. Our method is consistent in terms
of returned images as one increases the code size.

Comparison to the state of the art models on Caltech256: Figure 5 compares
our results with state-of-the art methods on Caltech256. We use the same features as
the state-of-the-art method of LPBeta (The big star in the figure). With only 128 bits
we can achieve the same results as the state of the art method of LPBeta that uses
13000 dimensional features. By increasing the number of bits our codes outperform the
multiple kernel learning method of LPBeta. This shows that DBC can be significantly
more discriminative than state-of-the-art features. We also compare with the classeme
features. In this Figure we perform the same test with other binary code method. ITQ
is doing a great job in getting close to the original features of Classeme by using 512
binary codes. However, it gets worse comparing to using 128 or 256 codes. This is
mainly due to the fact that ITQ minimizes the quantization error of binarization and
this does not necessarily result in better discrimination. Our method consistently gets
better with more and more bits.
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Novel Category Recognition: So far, we have shown that our codes are discrimina-
tive for categories they have been trained on. Similar to cross category generalization of
attributes, we also evaluate our method on categories that have not been observed dur-
ing training. For that, we learn the binary codes on 1000 categories of ImageNet with
20 examples per category and test our codes on Caltech256. We make sure that none of
the 1000 categories intersect with 256 categories on Caltech. We adopt an experimental
setting from [33] for which training data is available. Figure 9 shows that our method
outperforms PiCodes [33], the state of the art novel category recognition method. We
used the same low-level features as in [33].

Attribute Discovery: Binary codes can be though of as attributes. Our algorithm
discovers attributes that can be named without much difficulty. Figure 8 shows some
of the attributes discovered by our method. Each row shows 8 most confident examples
for both sides of a hyperplane that corresponds to a bit in our code. Our learning proce-
dure can discover attributes like is round, is boxy, is natural, has checkerboard pattern,
and etc. More discovered attributes can be find in supplementary material. Our model
learns strong contrasts that are discriminative. As a result of this each side of the dis-
covered attributes has its own meaning. The discovered attributes are compact versions
of standard attributes. Standard attributes describe only one property. But our discov-
ered attributes are in the form of contrasts. For example, the first row contrasts boxy
and silver objects against natural objects. If the bit that corresponds to the first row is 1
this means that the attribute boxy is 1 and if the bit is zero this means that the attribute
natural is 1. It is also very interesting to look at the space of binary codes. To do that,
we project our binary codes into a 2-dimensional space using multidimensional scal-
ing. Figure 10 shows an interesting balance between discrimination and classification.
In the projected space round things like wheels and coins are close together despite be-
longing to different categories. At the same time, round things are far away from horse
and camel examples. Examples of the head of horse and camels are closer together than
those to side views of horses and camels. Category memberships are suitable proxies
for visual similarity but should not be enforced as hard constraints. Our model manages
to balance between discrimination in terms of basic level categories and learnability of
the codes from visual data.

5 Discussions

In this paper we demonstrate that by balancing discrimination and learnability of the
codes one can achieve small binary codes that outperform state of the art results. We do
this by letting each image has its own code while jointly optimizing for discrimination
and learnability of the codes. Our experimental evaluations show that when there are
strong visual evidence against categorical membership constraint, accounting for vio-
lations actually improves the discrimination. The codes learned in this way can reveal
interesting properties of the data. The space of projected bits reveals interesting group-
ings of objects. Our method is also capable of producing meaningful codes for retrieval
and can discover attributes. Different applications may need different trade offs between
discrimination and learnability of the codes. What remains is how to learn to balance
them according to query tasks. Our software and supplementary material are publicly
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Fig. 9. Our codes can be used across the trainining categories (novel categories): we use 1000
categories of ImageNet to train our codes and use the codes to recognize objects in Caltech
256. The 1000 categories from ImageNet do not intersect with those of Caltech256. Our method
outperforms state of the art methods in novel categories.

Fig. 10. Projection of the space of binary codes: We use multidimensional scaling and project
our 64 dimensional codes into a two dimensional space. It is interesting to show that our method
clearly balances between discrimination and learnability of the codes: round objects like wheel
and coins appear close by while horses and camels are faraway. The head of the horse and the
head of camels are close to each other and far way from side views of them. Supplementary
material includes more examples of these projections.

available at http://vision.ri.cmu.edu/projects/dbc/dbc.html.
This work has been supported by the ONR-MURI grant N000141010934.
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