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Abstract 
 
  Quantum computing is a new trend   in  computation-
theory and a quantum mechanical   system has several 
useful properties like Entanglement . 
  In this paper tried to   explain     some method     and 
algortithm for   image    processing  that works      in a 
quantum computer and how to profits from advantages 
of quantum    system , and then     illustrate     several 
computational experiment in this direction. 

1. Introduction 
The theory of quantum  mechanics was prompted by the 
failure of classical  physics   in   explaining a number of 
microphysical phenomena that were observed at the end 
of nineteenth   and    early    twentieth  centuries . Now, 
quantum    mechanics    is    vital for understanding the 
physics   of    solids,   lasers,      semiconductor       and 
superconductor      devices,       plasmas, etc.  
    In recent years, quantum mechanics has been 
connected with computer science, information theory in 
communication and digital signal processing . For 
example, Shor has showed that integer factoring could 
be done in polynomial time on a quantum computer . 
One of major applications of Shor’s quantum 
factorization algorithm is to break    RSA      public  key 
cryptosystems. Thus, developing new computing 
methods and signal processing algorithms by borrowing 
from the principle of quantum mechanics is a very 
interesting and new research topic. 
    In this paper, several quantum digital image 
processing algorithms will be presented including image 
halftoning  algorithm and edge detection method . The 
details will be described in next sections. 
 

1.1. Introduction of Quantum Computation 
   Quantum computing is a new approach to computation 
that has the possibility to revolutionize the field of 

computer science. The late Nobel Prize winning 
physicist 
Richard Feynman, who was interested in using a 
computer to simulate quantum systems, first investigated 
using quantum systems to do computation in 1982 . He 
realized that the classical storage requirements for 
quantum systems grow exponentially in the number of 
particles. So while simulating twenty quantum particles 
only requires storing a million values, doubling this to a 
forty particle simulation would require a trillion values. 
Interesting simulations, say using a hundred or thousand 
particles, would not be possible, even using every 
computer on the planet. Thus he suggested making 
computers that utilized quantum particles as a 
computational resource that could simulate general 
quantum systems in order to do large simulations, and 
the 
idea of using quantum mechanical effects to do 
computation was born. The exponential storage capacity, 
coupled with some spooky effects like quantum 
entanglement, has led researchers to probe deeper into 
the computing power of quantum systems. Quantum 
computing has blossomed over the past 20 years, 
demonstrating the ability to solve some problems 
exponentially faster than any current computer could 
ever 
do. The most famous algorithm, the integer-factoring 
algorithm of Peter Shor, would allow the most popular 
encryption methods in use today to be cracked easily, if 
large enough quantum computers can be constructed. 
Thus the race is on to develop the theory and hardware 
that would enable quantum computing to become as 
widespread as PCs are today. Classical computers, 
which include all current mainstream computers, work 
on discrete pieces of information, and manipulate them 
according to rules laid out by John Von Neumann in the 
1940’s. In honor of his groundbreaking work, current 
computers are said to run on a “Von Neumann 
architecture”, which is modeled on an abstraction of 
discrete pieces of information. However, in recent years, 
scientists have changed from this abstraction of 
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computing, to realizing that since a computer must 
ultimately be a physical device, the rules governing 
computation should be derived from physical law. 
Quantum mechanics is one of the most fundamental 
physical theories, and thus was a good choice to study 
what computational tasks could be physically achieved. 
This study led to the profound discovery that quantum 
mechanics allows much more powerful machines than 
the 
Von Neumann abstraction. 
 
 
 

1.2. Introduction of Quantum Bit(qbit) 
    Just as classical bit has state - either 0 or 1 – a qubit 
also has a state. Two possible states for a qubit are the 
states |0> and |1>, which as you might guess correspond 
to thestates 0 and 1 for a classical bit. Notation like ‘| >’ 
is called the Dirac notation, and we’ll beseeing it often, 
as it’s the standard notation for states in quantum 
mechanics. The difference between bits and qubit can be 
in a state other than |0> or |1>. It is also possible to form 
linear combinations of states, often called superpositions 
 

                          
  The numbers α and β are complex numbers. Put 
another way, the state of a qubit is avector in a two-
dimensional complex vector space. The special states |0> 
and |1> are known as computational basis states, and 
form an orthonormal basis for this vector space. 
   We can examine a bit to determine whether it is in the 
state 0 or 1 in classical computer.By contrast, when we 
measure a qubit, we get either the result 0, with 
probability , or the result 1, with probability . 
Naturally,  +  = 1. In general a qubit is a unit 
vector in a two-dimensional complex vector space [3]. 
    We explain the superpositions  by 
analogy with sonic wave as following. 
    Suppose there are three persons Alice, Bob and you in 
a closed room. Alice and Bob speak in a sample wave 

 
respectively, where m ≠ n and they are both integers. We 
can distinguish Alice from Bob because the two sample 

waves are orthogonal (i.e., ). 
When Alice speak in the closed room, your ears will 
receive a sonic wave , where IA is 
the amplitude of the wave and the phase  is cause by 
the distance between Alice and you. If Alice and Bob 
speak simultaneously, your ears will receive a 
superposition: 
           

          
Let 

       
Thus, 

         
Your ears can distinguish Alice’s    voice      from     the  
superposition . That is, ’+’ implies two sonic 
wave |A> and |B> exist in the superposition 
simultaneously and they can be distinguished from the 
superposition. If Alice speaks very aloud (i.e., 

0) , you will always hear Alice’s 
voice. This case is analogous with the case of 
quantum computation. If , you will get the 

result 0 always, with probability  ≈ 1. This property 
is utilized to design quantum algorithm such as Grover’s 
algorithm. You can operate the two distinguished sample 
wave |A> and |B> simultaneously. For example, you can 
send the voice in a radio and change Alice’s 
volumes and Bob’s volumes 
simultaneously by pushing the volume button on radio. 
That is, performing once operation causes the changing 
of two sonic waves simultaneously. This case is 
analogous with quantum parallelism. Fig. 1 shows the 
analogies between quantum superpositions and sonic 
wave. 

 
FIG. 1: The schematic diagram of the analogies 
between quantum superpositions and sonic wave. 
 

1.3. Operation of Computation Acting on Qubit 
    Classical computer circuits consist of wires and logic 
gates. The wires are used to carry information around 
the circuit, while the logic gates perform manipulations 
of the information, converting it from one form to 
another. It is the fundamental of classical computation 
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that classical computer circuits can realize the operations 
of Boolean algebra. For example, classical NOT gate 
makes 0 and 1 states interchanged. The operations of 
Boolean algebra can also be realized on quantum 
computer by utilizing single qubit gates and controlled-
NOT gates. For example, quantum NOT gate takes the 
state to the corresponding state in 
which the role of |0> and |1> have interchanged. All 
digital operation can be realized by utilizing unitary 
operation that is the combination of some single qubit 
gates and controlled-NOT gates [3]. 
 

1.4. Quantum Measurement 
    Measurement according to the rules of Quantum Me-
chanics is a non-trivial and highly counter-intuitive pro-
cess. Firstly, it must be said that the measurement re- 
sults taken from a quantum system are inherently of a 
probabilistic nature. In other words, regardless of the 
carefulness in the preparation of a measurement proce- 
dure, the possible outcomes of such measurement will be 
distributed according to a certain probability distribu- 
tion. 
    Secondly, once a measurement has been performed, a 
quantum system in unavoidably altered due to the in- 
teraction with the measurement apparatus. Thus, it 
makes sense to talk about pre-measurement and post- 
measurement quantum states for an arbitrary quantum 
system. 
    Thirdly, in order to perform a measurement it is 
needed to define a set of measurement operators. This 
set of operators must fulfill a number of rules that allows 
one to compute the actual probability distribution as well 
as post-measurement quantum states. 
    In order to clarify these points, let us work out a sim- 
ple example. Assume we have a polarized photon with 
associated polarization orientations ‘horizontal’ and 
‘ver- tical’. The horizontal polarization direction is 
denoted by |0> and the vertical polarization direction is 
denoted by |1>. 
   Thus, an arbitrary initial state for our photon can be 
described by the state by , where α 
and β are complex numbers constrained by the 
normalization condition  and {|0>, |1>} 
is the computa-tional basis spanning . 
     Now, let us construct two measurement operators 

 and two measurement 
out-comes a0, a1. Then, the full observable used for 
measure-ment in this experiment is 

. 
    According to the rules of Quantum Mechanics, the 
probabilities of obtaining outcome a0 or outcome a1 are 

given by  and . 
Correspond-ing post-measurement quantum states are as 
follows: if outcome = a0 then ; if outcome 
= a1 then . 
   It is possible to construct a full quantum measurement 
theory for both vector and density matrix representations 
of quantum systems. Measurement theory and its 
implications in QC and QIP are open and fruitful fields 
of research. 
 

1.5. Quantum Entanglement 
Suppose we have two qubits, the first in the state 

 and the second in the state 

. What is the joint state of the two 
qubits? The answer is, the (tensor) product of the two: 

 
Given an arbitrary state of two qubits, can we specify the 
state of each individual qubit in this way? No, in general 
the two qubits are entangled and cannot be decomposed 
into the states of the individual qubits. For example, 

consider the state , which is 
one of the famous Bell states. It cannot be decomposed 
into states of the two individual qubits. Entanglement is 
one of the most mysterious aspects of quantum 
mechanics and is ultimately the source of the power of 
quantum computation. 
 

1.6. Quantum Parallelism 
   Quantum parallelism allows quantum computers to 
evaluate a function f(x) for many different values of x 
simultaneously. The power of quantum computation is 
due to the fact that the state of a quantum computer can 
be a superposition of basis states and we can perform an 
operation on multiple quantum states simultaneously. 
For example, suppose f(x) : {0, 1} → {0, 1} is a 
function with a one-bit domain and range. We need at 
least two times calculating for obtain the values f(0) and 
f(1) on classical computer. For arbitrary function f(x), 

there is quantum circuit  that can transform  
and into and respectively 
by performing only one time calculating, where  
indicates addition modulo 2. That is, 

 
, where ’+’ implies two states and exist in 
the superposition of states simultaneously. The 
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formula implies also that the two states and 
are converted to  and 

simultaneously. That is, the values f(0) 
and f(1) are calculated simultaneously [3, 4]. 
 

1.7. Introduction Quantum Fourier transform 
(QFT) , Kelappnecker's DCT and 
Lattore's Quantum Representation of 
Image 

    The quantum Fourier transform (QFT [3,4]) on an 
orthonormal basis is defined to 
be a linear operator with the following action on the 
basis states, 

                    
Equivalently, the action on an arbitrary state may be 
written 

                
Similar to other unitary operation, QFT is unitary 
operation that only acts on basis states. It’s an error 
opinion that unitary operation can act on coefficients of 
basis states. Figure 2 illustrates that QFT only acts on 
basis states |0> and |1>. 

           
FIG. 2: QFT only acts on basis states |0> and |1>: 

QFT . 
 
  Klappenecker presents a method to realize DCT of 
types I, II, III, and IV on a quantum computer by 
utilizing QFT [5].  
Define DCT of types I as [5] 

           
The discrete sine transforms (DST) of types I denoted by 

 is defined accordingly. [5] 
Let discrete Fourier transform (DFT) be [5] 

         
Let [5] 

     
Klappenecker’s DCT derives from QFT and depends on 
QFT. Indeed, the DST and DCT can be recovered from 
the DFT by a base change  

                    
   Since efficient quantum circuit for the DFT (i.e., QFT) 
are known, it remains to find an efficient implementation 
of the matrix TN. A quantum circuit is proposed by 
Klappenecker to realize the matrix TN. This is the 
primitive idea of Klappenecker’s DCT [5]. 
    
   The result of QFT or Klappenecker’s DCT seems to 
indicate that quantum computer can be used to very 
quickly compute the Fourier transform, which would be 
fantastically useful in a wide range of applications. 
However, that is not exactly the case; the Fourier 
transform or Klappenecker’s DCT is being performed on 
the information ‘hidden’ in the amplitudes of the 
quantum state. This information is not directly accessible 
to measurement. The catch, of course, is that if the 
output state is measured, it will collapse each qubit into 
the state |0> or |1>, preventing us from learning the 
transform result directly[3]. In addition, the contents of 
section 2.1 in this paper shows that Klappenecker’s DCT 
cannot be applied to DCT of image compression too. 
Klappenecker’s DCT is useful on many other signal 
processing maybe. 
 
   Latorre presentes a novel quantum representation for 
image compression [9]. The entropy of images is, in 
general, very large. An image with large entropy is hard 
to compress. The idea in Latorre’s paper is to keep the 
largest eigenvalues of the Schmidt decompositions when 
the picture is written in a renormalization group manner, 
that is, the largest contribution to the entropy in that 
basis. Latorre’s algorithm is nice but it is not competitive 
with jpeg. The reason is that jpeg uses details of how 
human see. The quantization table used in jpeg is 
tailored to the human eye. Unless there are quantum 
quantization methods are incorporated in Latorre’s 
algorithm, there is no way it is as efficient as jpeg. 
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2. THE REPRESENTATION OF IMAGE BY                  
           USING QUANTUM STATES. 

         

2.1. Classical Data structure of 1-D DCT 

   For a given vector , we 
can declare a BYTE array ”BY TE x[N]” to store it by 
using c language, where c language is compiler language 
of classical computer [7]: 

    
  There is a logical mapping to associate subscript with 
component of vector x: 

                              (1) 
   The logical mapping is necessary because it associate 
data with the corresponding logical address. CPU 
accesses value x[i] according to the subscript i (i.e., 
logical address) 
   The mapping is done by memory-management unit 
(MMU) of Operating System [8]. The operation of 
access data is a very very fast operation so that the time 
of access can be ignored when designing algorithm. 
   Fig3 illustrates the logical mapping. Fig4 illustrates 
the physical realization of the logical mapping [8]. 
             

               
FIG. 3: The Conception of the Logical Mapping. 
The mapping associates data with the 
corresponding 
logical address 
 

             
FIG. 4: The Illustration of the Physical Realization 
of the Logical Mapping [8]. Accessing data is very 
very fast operation so that the time of access can be 
ignored when designing algorithm. 
 

    Similar to vector x, the vectors  ,  , , matrix 
D and matrix F  can be stored in array respectively, and 

the Operating System of classical computer will 
establish the mapping (equation 1) automatically [8]. 
    For example, we declared a two dimensional array 
”BY TE arrayImage[N][N]” to store matrix F. The 
mapping between position (i, j) and pixel value  is 
defined as 
       (2) 
The above mapping (equations 1 and 2) should be also 
kept in quantum computation so that arbitrary 
component of vector or matrix is associated with the 
corresponding subscript. 
 
  By the definition of DCT , QFT and Klappenecker’s 
DCT cannot both keep the mapping. Therefore, More 
suitable quantum data structure is required in order 
to keep the mapping and harness the power of quantum 
computation for image compression. 
 
 

 

2.2.The Quantum Representation of Image 

2.2.1. Data Structure of Quantum Representation of  
       Image 
 
To keep the mapping in equations (1) and (2), the 
following database technique is presented to represent 
image F  in this paper: 
   First, all vectors 

are stored in a 
database. Each vector is regard as a record with unique 
index i. 
   Second, all vectors are loaded into CPU 
simultaneously and form the superposition of 

States  by using 
quantum addressing scheme and unitary operation 
LOAD. 
  LOAD operation that is denoted by UL is defined as  

       
, where  denotes addition modulo 2, that can be 
realized by utilizing controlled NOT operation [3]. 
In vector notation, 

                                     (3) 
LOAD operation is the basic operation of quantum 
computer ([3], chapter 6). 
Figure 5 illustrates the representation of image by using 
quantum states. 
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FIG. 5: The Representation of Image by Using 
Quantum States: LOAD operation  

| is a CNOT operation and is a very very 
fast operation so that the time of addressing can be 
ignored when designing quantum algorithm such as 
Grover’s algorithm. It is clear that the most 
efficient possible algorithm is in this model of 
computation 
 
  The proposed representation of image in this paper 
keep the mapping in equation (2) so that subscript(j, i) is 
associated with corresponding pixel value . State 

is entanglement 
state when ancilla1 and ancilla2 are constants. 
Therefore, if we obtain value i from the second register, 

we will get the unique mapping vector  in third 
register. Thus, the mapping is kept. 

3.Quantum Mechanics and QSP Framework 
  Quantum mechanics is the basis for an understanding 
of 
quantum signal processing (QSP), so we first provide 
the 
necessary background of quantum mechanics in this 
section. For simplicity, let us study the simplest quantum 
system known as the "square well", which is a particle in 
a one-dimensional box. The Schrodinger's equation of 
this system is given by 
                   

                    
 
where m is the mass of the particle, h is the Plank's 
constant, and potential function  for  
and    otherwise, as shown in Fig.1. Thus, the 
boundary conditions of probability wave function  are 

 and . Solving this differential 
equation, we get   

                   

Where    and 

         

Because n is 
integer, the energy level has been quantized into discrete 
valve. Moreover, it is not difficult to verify that the 
complex valued function  form an 
orthonormal set. If we only consider the two lowest 
energy levels, the wave function of interest  is 

          

 

And , then  can be rewritten 
as 

            
Thus, at position x, we can write our state vector 
abstractly as 

                 
Where . This two-level system 
represents a quantum bit or qubit. Based on the above 
example, the four postulates of quantum mechanics are 
described as follows: 
Postulate 1: State space 
     Associate to any isolated physical system is complex 
vector space with inner product (i.e., a Hilbert space) 
known as the state space of the system. The system is 

completely described by its state vector  , which 
is a unit vector in the system's state space. 
 
Postulate 2: Time evolution 
   The time evolution of the state of a closed system is 
described by the Schrodinger equation or a unitary 
transformation. That is, the state  is related to the 
state  by a unitary operator U. In our qubit 
example, this means 

                   
 
Postulate 3: Measurement 
    Quantum measurement are described by a collection 
of 
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matrices  which satisfy the complete equation  

 and  , where H denotes 
transpose conjugate and I is an identity matrix. The 
probability that measurement outcomes m occurs is 
given by 

               
where notation  denotes the transpose conjugate 

of . And, the state of the system after 
measurement is 

            
In our qubit example, we choose the measurement 
matrices as 

           
Thus, the probability  and . The 
state after measurement in this example is 

 
Note that measurement consistency is a fundamental 
postulate of quantum mechanics, i.e., repeated 
measurements on a system  must yield the same 
outcome. This result is valid under the condition 

 . Therefore, the state of the system after a 
measurement must be such that if we re-measure the 
system in this state, then the final state after this second 
measurement will be identical to the state after the first 
measurement. 
 
Postulate 4: Composite system 
The state space of a composite physical system is tensor 
product of the state spaces of the component physical 
system. As an example, let two quantum states be 

 and  , then the 

tensor product of  and  is given by 

 
We often use the abbreviated notation  for the 
tensor 

product  . Thus, we have 
 

 
 
Note that the postulate 4 can not enable us to obtain the 
following two qubit state 

                            
This sate is the well-known entangled state. 
Entanglement has played a crucial role in quantum 
computation and quantum information. 
 
Based on the above four postulates of quantum 
mechanics, quantum computation algorithm (QCA), 
quantum information theory (QIT) and quantum signal 
processing (QSP) can be developed. In this paper, we 
will focus on the QSP framework proposed by Eldar and 
Oppenheim [13]. The general quantum signal processing 
framework is shown below. 

Three steps involved are input mapping, QSP 
measurement and output mapping. First, the input scalar 
value of signal is first mapped into the linear 
combination of state vectors of a quantum system. Then, 
we measure the superposition state vectors using 
quantum measurement postulate. Finally, the 
measurement outcome is mapped to the algorithm 
output. In the following, we will use this QSP 
framework to develop three quantum image processing 
algorithms. These algorithms are derived by using 
physical quantum phenomena and constraints as 
metaphors. 
       

3.1.Quantum Image Halftoning Algorithm 
   Digital image halftoning techniques have been widely 
used in the printing of books, magazines, newspapers 
and in computer printers. It transforms grayscale images 
into bi-level image before output device actually 
displays or prints out the image. Because the human eyes 
possess the ability to integrate the neighboring halftone 
dots, human      eyes    will      perceive them as 
continuous-tone images.  So far, the popular halftoning 
algorithms are error diffusion method and ordered dither 
method [10][11]. Given a gray scale image x(m,n) with 
size MxN, the quantum algorithm to obtain the 
halftoning image y(m,n) is described below: 

3.1.1. Input mapping 
   In this stage, we will transform each pixel x(m,n) into 
a quantum bit |q(m,n)> which is a superposition of two 
quantum states |0> and |1>, i.e., 
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where  is the measurement probability of state |0> 

and  is the measurement probability of state |1>. 

Thus, we have the relation . If each pixel 
value x(m,n) has been normalized into the range [0,1], 
then |c0|2 and |c1|2 can be computed by following 
method. Like error diffusion, the probability that 
y(m,n)=1 will depends on its foregoing neighboring 
output values and coming neighboring input pixel 
values. Let us define two sums as  

 
then the value P is calculated by 

                           

Thus, the measurement probabilities and can 
be computed by using the following two equations: 

                 
where function f(P) is 

                     
When states |0> and |1> correspond to the basis vectors 
(1,0) and (0,1) in two dimensional space, then the 
mapping quantum bit |q(m,n)> corresponds to the vector 
(1-f(P),f(P)). Thus, each pixel value of image is mapped 
into a vector in two dimensional space. 

3.1.2. QSP measurement 
   The measurement postulate of quantum mechanics 
says that when we measure a superimposed quantum bit, 
it will be projected into one of the states allowed by the 
measurement. Thus, after quantum bit |q(m,n)> is 
measured, the measurement outcome |o(m,n)> is either 
state |0> or |1>. The measurement has a probability of 

of being found in state |0>, and a probability of 

of state |1>. In this paper, the measurement is 
performed as follows: First, we generate a random 
number z uniformly distributed in the range [0,1] per 
each measurement of qubit |q(m,n)>. Then, if z is in the 

range [0, ], then outcome |o(m,n)> is the state |1>. 

Moreover, if z is in the range ( ,1], then outcome 
|o(m,n)> is the state |0>. 

3.1.3. Output mapping 
    The output    pixel    value y(m,n) of halftoning image 
is determined from the measurement outcome |o(m,n)> 
by the using the following rule: If the outcome |o(m,n)> 

is the state |0>, then y(m,n)=0. And, if the outcome 
|o(m,n)> is the state |1>, then y(m,n)=1. After the output 
mapping, bi-level image y(m,n) is the final desired 
halftoning image. 

3.1.4. Experimental Result 
In this experiment, the input gray level image x(m,n) is 
the Lena with size 256x256, as shown in Fig.6(a). 
Fig.6(b)-(e) shows the halftoning images by using binary 
threshold method, ordered dither method, error diffusion 
method and proposed method. The output image of 
binary threshold method is computed by 

            
The details of ordered dither method and error diffusion 
method can be referred to [6]. The parameters a and b of 
proposed method is a=0.5 and b=0.05. From the results 
in Fig.6, we see that the uniformity of image of error 
diffusion is better than other three methods. However, 
the contrast of image of proposed method is superior to 
those of other three methods because the 
edges are sharper. 
 

 3.2.Quantum Image Edge Detection              
Algorithm                                                                          
  The local discontinuities in an image luminance from 
one level to another are called edge. The edge detection 
is a problem of fundamental importance in image 
analysis [1][12]. Edges characterize object boundaries 
and are therefore useful for segmentation and 
registration of objects in scenes. Given a gray scale 
image x(m,n) with size MxN, the quantum algorithm to 
detect its edges is described below: 

3.21. Input mapping 
   In this stage, the pixel x(m,n) is transformed into a 
quantum bit . Three steps to 

compute the state probabilities and is given as 
follows: First, the row derivative gr(m,n) and column 
derivative gc(m,n) are computed by using the Sobel 
operator below: 
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Second, the magnitude of gradient vector (gr(m,n), 
gc(m,n)) can be computed by  

                       

Finally, the probabilities and are determined 
by the equations: 

                     
where the function f(.) is defined by 

                          
The parameters a and b are two prescribed positive 
numbers. From this mapping, it is clear that the larger 
gradient vector magnitude g(m,n) is, the larger value of 

probability has. 

3.2.2. QSP measurement 
  When quantum bit |q(m,n)> is measured, the 
measurement outcome |o(m,n)> is either state |0> or |1>. 
In this paper, the measurement is performed as follows: 
First, we generate a random number z uniformly 
distributed in the range [0,1] per each measurement of 

qubit |q(m,n)>. Then, if z is in the range [0, ], then 
outcome |o(m,n)> is the state |1>. Moreover, if z is in 

the range ,1], then outcome |o(m,n)> is the state |0>. 

3.2.3. Output mapping 
    The output pixel value y(m,n) of edge image is 
determined from the measurement outcome |o(m,n)> by 
the using the following rule: If the outcome |o(m,n)> is 
the state |0>, then y(m,n)=0. And, if the outcome 
|o(m,n)> is the state |1>, then y(m,n) may be 1 or 0. 
When following two cases hold, then y(m,n)=1. 
Otherwise, y(m,n)=0. 
Case 1: If four conditions |o(m,n)>=|1>, |gr(m,n)|> 
|gc(m,n)|, g(m,n)>g(m+1,n) and g(m,n)>g(m-1,n) hold 
simultaneously, then output y(m,n)=1. 
Case 2: If four conditions |o(m,n)>=|1>, |gc(m,n)|> 
|gr(m,n)|, g(m,n)>g(m,n+1) and g(m,n)>g(m,n-1) hold 
simultaneously, then output y(m,n)=1. 
After the output mapping, bi-level image y(m,n) is the 
final desired edge image. 

3.2.4. Experimental Result 
   In this experiment, the input gray level image x(m,n) is 
the Lena with size 256x256, as shown in Fig.7(a). 
Fig.7(b)-(e) shows the edge images by using proposed 
method, Sobel method, Laplacian of Gaussian (log) 

method and Canny method. These edge images are 
obtained by using Matlab instructions listed below: 
                      

                          
The parameters a and b of proposed method is a=70 and 
b=0.1. From the results in Fig.7, we see that the 
proposed method is almost comparable with the Sobel 
method because Sobel mask is used to estimate the 
gradient vector. 
 

5.Illustrations,  photographs 

 
Figure 6 The image halftoning results. (a) original 
image (b) binary threshold method (c) ordered 
dithering (d) error diffusion (e) proposed method. 
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Figure 7 The image edge detection results. (a) original 
image (b) proposed method (c) Sobel method (d) 
Laplacian of Gaussian method (e) Canny method. 
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