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Abstract 

“Mission-critical” systems, which include such di- 
verse applications as nuclear power plant con- 
trollers, “fly-by-wire” airplanes, medical care and 
monitoring systems, and autonomous mobile ve- 
hicles, are characterized by the fact that system 
failure is potentially catastrophic. The high cost 
of failure justifies the expenditure of considerable 
effort at design-time in order to guarantee the 
correctness of system behavior. This paper exam- 
ines the problem of guaranteeing safety in a well 
studied class of robot motion problems known as 
the “asteroid avoidance problem.” We establish 
necessary and sufficient conditions for ensuring 
safety in the simple version of this problem which 
occurs most frequently in the literature, as well 
as sufficient conditions for a more general and re- 
alistic case. In doing so, we establish functional 
relationships between the number, size and speed 
of obstacles, the robot’s maximum speed and the 
conditions which must be maintained in order to 
ensure safety. 

Introduction 
Applications in which the failure of a system to per- 
form correctly can result in catastrophe are known as 
mission-critical systems. The reliability requirements 
of such applications, which include nuclear power plant 
controllers, “fly-by-wire” airplanes, medical care and 
monitoring systems, and autonomous mobile vehicles, 
have motivated extensive research into the develop- 
ment of highly reliable software systems. Research into 
the development of systems-level support for mission- 
critical systems focuses upon “hard” real-time operat- 
ing systems, which can guarantee that the system can 
deliver resources stipulated by some externally gener- 
ated set of timing constraints. Similarly, the program- 
ming language community has developed technologies 
to ensure that programs will always behave correctly, 
with respect to some externally provided performance 
specification. 

In contrast to the effort in the systems and pro- 
gramming languages communities, there is not a large 
body of research into the problem of generating the 
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specifications which will ensure the correct and timely 
operation of a deployed mission-critical system. De- 
termining a correct plan of action is the focus of AI 
Planning research. However, the high-variance time 
requirements of current techniques make it difficult to 
guarantee that they will produce a correct solution in 
time to actually use it. CIRCA (Musliner, Durfee, & 
Shin 1995) was developed to address this problem: by 
modeling the world as a finite set of situation-states, 
with well defined transitions between them, CIRCA is 
able to search the situation space “offline” (i.e. before 
the system is actually deployed), in an effort to find 
a closed set of safe states such that, for any possible 
combination of external events, it will always be pos- 
sible for the control system to take an action that will 
keep the current situation-state within the closed set of 
safe states. When the situation space includes contin- 
uous dimensions, this technique can only be used if we 
can somehow discretize the continuous space. When 
the dimension is time, it is usually straightforward to 
meaningfully distinguish between times before and af- 
ter a deadline, as well as some small set of “deadline 
approaching” intervals. However, when the dimensions 
are spatial, there is often no simple partitioning which 
will allow us to reason about a finite set of discrete 
states. This paper examines the problem of guaran- 
teeing safety in a well-studied class of robot motion 
problems. By establishing sufficient conditions for en- 
suring safety, we provide the basis for automatic rea- 
soning about maintaining safety in spatial domains. 

The “Asteroid Avoidance Problem” 
Consider one of the simplest natural problems in dy- 
namic motion planning: how can we find a path for 
a robot, R, which travels from some initial location 
lc to some goal location lo, while avoiding each of n 
obstacles, 01, . . . , O,, where each of the Oi is moving 
at a known, constant velocity? We are making three 
simplifying assumptions that would rarely occur in a 
real-world application: 
1. The trajectories of the obstacles are known to the 

system in advance. 
2. The obstacles move linearly. 
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3. The speed of the obstacles is fixed. 

(Reif & Sharir 1985) named this class of prob- 
lems the asteroid avoidance problem, and they showed 
that, for the three-dimensional case, the problem 
is pSp&X-hard when the velocity of the robot is 
bounded, and Np-hard even when the robot’s velocity 
is unbounded. (Canny & Reif 1987) showed that the 
2-dimensional case is n/p-hard. This has strong im- 
plications for any mission-critical application, such as 
a fly-by-wire or autonomous vehicle system, for which 
the failure to avoid obstacles could be catastrophic: in 
the general case, we will only be able to find timely 
results for problems of very small size, even under the 
strong simplifying assumptions listed above. Addition- 
ally, one should note that these results are for the prob- 
lem of finding a path if it exists; there is no guarantee 
that such a path will in fact exist. 

This paper focuses upon finding restrictions to the 
problem for which we can guarantee that some safety- 
preserving path exists, and for which the problem of 
computing the solution is tractable. For instance (Fu- 
jimura & Samet 1989) g ive an O(n210gn) algorithm for 
solving the asteroid avoidance problem, under the as- 
sumption that the robot can move faster than all of 
the obstacles. (Reif & Sharir 1985) claim that under 
such an assumption, it is always possible to find such 
a path, as long as the initial position of the robot is 
not in the “shadow” of any obstacle, where the shadow 
of an obstacle is defined to be all those locations from 
which escape from that obstacle is impossible. The 
proofs that 1) a safety-preserving path always exists, 
and that 2) we have a relatively efficient way of finding 
it, are the two most important criteria for guarantee- 
ing that under these conditions obstacles will always 
be avoided. We shall refer to these as the existence 
and ability criteria, respectively. 

If we have the luxury of knowing well in advance 
what the initial positions and trajectories of the robot 
and obstacles are, so that we can compute the solu- 
t ion “offline” , and use it at the appropriate time, the 
existence and ability criteria are all we need to satisfy 
to ensure the robot’s safety. However, this situation 
rarely occurs in practice. Normally, the relevant data 
become available at some time, to, and we must have 
the appropriate solution by some later deadline, td, or 
the solution will be obsolete by the time we begin to 
execute it. We call the requirement that a solution be 
produced before it is obsolete the timeliness criteria. 
In the case where the speed of a robot is greater than 
that of any object, we can establish timeliness by ex- 
panding the shadow of each obstacle to account for the 
(worst-case) time required to compute a solution to the 
problem. 

In this section, we will consider the following vari- 
ant of the asteroid problem: we have a single robot, 
R, and a set of n obstacles Or, . . . , 0, moving at con- 
stant speeds ~11, . . . , II, along linear trajectories. The 
robot is capable of instantaneous, unbounded accel- 

eration, up to some maximum speed V,. Under what 
conditions can we guarantee that 1) a safety-preserving 
path exists which will allow the robot to avoid being 
hit by any obstacle and 2) we can compute the path 
in time to execute it? We shall model the robot as a 
single point and the obstacles as circles with diameters 
dl,... , d,. Most path planning literature assumes we 
can bound the robot and obstacles by polygons. Re- 
ducing the robot to a point is a standard technique 
introduced in (Lozano-Perez & Wesley 1979) : it turns 
out that a solution in the case where the robot is a 
convex polygon is equivalent to the case where the 
robot is a point and the sizes of the obstacles have 
been increased by the size of the robot. However, this 
technique can only be used when the obstacles do not 
rotate. Since a polygon that does not rotate can be 
bounded by a circle, and a polygon that does rotate 
can also be bounded by a (possibly larger) circle, cen- 
tered at the center of rotation, we use circles to rep- 
resent obstacles in order to simplify our presentation, 
and actually gain some generality. In this paper, we are 
concerned only with avoiding the obstacles: there is no 
goal position to which we are trying to move the robot. 
Finally, though the concepts we present do generalize 
to higher dimensions, we will limit our treatment to 
the two-dimensional case for ease of presentation. 

The Threat Horizon 
The central insight of this section is that, once we fix 
the number, speed and sizes of the obstacles, and the 
maximum speed of the robot, the obstacles can always 
be avoided, so long as they are each initially some min- 
imum distance away from the robot. We call this dis- 
tance the threat horizon, H. It should be obvious that, 
if we make H extremely large relative to the speeds of 
the obstacles, some safety-preserving path must exist. 
However, we would like to make H as small as possi- 
ble. We also need to satisfy the ability criteria, i.e., it 
is not enough to know a path exists, we must be able 
to find it. We address these issues in the proof of the 
following theorem: 

Theorem 1 Let R be a point in a 2-dimensional Eu- 
clidean plane, which represents the location of a robot 
at time to. Assume that the robot can rotate and ac- 
celerate instantaneously, but is limited by a maximum 
speed VT. Let 01,. . . ,O, be a set of n circular obsta- 
cles with diameters dl, . . . , d, which move at known, 
constant velocities ~1, , . . , v,. Let V, be the largest of 
the vi. Let W be the sum of the widths of the obstacles, 
i.e., W = Cy’, di. If each of the obstacles is initially 
a distance greater than 

W(K + K-> 
26 

from R, then there exists a “safe harbor” point S such 
that none of the Oi will touch S at any time, and the 
robot can move from R to S without intersecting any 
of the Oi. 
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Proof: Let Qi be the space occupied by obstacle 
Oi, from time to to t,. Since the obstacles move along 
linear paths, Qi is comprised of all of the space between 
two parallel rays, separated by a width of di. Since the 
space which lies between two parallel lines has been 
named a plank, we shall call this region a half-plank of 
width di. 

If each of the obstacles begins at a distance greater 
than W(VO + Vr)/2V,. from R, then for each obstacle 
Oi, there must exist a positive number ii, such that Oi 
begins exactly W(VO + V,)/2VT + ii from R. Let E = 
2V,iJ(Vo+Vr). Th en e is positive, ii = e(Vo+Vr)/2VT, 
and Oi begins a distance (W + e)(T/, + Vr)/2VT from 
R. 

The earliest time that one of the obstacles could in- 
tersect the robot would be in the case that the obsta- 
cle 0, for which i, is the smallest of the E^i , travels at 
speed V, and heads directly towards R, while the robot 
travels a straight-line path 
mum speed VYT 

towards O,, at its maxi- 
In this case, 0, and the robot would 

collide at time to + ((W + e)(V, + Vr)/2VT(V0 + VT)), 
which is just to + (W + e)/2Vr. 

Now consider the region which comprises all of the 
points to which the robot could move by time ti > to, 
while never moving at a speed greater than V,: This 
area is just a circle, with radius Vr(tj - to). It follows 
that the area which comprises the locations to which 
the robot could travel before it could possibly be hit 
is a circle centered at R, with radius V,(to + (W + 
4/w” - to), which simplifies to (W + ~‘)/a. We shall 
call the distance (W + e)/2 the safety radius, and the 
circle of this radius centered at R the safety region. 

Now we need to show that the n half-planks, 
Ql, * * *, Qn, cannot completely cover the safety region. 
To do this, we use the 2-dimensional version of Bang’s 
solution to Tarski’s “plank problem” (Bang 1951)) 
which states’ : 

Theorem 2 (Bang) If L is a convex body of minimal 
width 1 in a 2-dimensional Euclidean plane, and L is 
contained in the union of p planks of widths hl, . . . , h,, 
then hl +. . . + h, 2 1. 

Clearly, the set of objects which can be covered by 
planks is a superset of the set of objects which can 
covered by half-planks. Since the safety region is a 
convex body of width W + 2e, by Bang’s theorem, in 
order for the n half-planks to cover the safety region, 
Cy’1 di must be greater than or equal to W + 2~. But, 
by definition, W = CyZ1 di, and E is positive, so there 
must be some area within the safety region which is 
not covered by the @i. This proves the existence of 
S. To see that the robot can move from R to S with- 
out being hit, one only need remember that the safety 
radius was defined so-that it is possible for the robot 
to move anywhere in the safety region by the time the 
first obstacle reaches its perimeter. Q.E.D. 

1 This theorem generalizes to n-dimensions. 

This proof satisfies the existence criteria. In order 
to compute the solution, we need to compute the inter- 
section of the n half-planks with the safety region. If 
k is the number of intersections of the half-planks, this 
can be done in 0( (k + n)logn) using a modification of 
(Bentley & Ottmann 1979) algorithm for reporting the 
intersection of line segments, as elaborated in (Melhorn 
1984, pp. 154-160). (Chazelle & Edelsbrunner 1992) 
describe an O(nlogn+k) algorithm which could also be 
modified to find safe harbors within the safety region. 
Either of these solutions satisfies the ability criterion. 

In order to establish timeliness, for a fixed number 
of obstacles n, we need to know the actual worst-case 
time required to compute the solution. Call this time 
t,. If we increase H by the maximum distance an ob- 
stacle can travel in t,, then we ensure that the system 
will have sufficient time to compute and execute the 
solution. Thus, the threat horizon, H should be 

K * t, + W(v0 + vr)/2Vr 

in order to guarantee timeliness. Note that we can use 
a similar argument to account for robot rotation and 
acceleration times, in the more realistic cases where 
acceleration and rotation are not assumed to be in- 
stantaneous. 

The Necessity of the Threat Horizon 
In the previous subsection, we showed that constrain- 
ing obstacles to begin their travels outside of the threat 
horizon H was sufficient to ensure the safety of the 
robot. In this subsection, we show that the bound is 
tight. Note that the size of the safety region depends 
only upon the sizes of the obstacles, while H also de- 
pends upon the ratio of V0 to V,. This leads to the 
following theorem: 
Theorem 3 Let R be a point in a 2-dimensional Eu- 
clidean plane, which represents the location of a robot 
at time to. Assume that the robot can rotate and ac- 
celerate instantaneously, but is capable of only a max- 
imum speed V,. Let 01, . . . , 0, be a set of n circu- 
lar obstacles with diameters dl, . . . , d,, which move 
at known, constant velocities 211, . . . , vn. Let W = 
Cr’1 di, and let S be a positive constant, such that 
S > 2WVr/V,. If at time to obstacles are allowed to 
start a distance 

from the robot, then there exist configurations for which 
it is not possible for the robot to avoid collision. 

Proof: It suffices to show a single configuration for 
which it is not possible to avoid the obstacles. Let all 
the obstacles Oi have the same diameter D. Assume 
that the Oi start in the configuration depicted in Fig- 
ure 1, where the obstacles are just touching (i.e. for 
i < n the distance from the center of Oi to the center 
Of Oi+l is D), and they are all traveling at speed VO, 
along parallel courses as indicted in the figure. Let It 

(W - qvo + vr)/w” 
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Figure 1: Necessity of the Threat Horizon 

be the line which is tangent to all of the obstacles at 
time t, and which is on the same side of the obstacles 
as it is at time to, when it is on the side of the obstacles 
nearest the robot. Let the distance from R to the line 
10 be (W - S)( V, + VT)/2VT. Clearly, all of the obstacles 
are initially at least this distance from R at time to. 
The robot can travel the distance (W - S)/2 in time 
(W - 6)/2VT. Wh en it has done so, the line I(,-,)/,, 
will be a distance (W - S)/2 away from the (original) 
point R. If the obstacles can travel the distance W be- 
fore the robot can move S/2, then they will completely 
traverse the circle of radius W/2 centered at R before 
the robot is able to have moved outside of this circle. 
That is, if W/V0 < 6/2V,., the robot will be hit by at 
least one obstacle. Since, by definition S > 2WV,/V0, 
this completes the proof. 

In cases where V0 is large relative to W and V’, S 
approaches arbitrarily close to 0. Consequently, H = 
W(K + K)/2vr is the minimum distance for which we 
can guarantee that a safety-preserving path exists, in 
the general case. 

The Dynamic Asteroid Avoidance 
Problem 

In the previous section, we presented a necessary and 
sufficient criterion for guaranteeing safety in the aster- 
oid avoidance problem. In doing so, we have estab- 
lished a functional relationship between the number, 
size and speed of the obstacles, the maximum speed of 
the robot and the distance which obstacles must ini- 
tially be from a robot in order to ensure that the robot 
will never collide with any of the obstacles. We have 

also shown that, in those cases where we can guar- 
antee safety, there is a simple and efficient means of 
finding the safety-preserving path. The problem we 
have addressed thus far makes the same simplifying as- 
sumption as in made in, e.g., (Fujimura & Samet 1989; 
Kant & Zucker 1986; Reif & Sharir 1985) : the position 
and the trajectories of the obstacles are known prior 
to execution time. While this formulation has proven 
challenging, it is overly optimistic. Normally, we can 
expect the existence, location and trajectories of obsta- 
cles to become known during execution, perhaps while 
the robot is already in the process of avoiding previ- 
ously detected obstacles. In this section, we examine 
the problem of guaranteeing safety when the location 
of obstacles must be sensed at execution time, which 
we have named the “dynamic” asteroid problem. Us- 
ing Theorem 1, we develop a sufficient condition for 
ensuring the existence of a safety-preserving path in 
this problem. 

Obstacles with Uniform Velocity 
Consider the asteroids problem described above, where 
we know there are at most n circular obstacles 
Ol)... , 0,) traveling along linear trajectories at con- 
stant speeds. For simplicity, we will assume that all of 
the obstacles are of the same diameter, D. In addition, 
assume that all of the Oi move at the same speed, VO. 
Unlike the previous section, we do not assume that we 
know the location of the obstacles in advance. Instead, 
the obstacles are allowed to appear, one or more at a 
time, up to a maximum of n obstacles. We wish to 
determine a safety horizon, B, such that we know that 
a safety-preserving path exists as long as all of the ob- 
stacles initially appear at a distance of at least I? from 
the robot. The following is a corollary of Theorem 1 
above: 

Corollary 1 Let H be W(VO + V,)/2V,., where W = 
nD, VP is the maximum speed of the robot, and V, is 
the (uniform) speed of the obstacles. If each of the 
obstacles Oi appears at some time t,(i) 2 to, at a dis- 
tance greater than I? = nH + W from the position of 
the robot at that time, then there exists a collision-free 
path from the starting point R to some point S such 
that none of the Oi will touch S at any time. 

Proof (by induction on m, the number of obstacles 
which have already appeared2): The base case is han- 
dled by Theorem 1, since nH + W 2 H, and we can 
assume that ta(l) = to. 

Assume, by induction, that after the first m < n of 
the obstacles have appeared, there exists a safety pre- 
serving path to some point S, which is safe from all 
of the obstacles 01, . . . , 0,. Let R, be the location of 
the robot at time t,. If at time t,(,+l) all of the obsta- 
cles 01,. . . ,O, are farther than H from R,(,+lj, then 

2This is not induction on n, the maximum number of 
obstacles which can appear. 
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once again Theorem 1 holds, and a safety preserving 
path exists from R,(,+r) to some point Sm+r. If one 
(or more) of the Oi is within H of the robot, then the 
robot can wait at S, until those obstacles have trav- 
eled at least a distance H from S,. In the worst case, 
this time is (H + D)/VO. Of course, another obstacle 
could move to within H of S, in this time. Since there 
are only m < n obstacles, the longest we would have 
to wait would be m(H + D)/VO before we can be as- 
sured that all of the obstacles are at least H from S,. 
In this worst-case, the most recent obstacle, Om+r will 
still be a distance greater than (nH+W)-m(H+D) = 
n(H+D)-m(H+D)=(n-m)(H+D)fromS,, 
and since m < n, we know that this distance is greater 
than H. Thus we know that at some time, all of the 
m + 1 obstacles will be outside of the safety region, 
and so Theorem 1 applies. Thus there exists a (linear) 
path from S, to some new point ,?&+I. Q.E.D. 

Since by definition W = nD, it follows that H = 
n2D((v0 + K-)/K + I), and thus this corollary gives 
an O(n2) upper bound for the threat horizon in the 
dynamic asteroids problem. It is also easy to see that 
B is sufficient to guarantee safety so long as there are 
never more than n obstacles within fi of the robot R 
at any single time, even if many more than n obstacles 
appear over time. 

Allowing the speed of Obstacles to Range 
from Vl to V. 
There is a straightforward generalization of the above 
theorem in cases where the obstacles are constrained to 
have constant positive velocities ranging from a lower 
bound of & to a maximum speed of VO. 

Corollary 2 Let 01,. . . ,O, be n circular obstacles of 
fixed diameter D, each constrained to move at a con- 
stant velocity, Vi, such that tJi Vl 5 Vi 5 VO, where 
Vj and V, are fixed positive constants. Let W = nD, 
and H be W(VO + V,)/2V,, where VT is the maximum 
speed of the robot. If each of the obstacles Oi appears 
at some time t,(i) 2 to, at a distance greater than 

N = K&H + W> 
-_ 
Vi 

from the position of the robot at that time, then there 
exists a collision-free path from the starting point R to 
some point S such that none of the Oi will touch S at 
any time. 

Proof (by induction on m, the number of obsta- 
cles which have already appeared): The base case is 
again handled by Theorem 1, since that theorem ap- 
plies whenever obstacle velocities are constrained by 
some maximum, VO, and obstacles occur outside the 
threat horizon H. Since V, 2 q, it follows that, for all 
values of n, V,n/Vl 2 1, and thus H > H. 

The inductive step is very similar to that for Corol- 
lary 1: Assume, by induction, that after the first m < n 
of the obstacles have appeared, there exists a safety 

preserving path to some point S, which is safe from 
all of the obstacles Or, . . . , 0,. Let R, be the location 
of the robot at time t,. If at time tacm+l all of the ob- 
stacles Or, . . . , 0, are farther than H 1 rom R,(,+l), 
then once again Theorem 1 holds, and a safety preserv- 
ing path exists from R,(,+l) to some point Sm+r. If 
one (or more) of the Oi is within H of the robot, then 
the robot can wait at Sm until those obstacles have 
traveled at least a distance H from S,. 

In the following, we have to change the earlier proof 
to account for the fact that slower moving obstacles 
may remain near the robot for longer periods of time: 
In the worst case, this time is (H + D)/& (note that 
(H + D)/VJ 5 (H + D)/VO, which was the worst case 
in the previous proof). Again, another obstacle could 
move to within H of Sm in this time. Since there are 
only m < n obstacles, the longest we would have to 
wait would be m(H + D)/K before we can be assured 
that all of the obstacles are at least H from S,. In this 
worst-case, the most recent obstacle, O,+r can travel 
a distance of up to 

K * m(H + D)/K 
(if it happens to have the maximum speed, VO). In any 
case, then, this will still be a distance greater than V0 * 
(nH+W)/l+--K,*m(H+D)/ti = (n-m)K,(H+D)/K 
from S,, and since n > m, and V, 2 Vl, we know that 
this distance is greater than H, and Theorem 1 applies. 
Thus there exists a (linear) path from S, to some new 
point Sn+r, which is safe with respect to all of the 
currently visible obstacles. Q.E.D. 

Note that this threat horizon grows with the ratio 
of the maximum speed to the minimum speed of ob- 
stacles, V,/Vl. If this number is large, the horizon be- 
comes prohibitive. Intuitively, slower moving obstacles 
should be easier to avoid, but in the context of this re- 
sult, allowing the speed of obstacles to approach zero 
will make the threat horizon approach infinity. This is 
a clear indication that the bound is not tight. Even in 
the case where V 0 = &, we choose H to account for the 
case when all n obstacles are a distance H from the ob- 
stacle, but we choose n = n H + W to account for the 
times when the n obstacles are “evenly” spaced. But 
when all the Oi are visible H alone is sufficient, and 
when the obstacles are evenly spaced, so that exactly 
one is within H or the robot at any given time, then a 
horizon of H’ = H/n = H + D will suffice. With this 
insight, it is possible to reduce l? by a factor of 4, but 
the resulting horizon is still O(n2). We are currently 
trying to prove the conjecture that a threat horizon 
which is linear in the number of obstacles exists. 

Goals of Achievement 
In mission-critical applications, we can distinguish two 
components to the planning problem: 

1. Achieving Goals - in most applications, the agent 
will be charged with satisfying (or perhaps opti- 
mizing) some goal function, where the successful 
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2. 

achievement of a goal has some positive utility, and 
the failure to achieve a goal is not considered catas- 
trophic (i.e. the utility in negative, but small com- 
pared to the cost incurred by a failure to maintain 
safety). 

Maintaining Safety - avoiding catastrophic failure 
is the primary consideration of MC control systems. 
For our purposes, all catastrophes are equivalent, in 
the sense that none is considered more or less desir- 
able than any other. Since the cost of failure is ex- 
tremely high, we seek problem solutions which will 
guarantee that the agent remains appropriately dis- 
tant from any and all threats. 

In these domains, the constraints imposed by the sec- 
ond component absolutely dominate the influences of 
the first. So, for example, a mission-critical system will 
not attempt to achieve a non-critical goal, no matter 
what its utility is, unless it can assure itself that it 
is possible to maintain safety. This dominance allows 
us to effectively decouple the two components, and to 
consider the problem of maintaining safety indepen- 
dently of the influences of goals-of-achievement. This 
has allowed us to develop and implement a simulation 
in which a robot can achieve goals while avoiding mov- 
ing obstacles. (Reif & Sharir 1985) present a search- 
based solution to the asteroids problem which is expo- 
nential in the number of moving obstacles. The high- 
variance time requirements of this algorithm make it 
unsuitable for ensuring that obstacles are avoided, but 
we are using a version of it to determine non-critical, 
safety-preserving paths to goals, while using a much 
faster algorithm based upon the results above to en- 
sure safety. Using the Maruti hard real-time operating 
system (Saksena, da Silva, & Agrawala 1993), we are 
able to guarantee processing time to the safety-critical 
routines, and allow the search to use the processor time 
that is left over when the critical routines have finished. 
If the search algorithm is able to find a path to a goal 
quickly, then the system can use it without compro- 
mising safety. Otherwise, the lower-level competences 
for finding and reaching a safe-harbor will ensure that 
the robot remains safe while it searches for a way to 
achieve its goals. 

Conclusions 
It is easy to see the limitations of this work in its cur- 
rent form. However, without similar, albeit more com- 
prehensive, results, we cannot deploy mission-critical 
systems in spatially-situated domains. The time and 
expense involved in developing hard real-time oper- 
ating systems running provably correct software is 
wasted if the system specifications are not sufficient to 
ensure that catastrophe will be avoided. Presumably, 
the application domains will have sufficient restrictions 
and regularities to allow the development of provably 
correct behavioral competences. We believe the tech- 
niques introduced in this paper provide a basis for rea- 
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soning about safety maintenance in spatial domains in 
particular, and continuous domains in general. 
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