Controlling Deliberation in a Markov Decision
Process-Based Agent

George Alexander
Department of Software and
Information Systems
The University of North
Carolina at Charlotte
Charlotte, NC
gralexan@uncc.edu

ABSTRACT

Meta-level control manages the allocation of limited resources
to deliberative actions. This paper discusses efforts in adding
meta-level control capabilities to a Markov Decision Process
(MDP)-based scheduling agent. The agent’s reasoning pro-
cess involves continuous partial unrolling of the MDP state
space and periodic reprioritization of the states to be ex-
panded. The meta-level controller makes situation-specific
decisions on when the agent should stop unrolling in order
to derive a partial policy while bounding the costs of state
reprioritization. The described approach uses performance
profiling combined with multi-level strategies in its decision
making. We present results showing the performance advan-
tage of dynamic meta-level control for this complex agent.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Performance

Keywords

bounded rationality, Markov decision process, meta-level con-
trol

1. INTRODUCTION

Intelligent agents often must make effective use of limited
resources (such as time, computational power, or physical
resources) in order to achieve their goals. Deliberative ac-
tivities such as planning, scheduling, and negotiating are
used to manage these resources. However, an agent may
have limited time to devote to deliberation and may not be
able to reach globally optimal decisions in the time avail-
able. Thus it becomes important to maximize the effective
use of limited deliberative resources. Meta-level control is
the process of reasoning about and controlling the agent’s

Cite as: Controlling Deliberation in a Markov Decision Process-Based
Agent, George Alexander, Anita Raja, and David Musliner, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Miiller and Parsons (eds.), May, 12-
16., 2008, Estoril, Portugal, pp. XXX-XXX.

Copyright (©) 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Anita Raja
Department of Software and
Information Systems
The University of North
Carolina at Charlotte
Charlotte, NC
anraja@uncc.edu

David J. Musliner
Honeywell Laboratories
Minneapolis, MN
david.musliner@honeywell.com

deliberative actions. Examples of meta-level control ques-
tions are how to divide available deliberation time among
the different deliberative actions available to the agent and
what algorithms, parameters, and protocols the agent should
use for deliberation if multiple options are available.

This paper describes efforts to add meta-level control ca-
pabilities to the IU-agent [14,19], a scheduling agent based
on the Markov Decision Process (MDP) formalism designed
to operate in a cooperative multi-agent environment. Al-
though the IU-agent can perform deliberative actions and
domain actions simultaneously, the agent’s tasks involve tem-
poral constraints that necessitate intelligent management of
deliberation. The goals of the research are to implement a
meta-level control scheme to maximize the effectiveness of
the TU-agent’s deliberations (namely, determining when the
agent should update its MDP policy and taking measures to
ensure the agent stays on policy for as long as possible) and
to identify characteristics of domains in which meta-level
control of the IU-agent proved advantageous.

The rest of the paper is laid out as follows: first is a brief
discussion of related work in meta-level control, especially in
the area of performance profiling. Background information
is provided on Markov Decision Processes and the TAEMS
modeling language (a derivative of which was used to repre-
sent the TU-agent’s tasks) along with a description of the IU-
agent. Next is a description of the implemented meta-level
control approach followed by experimental results indicating
its advantages for the IU-agent. The paper is concluded with
a discussion of lessons learned over the course of implement-
ing meta-level control for the IU-agent and an indication of a
number of open issues for future work in meta-level control.

Related Work

There has been important previous work in meta-level con-
trol [5]. Russell and Wefald [17] describe an expected utility-
based approach to decide whether to continue deliberation or
to stop it and choose the current best external action. They
introduce myopic schemes such as meta-greedy algorithms,
single step and other adaptive assumptions to bound the
analysis of computations. In [16], Raja and Lesser present a
decision-theoretic approach that leverages an abstract repre-
sentation of the agent’s state to bound the cost of meta-level
decision making in a complex multi-agent environment.
Boddy and Dean [3] describe a decision-theoretic approach
to scheduling deliberative actions implemented by anytime
algorithms [6]. These algorithms are guaranteed to return a

result at any time they are interrupted, and it is assumed
that their solution quality increases as they are given more
computational time. Their approach uses performance pro-
files, which provide a measure of how the solution quality
changes over time. Hansen and Zilberstein [9] present a for-
mal approach to meta-level control of anytime algorithms
that reasons explicitly about monitoring costs. More re-
cently, Larson and Sandholm [11] evaluate the use of per-
formance profile trees, which stochastically model the path
the solution takes. Online meta-level control of an adap-
tive real-time agent is investigated in [8,15]. The meta-level
control scheme described in this paper uses the simplified
representation of a performance profile as a curve and adds
a multi-leveled decision making strategy. The performance
profiles are not assumed a priori, but are induced experi-
mentally and maintained through periodic updates.

2. BACKGROUND

2.1 Markov Decision Processes

A Markov Decision Process is a probabilistic model of a
sequential decision problem, where states can be perceived
exactly, and the current state and action selected determine
a probability distribution on future states [18]. Specifically,
the outcome of applying an action to a state depends only on
the current action and state (and not on preceding actions
or states). Formally, an MDP is defined via the 4-tuple
(S, A, P, R) : astate set S, an action set A, a transition
probability function P : § x A x § — [0, 1], and a reward
function R : S x A x S — R. On executing action «a in state
s, the probability of transitioning to state s’ is denoted P2,
and the expected reward associated with that transition is
denoted R:,,. A rule for choosing actions is called a policy.
Formally, it is a mapping 7 : S x A — [0,1] (if the policy
is deterministic, we may simplify this as 7 : § — A). If
an agent follows a fixed policy, then over many trials, it
will receive an average total reward known as the value of
the policy. In addition to computing the value of a policy
averaged over all trials, we can also compute the value of
a policy when it is executed starting in a particular state
s. This is denoted V™ (s) and it is the expected cumulative
reward of executing policy 7 starting in state s. This can
be written as

V7(s) = E[riq1 + reqo...|sc = s, 7]

where r; is the reward received at time ¢, s; is the state
at time ¢, and the expectation is taken over the stochastic
results of the agent’s actions.

For any MDP, there exists one or more optimal policies
which we will denote by 7* that maximize the expected value
of the policy. All of these policies share the same optimal
value function, written as V* The optimal value function
satisfies the Bellman equations [2]:

V*(s) = max Ty P(s' |s,a)[R(s" |s,a) + V(s)]
where V*(s') is the value of the resulting state s’.

2.2 TAEMS Modeling Language

TAEMS models [10] are hierarchical abstractions of multi-
agent problem solving processes that describe alternative
ways of accomplishing a desired goal; they represent major

SampleScenario
QAF: sum

Problem1
QAF: sum

EST
40

DL
65

Window2
QAF: sum

Perform A
Plan Ahead Perform B
QAFmax) "TTTTTTT facilitates QAF: max

Method A2
Q:80% 15, 20% 0O
D:75% 20, 25% 15

T
'
'
'
'
'
'
'
'
'
'
H
'
'
o]
>
R
9
2
14

QAF: max

Method A1
Q:100% 5
D:80% 10, 20% 15

Method B1
Q:60% 10, 40% 8
D:100% 15

Method B2
Q:80% 15, 20% 0
D:75% 20, 25% 15

Figure 1: An example TAEMS structure.

problems, decision points, and interactions between prob-
lems. Non-leaf nodes in the hierarchy are called tasks (tasks
may have one or more subtasks), while nodes at the low-
est level are called methods and represent the domain-level
actions available to an agent. Methods are characterized
by discrete probability distributions along three dimensions:
quality, duration, and cost. Quality Accumulation Functions
(QAFs) define how quality propagates from a child node to
its parent. Example QAFs are ¢_sum, indicating the parent
is assigned the sum of qualities from its children, ¢_maz, in-
dicating the parent is assigned the maximum quality of any
of its children, and ¢_min, indicating the parent is assigned
the minimum quality of any of its children. In addition,
temporal constraints may be represented by assigning ear-
liest start times and deadlines to nodes; these constraints
limit the time period available to achieve quality for the
node. Temporal constraints propagate downward through
the hierarchy. Finally, task interrelationships may be repre-
sented by linking nodes using non-local effects (NLEs). Ex-
ample NLEs include hard constraints, such as enables (the
enabled tasks cannot accrue quality until the enabling task
has achieved non-zero quality), as well as soft constraints,
such as facilitates (the facilitated task will accrue more qual-
ity if it is executed after the facilitating task has achieved
non-zero quality). An example TAEMS structure is given in
Figure 1.

A TAEMS model can be converted into an equivalent
MDP and solved to obtain an optimal policy [19]. In fact,
due to the deadline constraints in the TAEMS model, the
conversion will produce a finite horizon MDP. Starting from
the initial state, successor states are generated based on all
the actions available to the agent in a state and all possible
outcomes of those actions. For example, if the agent could
choose between two actions and these actions had no uncer-
tainty in quality, cost, or duration, then two successor states
would be generated. In general, if n actions are available in a

given state, each having g possible quality values, ¢ possible
costs, and d possible duration values, then n - ¢ - c¢-d imme-
diate successor states would be generated. In practice, even
for fairly small TAEMS models, if there is a lot of flexibility
in action choices and many possible outcomes of each action,
the MDP may be too large for the agent to completely enu-
merate in time. The IU-agent thus performs this conversion
incrementally and continually, alongside domain-level task
execution. Although the IU-agent derives its MDP from a
TAEMS model, our meta-level control approach does not
depend on TAEMS per se, just the incremental unrolling
process.

2.3 IU-agent

The IU-agent [19] translates its task model into an MDP
beginning with the earliest states and expanding toward the
problem horizon. This unrolling process must be periodi-
cally paused in order to derive a partial policy based on the
currently expanded states and continues until either the en-
tire MDP is unrolled, the scenario deadline is reached, or the
agent arrives in an unknown state and cannot remain on pol-
icy. States that have not yet been expanded are maintained
in a queue called the open list. If unrolling proceeds naively
in a breadth-first manner, then the agent may only be able
to expand states representing the near future and will con-
sequently perform poorly. If the agent cannot unroll enough
of the state space, or more specifically, a long enough view
of the state space, the resulting policy may be sub-optimal.
As more states are unrolled and the (partial) MDP becomes
more forward-looking, the agent’s partial policy approaches
the optimal policy for the complete MDP. Thus it is natural
to try to discover heuristics that guide the unrolling process
in a way that maximizes the expected quality of the agent’s
policy given limited computational time.

The process of unrolling the MDP without such heuris-
tic guidance is called uninformed unrolling. In contrast, the
IU-agent uses a method called informed unrolling [19], from
which it derives its name. Informed unrolling is based on
the principle that the agent should not spend much time un-
rolling states which will probably never be reached; thus the
IU-agent prioritizes unexpanded states in the open list ac-
cording to the probability of reaching those states when fol-
lowing an optimal policy. Policy execution occurs alongside
unrolling; hence as the actual outcome of actions becomes
known, the probability of reaching a state changes and some
states become unreachable. Therefore the IU-agent periodi-
cally removes or “prunes” unreachable states from the MDP
and the open list.! Pruning may be triggered by the agent
making an action choice (eliminating the states representing
the action(s) not chosen) or by the completion of a method
(eliminating the states representing those possible outcomes
that did not in fact occur). In addition, the open list is
periodically sorted so that states with the highest proba-
bility of being reached are placed toward the front of the
queue. After sorting the open list, the [U-agent solves the
current MDP to obtain a new partial policy. Meanwhile,
the unrolling process remains paused until the sorting/policy
derivation is complete. Policy derivation is costly [12]; thus

!Only states that are intrinsically unreachable are removed
(e.g., states corresponding to an earlier time period) States
which could not be reached by the current policy are re-
tained, since the policy may change as more of the state
space is explored.

meta-level control is needed to balance the time spent un-
rolling vs. the time spent sorting the open list and deriving
a policy. The meta-level controller initiates the process by
instructing the agent to perform an open list sort, which
in turn triggers the policy derivation function. Since this
sequence is opaque to the meta-level controller, we will re-
fer to the entire procedure as a “deliberative action” that is
triggered by an open list sort. Also, if a possible prune is
detected while the agent is in the middle of the sorting pro-
cess, the sort will be aborted and the prune processed, then
a new sort is begun using the pruned open list. Obviously,
interrupting many sorts over the course of the agent’s exe-
cution becomes expensive, wasting the computational time
already spent before the sorts are aborted. Therefore, the
agent requires adaptive control to schedule open list sorts at
the most appropriate times.

Since the unrolling process occurs alongside execution of
domain actions, the agent may enter an unknown state or a
state not considered in the agent’s current partial policy. In
this event, the agent abandons its MDP-based reasoning for
a myopic greedy action selection method.

3. META-LEVEL CONTROL APPROACH

The meta-level control component for the IU-agent is de-
signed with a number of goals in mind. The most ba-
sic motivation is the trade-off between keeping the agent’s
MDP policy current (by taking frequent deliberative ac-
tions) and maintaining a more forward-looking MDP (by
unrolling more states). In addition to this consideration, it
is desirable to reduce the amount of deliberation time wasted
by the agent on sorts that are interrupted by prunes before
completion, since these sorts-in-progress are thrown out and
the wasted time could have been spent unrolling more MDP
states. The third goal is to ensure that the agent stays on
policy for as long as possible, rather than fall back on a
greedy myopic deliberation method.

The agent can fall off policy in two different ways: “off the
end” or “off the side.” When the agent reaches an area of
the state space that has not yet been unrolled, the agent has
fallen off the end of its policy. If the agent reaches a state
that has been unrolled but not yet incorporated into its pol-
icy (that is, no action has been associated with the state), it
has fallen off the side of the policy. Falling off the end of the
policy can be avoided by maximizing the number of MDP
states unrolled, for example by reducing aborted sorts and
limiting the amount of time spent in deliberation. On the
other hand, falling off the side of the policy can be avoided
by maintaining an up-to-date policy; that is, by increasing
the frequency of deliberative actions. Thus the meta-level
control component has to balance competing goals.

The meta-level control approach consists of building per-
formance profiles for the agent’s deliberative action and us-
ing a number of heuristics to determine whether to initiate a
sort (triggering deliberation) or continue unrolling, discussed
in the following subsections. The general algorithm is sum-
marized in Procedure 1. Each time a state is expanded from
the open list, the IU-agent makes a decision about whether
to pause unrolling, resort the open list, and derive a new
partial policy, or just to continue unrolling. A single pri-
mary heuristic is tested first. If the primary heuristic does
not return true, then one or more secondary heuristics are
tested sequentially. If none of the heuristics return true,
then the IU-agent continues unrolling the MDP.

Procedure 1 Meta-level Control Loop

1: loop

2 expand a state from the open list

3 if primaryHeuristic then

4 call openList sort and derive policy
5: else if secondaryHeuristici then

6 call openList sort and derive policy
7

8

else if secondaryHeuristicy then

9: call openList sort and derive policy
10: end if
11: end loop

3.1 Performance Profiles

Initial data confirmed that the time required to reorder
the open list as well as the time required for policy derivation
(collectively, the deliberation time) scales with the number of
reachable states in the agent’s MDP; thus we collected from
the agent’s logs the deliberation time and reachable state
count for all the deliberative actions taken across a num-
ber of domains and used this data with gnuplot’s [7] built-
in curve-fitting feature (based on the Marquardt-Levenburg
algorithm [13]) to create a deliberation time estimator func-
tion. For this research, the correlation between reachable
states and deliberation time was treated as domain indepen-
dent (in other words, the performance of open list sorting
and policy derivation depends just on the number of reach-
able states and not the particular topology of the MDP).
Example deliberation time data is shown in Figure 2 with
the estimation function overlaid. Notice that the data follow
a roughly linear trend until about 60,000 reachable states,
when the sort times sharply increase. To account for this,
the data are fitted with the following piece-wise function:

Fla) = ax +b if = < 60000
T ex®+de?+ex+f if x> 60000

100000
10000 | i B
be:

1000 [~ 4

100 9

Deliberation Time (ms)

0 Actual deliberation times E
Curve for <60K states =
Curve for >=60K states =====

1 L L L L L
0 20000 40000 60000 80000 100000 120000

Reachable States

Figure 2: Deliberation time data before memory op-
timizations. Note the sharp increase in deliberation
times after approx. 60K reachable states.

Investigations suggested that the sharp increase in delib-
eration times was caused by garbage collection issues. Af-
ter some memory optimizations were performed on the IU-

agent’s unrolling algorithm, the data followed a smoother
curve. Timing data collected after these modifications were
made is shown in Figure 3, along with a re-tuned estimation
function. The curve-fitting procedure had to be periodically
re-run using the latest data as other changes were made to
the agent; however, the overall trend of the data remained
the same. These events hint at the possible interactions even
at the coding level between meta-level control and delibera-
tive control.

Note that the true number of reachable states is unknown
to the agent until after policy derivation is completed. For
input to the deliberation time function, this number was
estimated by the sum of the previous reachable state count,
the number of states added to the open list, and the number
of true terminal states added to the MDP.?

10000

1000 E|

100 E|

Deliberation Time (ms)

Actual deliberation times
Curve for <60K states ==
Curve for >=60K states =====

1 L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000

Reachable States

Figure 3: After memory optimizations, the trend in
deliberation time data is much smoother.

3.2 Time-to-sort Heuristics

The estimated deliberation time was used as input to sev-
eral heuristic functions that determine whether the agent
should stop unrolling and trigger an open list sort at a given
point in time. These heuristics are divided into two cat-
egories: primary heuristics and secondary heuristics. Pri-
mary heuristics represent rules for when to initiate a sort
under normal conditions. They are responsible for the pe-
riodic policy derivation that is necessary without any spe-
cial considerations. Secondary heuristics represent rules for
sorting in certain special cases; they allow the agent to op-
portunistically react when deriving an updated MDP policy
is particularly desirable.

3.2.1 Primary Heuristics

The IU-agent uses a single primary heuristic which does
not change over the course of a scenario. We considered a
number of possible heuristics, described below; however, our
experiments suggested that the sort-budget rule performed
best in the domains of interest. We hypothesized that the
best choice of primary heuristic may depend on characteris-
tics of the domain, but no clear trends in this regard were
discovered over the course of the experiments.

2true terminal states are actual terminal states of the com-
plete MDP, distinguished from states which are merely at
the edge of the partially-unrolled MDP.

n-pops-and-growth This rule triggers an openlist sort with

associated policy derivation to be performed whenever
N states have been popped off the openlist and ex-
panded and the MDP has grown by M states. For-
mally,

popped — F# of states popped off open list

growth «— # of states added to MDP

if (popped > N) A (growth > M) then

return true
end if

One of the challenges in effectively applying this rule
is deciding on appropriate values of N and M such that
sorting occurs regularly but not too frequently.

process-openlist-n-percent This rule is invoked when-
ever N% of the states from the openlist have been
expanded. Intuitively, the rule causes more frequent
sorting (thus a more focused MDP) during the begin-
ning of a scenario with less frequent sorting (thus more

breadth-first exploration) after the MDP becomes larger.

Formally,

prevSize < # of open list states after last sort

popped — # of states popped off open list

o N .

if popped > 155 - prevSize then
return true

end if

sort-budget This rule times sorts so that roughly a cer-
tain fraction of the agent’s time is spent on deliber-
ative actions versus unrolling. Let b be the budget
amount (i.e., the fraction of the time relative to un-
rolling time that we wish to spend deliberating), then
formally,

unrollTime < time since last sort
delibDuration < estimated deliberation time
deliberationRatio «— delibDuration/unrollTime
if deliberationRatio < b then

return true
end if

In order to prevent time lost to aborted sorts, these pri-
mary heuristics are constrained by an additional condition
(given in Procedure 2) that the triggered deliberative action
will not run over a method start time or possible method
completion time (which would cause some states to be marked
unreachable, hence aborting the sort-in-progress when these
states are subsequently pruned from the MDP). A sort is
triggered by the primary heuristic returning true only if Pro-
cedure 2 returns true as well.

Procedure 2 not-too-close-to-next-possible-prune

delibDuration < estimated deliberation time
nextEST < next earliest start of a method
nextFinish < next possible completion time of the cur-
rently executing method
nextPossPrune «— min(nextEST, next Finish)
if currentTime + delibDuration < nextPossPrune
then
return true
end if

3.2.2 Secondary Heuristics

In addition to the primary heuristic used to determine
when to perform routine openlist sorting/policy derivation,
the IU-agent uses multiple secondary heuristics to decide
whether to take an opportunistic deliberative action should
certain conditions occur.

perfect-time-to-sort This condition is triggered when the

next deliberation is estimated to complete within a
small time window before the IU-agent’s next action
choice time. The purpose of this rule is to try to ensure
that the MDP policy is always as up-to-date as pos-
sible whenever a domain-level decision is made. For-
mally,

A «— the size of the desired time window

delibDuration <+ estimated deliberation time

timeAvail «— time left until next earliest start of a

method

if 0 < timeAwvail — delibDuration < A then

return true
end if

need-actions-for-near-term-states This heuristic exam-
ines the reachable non-edge MDP states that corre-
spond to times within a small window of the agent’s
current time. If any of these states do not have actions
associated with them in the MDP policy, the rule trig-
gers an open list sort. The reasoning behind this rule
is that if the agent enters a state for which the pol-
icy has no associated action, then the agent will fall
off the policy and use a myopic deliberative method
for the duration of the scenario. Let m be the agent’s
MDP policy, with 7(s) denoting the action associated
with state s, and let times denote the time of state
s. Furthermore, let A be the size of our desired time
window, and let NearTerm = {s € ReachableStates :
times < currentTime + A}. Then this rule is given
formally as

for all s € NearTerm do
if s ¢ EdgeStates A m(s) == NULL then
return true
end if
end for

These secondary heuristics may trigger a sort at a time
when it would normally be interrupted by a prune; how-
ever, since in the IU-agent’s domain of interest the special
conditions represented by these rules are considered more
important than the benefits of processing prunes, sorts trig-
gered by secondary heuristics are programatically defined to
be uninterruptible.

4. EXPERIMENTAL RESULTS

The meta-level control approach was tested on a total
of 169 domains, divided among 8 groups. The domains in
Groups 1-3 and 7-8 were designed by external teams. Un-
fortunately, due to the size and complexity of the TAEMS
models, it is difficult to give a succint general description of
these domains without knowledge of the motivations behind
their design. However, the domains in Groups 4—6 were de-
signed specifically to capitalize on the strengths of the meta-
level control approach, focusing on two of the main intended
benefits to the agent: increased number of unrolled states

Mean Qual. Mean Qual. Sig. (1-tail

Group (MLC Off) (MLCOn) N paired t)
1 1188.82 1185.74 25 0.147

2 29.74 41.37 25 0.218

3 18.73 15.23 25 0.275

4 573.75 613.91 25 0.001

5 0.00 2.33 18 < 0.001
6 155.56 178.17 7 0.079

7 6.44 6.44 25 —

8 184.85 463.04 19 0.066
All 297.73 335.23 169 0.030

Table 1: Mean quality comparison

to avoid falling off the end of the policy and monitoring to
prevent falling off the side of the policy. These domains are
summarized as follows:

Group 4 : An assortment of domains, mostly consisting
of small chains of enabling NLEs along with scattered
single NLEs. The design strategy is to give the agent
many action choices and to require the agent to reason
non-myopically.

Group 5 : Small domains consisting of long chains of en-
abling NLEs. Quality in these domains is essentially
binary. If the agent cannot unroll the complete state
space in time, then it will achieve 0 quality; otherwise,
the agent gets a small amount of quality.

Group 6 : Domains containing sets of low quality actions
that enable high quality actions, with a single very
high quality action. The agent has to maximize the
number of unrolled states in order to see the very high
quality state.

The results (see Table 1) show a statistically significant in-
crease in mean quality achieved for the IU-agent with meta-
level control in Groups 4-5 in particular and for all groups
regarded as a whole (overall mean quality increase ~ 12.6%).
On many of the individual domains comprising Groups 2, 3,
and 7, the agent was not able to achieve quality with or with-
out meta-level control, and further investigation suggested
that these domains may require communication capabilities
more advanced than those implemented in the IU-agent at
the time of the experiments. However, log information for
runs of Groups 2 and 3 reveals that the agent was able to
stay on policy longer with meta-level control enabled (Fig-
ures 4(a) and 4(b) respectively).

Additionally, meta-level control was able to greatly re-
duce the number of open list sorts that were aborted and
restarted. Figure 5 shows the time wasted on aborted sorts
over a run of all the domains in Group 4. The line y = z is
shown for illustration: points near the line indicate that the
deliberation was almost completed when it was interrupted.
With meta-level control enabled, the IU-agent had about
12.7% of the aborted sorts of the agent lacking meta-level
control.

S. DISCUSSION

100000

Inlerru;‘)led De\iberalioH Data +
Almost finished when interrupted s

10000

1000

100

Wasted Deliberation Time (ms)

1 L L L L L
0 2000 4000 6000 8000 10000 12000

Predicted Deliberation Time (ms)

(a) Meta-level control disabled

100000

Interru;‘)led De\ibera!ioH Data +
Almost finished when interrupted s—

10000

1000

Wasted Deliberation Time (ms)

100 | N 4

10 L L L L L
0 2000 4000 6000 8000 10000 12000

Predicted Deliberation Time (ms)

(b) Meta-level control enabled
1

Figure 5: Time wasted on interrupted sorts
(Group 4 domains). With the meta-level control
features disabled, the agent estimated deliberation
time by multiplying the time spent on the previous
deliberative action by a constant ratio.

Meta-level control is not a panacea [4]. In our experi-
ments, we found several situations in which the agent per-
formed just as well with meta-level control disabled. How-
ever, certain domain characteristics favored sophisticated
meta-level control:

e High amounts of uncertainty or many options for do-
main actions require the IU-agent to unroll its MDP in
a more breadth-first manner in order to avoid falling
off the side of the policy (that is, if there are many
(almost) equally likely outcomes for an action choice,
then the agent must unroll several subtrees instead of
focusing on a single high-probability subtree). Meta-
level control’s advantage in this case is in the increased
number of states unrolled compared with the meta-
level control-disabled IU-agent.

e Non-myopic decision making should be required, for
example long chains of enables NLEs or time con-
straints that require smart scheduling (for example,

[Meta-level control disabled
O Meta-level control enabled

ST T T T T T T T T T T T T T T T T T

2,000 [-sne s e s

1,500 [-essmmennmnenas

time (ticks)

1.000 =-

500

56 7 8 9 10 11 12 13 14 15 16 17 18 19 20

domain

(a) Group 2 domains

time (ticks)

B vetoten
[metv-tev
3000 T
2,500 [memmnmnesenneendhore S
2,000 [= eee e e 1 I 1 | e . -1}~
1,500 1
1000 |1 A A A
500 [=

1234567 891011121314151617181920 2122232425
domain

(b) Group 3 domains

Figure 4: Time spent on policy. Meta-level control allows the agent to remain on policy longer.

actions with short time windows between their release
times and deadlines). If the IU-agent’s myopic fallback
deliberation performs well in a domain, then much of
the advantage of MDP-based deliberation would be
lost.

Conversely, certain domain characteristics reduce or elim-
inate the advantages of meta-level control for the IU-agent:

e In domains that are very loosely constrained (for exam-
ple, no non-local effects, plenty of slack in the agent’s
schedule, etc.), a greedy approach may perform well.
If such a ceiling effect eliminates the advantages of the
IU-agent’s reasoning capabilities, then of course meta-
level control would not give it much added advantage.

e In domains requiring capabilities not present in the
IU-agent, the agent may have a difficult time achiev-
ing any quality even with meta-level control. This ap-
pears to be the case for Groups 2, 3, and 7 in our
experiments.

In short, the described meta-level control scheme may be
viewed as enhancing the existing reasoning capabilities of the
IU-agent; thus it should be beneficial in domains that take
particular advantage of those abilities and not as effective in
domains that do not leverage the agent’s abilities.

One major lesson learned over the course of our research
is that meta-level control should be considered from the be-
ginning and developed alongside deliberation, since they af-
fect each other. Changes in deliberation can require meta-
level control changes; for example, on several occasions we
noticed that the [U-agent performed as well without meta-
level control on certain domains where meta-level control
had formerly proven advantageous, and we had to adjust
the parameters of our meta-level control to regain the advan-
tage. Conversely, observations made while implementing the
meta-level control strategy, such as gathering performance
profile data, suggested areas for improving the deliberation
of the agent.

6. CONCLUSION AND FUTURE WORK

We have described an approach to controlling deliberation
in an MDP-based scheduling agent. The approach consists

of collecting performance profile information from the agent
empirically and using these profiles in a multi-level heuristic
decision-making strategy. Experimental results were pre-
sented that suggest the advantages of meta-level control for
the agent in a subset of test domains.

There are many open opportunities in meta-level control,
especially in multi-agent systems [1]. In particular, we are
working on how to extend isolated meta-level control of in-
dividual agents to distributed meta-level control of groups
of cooperative agents. This involves many of the same issues
as deliberative control of multiple agents, such as the need
for coordination and negotiation.

7. ACKNOWLEDGEMENTS

We would like to acknowledge Ed Durfee’s contribution
to the need-actions-for-near-term-states heuristic. We also
thank the three anonymous reviewers for their helpful com-
ments. This material is based upon work supported by
the DARPA /TPTO COORDINATORs program and the Air
Force Research Laboratory under Contract No. FA8750-05—
C—-0030. The views and conclusions contained in this docu-
ment are those of the authors, and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

8. REFERENCES

[1] G. Alexander, A. Raja, E. H. Durfee, and D. J.
Musliner. Design paradigms for meta-control in
multi-agent systems. In Proceedings of the AAMAS
2007 Workshop on Metareasoning in Agent-based
Systems, pages 92-103, Honolulu, HI, May 2007.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, Belmont, MA, 1996.

[3] M. Boddy and T. Dean. Decision-theoretic
deliberation scheduling for problem solving in
time-constrained environments, 1994.

[4] V. Conitzer and T. Sandholm. Definition and
complexity of some basic metareasoning problems. In
1JCAI pages 1099-1106, 2003.

[5] M. T. Cox. Metacognition in computation: A selected
research review. Artif. Intell., 169(2):104-141, 2005.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

T. Dean and M. Boddy. An analysis of
time-dependent planning. In Proceedings of the
Seventh National Conference on Artificial Intelligence
(AAAI-88), pages 49-54, Saint Paul, Minnesota, USA,
1988. AAAI Press/MIT Press.

Gnuplot. http://www.gnuplot.info.

R. P. Goldman, D. J. Musliner, and K. D. Krebsbach.
Managing online self-adaptation in real-time
environments. In Lecture Notes in Computer Science,
volume 2614, pages 6-23. Springer-Verlag, 2003.

E. A. Hansen and S. Zilberstein. Monitoring and
control of anytime algorithms: A dynamic
programming approach. Artif. Intell.,
126(1-2):139-157, 2001.

B. Horling, V. Lesser, R. Vincent, T. Wagner,

A. Raja, S. Zhang, K. Decker, and A. Garvey. The
TAEMS White Paper, January 1999.

K. Larson and T. Sandholm. Using performance
profile trees to improve deliberation control. In AAAI
pages 73-79, 2004.

M. L. Littman, T. Dean, and L. P. Kaelbling. On the
complexity of solving markov decision problems. In
UAI pages 394—402, Proceedings of the Eleventh
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-95).

D. W. Marquardt. An algorithm for least-squares
estimation of nonlinear parameters. Journal of the
Society for Industrial and Applied Mathematics,
11(2):431-441, June 1963.

D. J. Musliner, E. H. Durfee, J. Wu, D. A. Dolgov,
R. P. Goldman, and M. S. Boddy. Coordinated plan
management using multiagent MDPs. In Working
Notes of the AAAI 2006 Spring Symposium on
Distributed Plan and Schedule Management, pages
73-80, March 2006.

D. J. Musliner, R. P. Goldman, and K. D. Krebsbach.
Deliberation scheduling strategies for adaptive mission
planning in real-time environments. In Proc. Third
International Workshop on Self Adaptive Software,
2003.

A. Raja and V. Lesser. A framework for meta-level
control in multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 15(2):147-196, October
2007.

S. Russell and E. Wefald. Principles of metareasoning.
In Proceedings of the First International Conference
on Principles of Knowledge Representation and
Reasoning, pages 400-411, 1989.

R. Sutton and A. Barto. Reinforcement Learning. MIT
Press, 1998.

J. Wu and E. H. Durfee. Solving large TAEMS
problems efficiently by selective exploration and
decomposition. In Proceedings of the Sizth
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 07), pages
291-298, Honolulu, HI, May 2007.

