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Abstract. In this paper, we attempt to define a generalized framework
for meta-level control in multiagent systems. We generalize and extend
previous work in single-agent meta-control. We discuss the issues which
system designers must consider when designing an agent’s meta-control
component and conclude with areas for future research.

1 Introduction

1.1 What Is Meta-Control?

In a multiagent system, intelligent agents can be thought of as having at least
three broad categories of available actions (see Fig.1): domain actions (such
as movement), deliberative actions (such as scheduling and coordination), and
meta-level control [1-4] actions. Domain actions cause changes to the agent’s
environment, and the agent uses deliberative actions to decide which domain
actions to perform and how and in what order to perform them. The meta-level
control layer makes similar decisions regarding deliberative actions. Thus the
meta-level can be thought of as an abstraction of the deliberative layer.

We begin this paper with a discussion of the need for meta-control and a
review of previous work in the area. We then describe a generalized single-agent
meta-control framework and discuss some of the design issues involved in imple-
menting our approach. Next, we discuss ways in which our single-agent frame-
work could be extended to handle multiple cooperative agents which may need
coordinated meta-control. We describe some of the complications that arise in
trying to develop multiagent meta-control. Finally, we conclude with directions
for further research.

1.2 Why Is Meta-Control Needed?

Open environments are dynamic and uncertain. It is paramount for complex
agents operating in these environments to adapt to the dynamics and constraints
of such environments. The agents have to deliberate about their local problem
solving actions and coordinate with other agents to complete problems requiring
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Fig. 1. Three categories of agent actions.

joint effort. These deliberations have to be performed in the context of bounded
resources, uncertainty of outcome and incomplete knowledge about the environ-
ment. Furthermore, new problems with deadlines can be generated by existing
or new agents at any time.

These factors pose a number of challenges for meta-level control systems.
The agent may have uncertainties of outcome at both the domain layer and the
deliberative layer. Also, the agent may need to choose between multiple possi-
ble deliberative actions. For example, scheduling versus coordinating with other
agents, or using extra time for learning activities. The agent must be able to
make intelligent tradeoffs in computation time versus quality of results. When
coordinating with others, the agent must also consider whether communication
costs are justified (c.f. [5]). Also, multiple agents may need to coordinate their
meta-control activities. And this must all happen in the context of a dynamic
environment using limited knowledge and resources! In fact, in the kind of com-
plex, stochastic environments that agents may have to deal with, the meta-level
control challenge goes beyond the traditional issue in which the uncertainty is
in whether devoting more time to a deliberation will yield a commensurately
better domain-level decision. It goes beyond because in such environments, not
only is there uncertainty about how much better the decision will be, but also
whether the decision will be needed at all given that the execution trajectory
might veer such that any particular domain-level decision about future action is
obviated. This suggests, then, that we need a policy for deliberation, where we
consider the potential value of alternative deliberative activities given possible
future state trajectories (where state reflects outcome of previous deliberation,
as well as possibly of domain-level actions).



1.3 Related Work

There has been important previous work in meta-level control (for a review of
metacognition in general, including metacognition in problem solving and meta-
level control, see [6]). Russell and Wefald [4] describe an expected utility based
approach to decide whether to continue deliberation or to stop it and choose
the current best external action. They introduce myopic schemes such as meta-
greedy algorithms, single step and other adaptive assumptions to bound the
analysis of computations. Schut and Wooldridge [7] have independently observed
that a Markov Decision Process-based model towards decision making is most
similar to the bounded optimality model. Russell, Subramanian, and Parr [§]
cast the problem of creating resource-bounded rational agents as a search for
the best program that an agent can execute. In searching the space of programs,
the agents, called bounded-optimal agents, can be optimal for a given class of
programs or they can approach optimal performance with learning, again given
a limited class of possible programs. Our approach to meta-level control involves
construction of agents similar to these bounded optimal agents. We too do not
assume complete accessibility to the environment, which makes our approach
applicable to a wide range of problems and delivers an execution model which
makes it relevant to real-world applications. While our model has targeted only
finite horizon problems, it accounts for computational resources and takes advan-
tage of the Markov Decision model to bound computation and handles multiple
inter-dependent meta-level questions. This work extends the meta-level control
architecture described in the context of multiagent systems [3]. However there
is a crucial difference. The MetaMod framework in this paper does not make
any assumptions about a priori knowledge of the performance characteristics of
the different deliberation actions on problems. The problem classifier compo-
nent makes real time predictions about these performance characteristics based
on actual performance of previously seen training problems.

2 A Single-Agent Meta-Control Framework

Meta-level control actions are essentially an abstraction of deliberative actions.
That is, meta-level reasoning about deliberative actions follows many of the same
principles and shares many of the constraints as deliberative reasoning about
domain actions. Additionally, decisions made at the meta-level affect which de-
liberative actions are executed which in turn affect which domain actions are ex-
ecuted; thus meta-control affects the domain layer in a high-level way. Therefore
it makes sense that the task presented to the agent’s meta-control component be
an abstract view of the agent’s tasks at the lower levels. As mentioned previously,
many times an agent’s environment is too complex and uncertain for myopic rea-
soning. The agent needs to formulate an end-to-end plan for meta-control, or at
least as non-myopic a plan as is computationally feasible, which takes into ac-
count the various possible outcomes of its decisions and their affect on future
decisions in order to maximize overall utility. One formalism with the desired
properties is the Markov Decision Process (MDP) [9]. These ideas of problem



abstraction and sequential decision making are considered in our single-agent
meta-control framework described below.

Figure 2 gives a high-level view of the control flow within our meta-control
framework for a single agent (more detailed explanations of each component
are given in the subsections following). When the meta-control component is
triggered, perhaps by the arrival of a new high-level problem for the agent, the
Problem Abstraction Component generates an abstract meta-level problem based
on the agent’s current problem solving context and available deliberative actions.
Information about the expected results of each deliberative actions is gathered
from a database of performance profiles (Steps 1-3). The Decision Process Com-
ponent transforms this abstract problem into an MDP, which is then solved to
obtain a non-myopic meta-level control policy. Based on this policy and the
agent’s current state, the Decision Process Component chooses the appropriate
deliberative action (Steps 4-6). Finally, the deliberative action is executed, pos-
sibly resulting in further domain-level actions, and the performance results are
used to update the performance profile database (Steps 7-9).
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Fig. 2. Single-agent meta-control flow diagram.



2.1 Problem Abstraction Component

In this section, we give a more detailed description of the reasoning within the
Problem Abstraction Component. From the agent’s current problem solving con-
text we derive problem features which are used to classify the context into one
of several performance types (categories based on the predicted performance
of various deliberative actions). Each performance type has an associated per-
formance profile [10] describing this predicted performance. The performance
profile information is used to construct an abstract meta-level task structure in
the form of a hierarchical task network. In our examples, we represent this as
a TAEMS model [11]. We discuss some of the issues involved with each of these
steps below.

Performance Profiles The content of a performance profile may vary accord-
ing to the deliberative action associated with it. For instance, a performance
profile associated with running a scheduler with certain parameters may contain
an (expected schedule quality, expected scheduler runtime) pair. However, in the
case of coordination algorithms, one may want to predict other features such as
the expected number of messages passed. In general, though, one may define
abstract quality, cost, and duration functions for each deliberative action which
take the relevant factors into account.

Obtaining the data for the performance profiles raises another issue for the
system designer. In some cases, performance profiles may be assumed a priori (as
in [3]), supposing the designer has a deep enough understanding of the problem
domain and the characteristics of the deliberative algorithms available to the
agent. In other cases, the performance profiles must be obtained empirically,
by letting the agent solve many sample problems using a variety of settings
for the deliberative actions. The system designer must decide how much of the
problem space to sample and how many experimental runs to perform. For many
domains, this can be very time-consuming. One idea to handle this problem is
to generate a smaller initial sampling of tasks to use in building the performance
profiles (offline learning) and later update the profiles as the agent encounters
more tasks (online learning). Of course the downside to this approach is that the
agent’s initial meta-control may be very ineffective.

Problem Classification Once the performance profiles have been designed,
the system designer must define several “performance types” or categories into
which to classify problems. For example, the designer may want to define a
group for problems with an expected utility of 0-9, 10-19, etc. Alternatively, the
designer may be able to use some clustering algorithms [12] on the performance
profile data to automatically generate performance types. Once the performance
types have been defined, each of the training samples used in generating the
performance profiles can be labeled with the appropriate type and used to train
a machine learning algorithm to predict the performance type of novel problems
(for a discussion of various machine learning algorithms, see [13]).



The system designer must also define which problem features are relevant for
classification. These features should be readily available to the agent or else easy
to compute. For example, in our experiments where the agent’s problems are
specified in the TAMS language, we extract certain high-level problem features
from the task structure itself, such as how many tasks the agent can perform and
the amount of temporal overlap between these tasks. Finally, the designer must
make several decisions about the classification algorithm itself. For example, if
the goal were to derive human-understandable meta-control heuristics for manual
tweaking of the agent’s deliberative algorithms, then a decision tree would be
useful. Another issue is the robustness of the classifier to overfitting, especially
important if there are only a small number of training instances. The designer
may also want to use a classifier which allows incremental updates rather than
batch training so that the agent may update itself after each experimental run.

Building the MetaAlternatives Task Structure. This section describes
how we build the abstract meta-level TAMS task structure, called “MetaAl-
ternatives,” once we have classified the incoming problems. We assume in the
following example that the meta-level controller is trying to decide among several
possible scheduler settings (modes) available to the agent.

In the TAEMS language, quality propagates upward through the task net-
work based on quality accumulation functions (QAFSs). For example, a Max
QAF means that a task will achieve the maximum of the qualities achieved by
its subtasks, and a Sum QAF means that a task will achieve the sum of these
qualities. Tasks at the lowest level of the network, known as methods, are char-
acterized by discrete quality and duration distributions. Quality in this case is
an abstract concept and may mean different things for different domains.

Suppose our agent is currently in a scenario S consisting of the problems
P1 and P2. For each problem P;, we construct a subtask (Problem;) that uses
a Max QAF because our agent will accumulate quality only from the schedule
that it actually executes. The methods used to accomplish this task correspond
to the scheduler modes, for example SchedulerA, SchedulerB, SchedulerC. The
task structure for scenario S has a root task called MetaAlternatives with two
subtasks, one for each problem, combined together by a Sum QAF. The resulting
task structure is shown in Figure 3. The MetaAlternative task structure is sent
to the Markov Decision Process (MDP) sub-component as described in the next
section, and the meta-level control policy is then computed.

2.2 Meta-Cognition Decision Process.

A Markov Decision Process is a probabilistic model of a sequential decision
problem, where states can be perceived exactly, and the current state and action
selected determine a probability distribution on future states [14]. Specifically,
the outcome of applying an action to a state depends only on the current action
and state (and not on preceding actions or states). Formally a MDP is defined
via its state set S, action set A, transition probability matrices P, and reward



MetaAlternatives
QAF: Sum
Problem 1 Problem 2
QAF: Max QAF: Max
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Fig. 3. A simple example of MetaAlternatives. Q and D represent distributions of
quality and duration, respectively (for simplicity, in this example we assume that there
is no uncertainty in quality and duration). Each Problem; task has the Max QAF
(Quality Accumulation Function), indicating it gets the maximum quality of any of its
subtasks. The top-level task has a Sum QAF, since its quality is the sum of quality for
both problems.

matrices R. On executing action a in state s the probability of transitioning
to state s’ is denoted P%(ss’) and the expected reward associated with that
transition is denoted R*(ss’). A rule for choosing actions is called a policy.
Formally, it is a mapping 7 from the set of states S to the set of actions A. If an
agent follows a fixed policy, then over many trials, it will receive an average total
reward known as the value of the policy. In addition to computing the value of
a policy averaged over all trials, we can also compute the value of a policy when
it is executed starting in a particular state s. This is denoted V™ (s) and it is the
expected cumulative reward of executing policy 7 starting in state s. This can
be written as
V™(s) = E[ris1 + rey2..-|st = s, 7]

where r; is the reward received at time t, s; is the state at time t, and the
expectation is taken over the stochastic results of the agent’s actions.

For any MDP, there exists one or more optimal policies which we will denote
by 7* that maximize the expected value of the policy. All of these policies share
the same optimal value function, written as V* The optimal value function
satisfies the Bellman equations [15]:

V*(s) = max Xy P(s' |s,a)[R(s" |s,a) + V*(s" )]

where V*(s') is the value of the resulting state s’.

The process of generating an MDP from the MetaAlternatives task structure
is based on the TEMS to MDP translation algorithm in [16]. The resulting
MDP is defined as follows: state in the MDP representation is a vector which



represents the TAMS methods that have been executed in order to reach that
state along with their execution characteristics (quality and duration). The MDP
action set is the set of TAEMS methods (executable leaf nodes). MDP actions
have outcomes and each outcome is characterized by a 2-tuple consisting of
discrete quality and duration values obtained from the expected performance
distribution of the MDP action. The transition probabilities are obtained from
the probability distributions of the corresponding MDP action as described in
[16]. We assume that the agent has a limited amount of time to take deliberative
actions, which determines the horizon of the MDP (a new MDP would be created
during each decision-making epoch). The rewards are computed by applying a
complex criteria evaluation function of the quality, cost and duration values
obtained by the terminal states. The output from the MDP Solver will be an
optimal policy that solves the MDP. Once the optimal policy is obtained, the
meta-control component will determine the current state of the agent using the
Current State Evaluator and the action corresponding to the current state is
obtained from the optimal policy. When the action completes execution, meta-
control will be notified; it will then recompute the current state and determine
the current best action. This process continues until a terminal state is reached in
the MDP or a new problem arrives that requires the meta-controller’s attention.

3 Multiagent Extensions

The single-agent framework may be sufficient when agents are more or less inde-
pendent; however, extending our framework to the more complicated case when
cooperative agents must work together toward common goals creates its own
challenges. In this section, we discuss the meta-control issues that need to be
addressed in a multiagent context.

3.1 Problem-solving Contexts

First, there is the question of problem solving contexts. A problem solving con-
text contains agent state information and other data required for decision making
In our work, we have identified at least two types of contexts: current context
and pending context. The agents’ context when it is in the midst of execution is
called the current context. A pending context is one where an agent deliberates
about various what-if questions related to coordination with other agents. At any
point in time, an agent has one current context and may have one or more pend-
ing contexts. When an agent is assigned a task, it creates a pending context
where deliberative activities such as negotiation, unrolling the (MDP) search
space, and policy computation are performed. The meta-control component will
assist the agent in determining how much time and resources to allocate to each
deliberative activity. This in turn will determine when an agent will terminate
deliberation and begin execution by copying the commitments and execution
policy produced by a pending context to the current context. Another meta-
control issue when there are multiple pending contexts is to determine which
pending context should be allocated resources for deliberation.



3.2 Increased Uncertainty from Other Agents

The second complicating factor is that the value of an agent’s local decisions
depends on the global state, thus the agent’s decisions are affected by those of
the other agents. This means that, unlike in the single agent case where the
uncertainty in domain models is captured by static discrete distributions, the
uncertainty over what other agents will do (at both domain and deliberation
levels) is at least partially dependent on the ongoing decisions of the other agents.
For example, an agent’s meta-control needs to figure out how much time to
spend deliberating over decisions that would follow from another agent changing
the global state in way X, versus the time to spend thinking about what to
do if the other agent does Y instead. The optimal deliberation policy should
involve probabilities for X and Y, but these are dependent on the other agent.
To cope with this uncertainty, agents need to reason about the actions of other
agents, requiring the other agents to communicate some information about their
respective policies. Thus an agent’s optimal meta-level policy at some point
might be to work on something else entirely until the other agents have done
enough meta-level reasoning to get a good sense of what they will do regarding
the various actions available. In fact, once an agent has communicated some
information about its policy, it also needs to consider that some actions which
might improve its local utility may actually have negative global utility, due to
the cost of re-coordination with other agents at the meta-level and the need
for other agents to re-deliberate. In essence, the agent must alternate between
reasoning at the local level and at the global level. This necessitates the design
requirement that the meta-control components should themselves be coordinated
so that they direct local deliberation in ways that support collective deliberation.

3.3 Coordinated Meta-level Control

These agents may have multiple high-level goals from which to choose, but if
two or more agents need to coordinate their actions, the agents’ meta-control
components must be on the same page. That is, the agents must be reasoning
about the same problem and may perhaps need to be at the same stage of the
problem-solving process (e.g., if one agent decides to devote little time to com-
munication/negotiation before moving on to other deliberative decisions while
another agent sets aside a large portion of deliberation time for negotiation, the
latter agent would be wasting time trying to negotiate with an unwilling part-
ner). Thus if an agent changes the problem solving context it is focusing on,
it must have a way to notify other agents with whom it may have interactions.
This suggests that the meta-control component of each agent should have a mul-
tiagent policy, where the progression of what deliberations agents do, and when,
needs to be choreographed carefully, and include branches that account for what
could happen as deliberation (and execution) plays out. Determining the mul-
tiagent policy is a complicated problem since these policies are not expected to
be either reward-independent or transition-independent [17], implying that the



multiagent policy is not simply the union of all of the single-agent meta-control
policies,

We are taking the first steps to solve this problem by making some simpli-
fying assumptions. Our current emphasis recognizes that, in the agent’s world,
deliberation alternates between local (individual) deliberation about the pol-
icy that will best achieve goals and commitments, and multiagent deliberation
about commitments agents should make to each other. Given this, we currently
“hardwire” the blueprint of the multiagent deliberation policy into the agents,
requiring that agents collectively move between the local and global deliberation
modes, where they move into the global deliberation mode when one or more
of them receives a new or changed task, and they all move into the local de-
liberation mode when they agree that their negotiation over commitments has
finished. In the future, we would want these modes to be interleaved more finely
(so that local deliberation can better affect what is being negotiated, and vice
versa), but things can quickly get complicated if agents are uncoordinated in
this such that, for example, one is immersed in local thinking while another is
hanging waiting for it to reply to a negotiation message.

3.4 Meta-Control Messages

This discussion of the complications arising from multiagent meta-control sug-
gests the need for some kind of meta-level message passing. Here there are impor-
tant tradeoffs between the amount of communication (both the size and number
of messages) and the resulting overhead, and the usefulness of such communica-
tion. The system designer must choose what kind of information is contained in
a meta-level message. Certainly, if agents can deliberate about several possible
problem-solving contexts and must coordinate on these contexts, they should be
able to communicate their choices to the other agents. However, the question
remains as to what information about the agent’s context should be communi-
cated. In some situations, it may be enough for the agent to simply let the others
know that it is thinking about context X; but in other cases, for instance when
the agents are more tightly coupled, an agent may need to communicate some
partial results of its current thinking as well.

Agents must also reason about how to handle meta-control messages from
others. As mentioned earlier, we do not want a case where one agent is wait-
ing on an acknowledgement of a message while the message recipient blissfully
ignores the message and continues its own deliberations. On the other hand, it
may not be desirable for one agent continually to interrupt the other agents’
deliberations with its own meta-control messages. Continuing with the view of
the meta-control layer as an abstraction of the deliberative layer, perhaps similar
approaches can be successfully applied to meta-level message passing as to more
traditional agent coordination problems.



4 Conclusion

As a conclusion, we briefly summarize some of the factors influencing the design
of an agent’s meta-control component:

Single Agent Case

How much time is available for learning performance profiles?

What features of the problem domain affect the agent’s deliberative actions?
Must the resulting meta-control policy be human-understandable?

— How much time is available for meta-control?

— Will myopic meta-control decisions suffice?

Multiple Agent Case (In addition to the factors above)

— How strongly coupled are the agents; that is, can they be treated as in the
single agent case, or do they require extensive coordination and cooperation?

— What is the degree of centralization; do the agents regularly synchronize, or
only rarely as-needed?

— How expensive/reliable is inter-agent communication?

In this paper we have identified design paradigms as well as open problems
for sophisticated meta-control in multiagent systems. Automated abstractions,
collecting useful performance profiles, handling complex levels of uncertainty
and coordinated meta-control are meta-control issues we will be studying in
greater detail in the context of the DARPA COORDINATORS project. We plan
to build theoretical models that will address these design paradigms and study
the trade-offs made in various approximations of these models.
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