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We Need Real-Time

As intelligent autonomous systems move out of re-
search labs and into real world applications, two things
become immediately apparent: first, the humans don’t
go away; and second, the clock never stops. The 1999
AAAT Spring Symposium on Adjustable Autonomy be-
gan addressing the first issue by investigating how au-
tonomous systems must remain adjustable and flexible,
to act as peers and collaborators with humans. In this
extended abstract, I discuss the second issue: time.

In particular, real time. Not simulated time that
waits for the autonomous system to finish deliberating.
Not “soft real-time” that means humans get annoyed
waiting for a result to show up on a screen. Hard
Real-Time. Autonomous systems controlling mobile
vehicles, spacecraft, refineries, and other major appli-
cation domains face inflexible real-time deadlines. If
they fail to meet those deadlines, catastrophic conse-
quences can result: lost lives, environmental damage,
millions or billions of dollars up in smoke or down the
drain.

Building control systems that operate properly in
hard real-time environments is always challenging;
building complex autonomous control systems for these
domains is still a research topic (Musliner et al. 1995;
Garvey & Lesser 1994). This paper discusses some of
the requirements that real-time domains place on sys-
tems, and presents a set of clarifying questions that
help assess how well a control system design meets

those requirements.

Real-Time is Not Just Fast
You’ve probably heard the rant before, but just in case:

“hard real-time” doesn’t mean “fast.” In an environ-
ment that poses catastrophic threats if deadlines are

not met, we must only deploy systems that are pre-

dictably fast enough to avoid failure. We must estab-
lish a priori that these systems can maintain safety
despite the contingencies that may arise. Of course,
fast enough 1s relative: an autonomous automobile may
face millisecond deadlines to avoid collisions at traffic
speeds; an autonomous greenhouse may only have to
respond in seconds. The point about hard real-time
domains is their intolerance of late results, at any time

scale.

But Where Do We Come In?

Extensive research in real-time systems has focused on
developing operating system support for predictability,
formal methods for verifying system safety properties,
and testing methods to validate performance guaran-
tees (Shin & Ramanathan 1994). The key missing link
is synthesis: how to automatically construct real-time

control systems. And that’s where we come in.

AT researchers have been synthesizing (planning) and
hand-building autonomous control systems for decades.
Our techniques are growing in maturity, we are finally
sharing tools and methods, and now we must address
the real-time issues to effectively deploy these systems

in complex, dangerous environments.

Time 1s Not Just Another Resource

All systems must effectively manage their resources to
“play well with others.” However, real time is not, in
general, negotiable; other agents don’t have more that
they can loan you. The environment’s clock is an ab-
solute, objective, and completely uncooperative entity.
Even worse, real-time i1s unusual in that just thinking
about the resource uses it up; we cannot simply slather
on more resource management code to “handle” real-

time.



Real-Time Cannot Be Retrofitted

Real-time is also one of the toughest/most interesting
aspects of autonomy because it generally cannot be
hacked around or retrofitted: you can’t take an inher-
ently unpredictable system and wrap it up and make
the result predictable. Likewise, representation hacks
won’t result in a system that is simply “inelegant real-
time.” If a system does not meet the core requirements
outlined below, it cannot provide the requisite real-
time performance. Retrofitting to those requirements
1s not a promising avenue of research. We must design

for real-time in the first place.

Requirements to be Real-Time

To be suited for application in a hard real time domain,
a system needs to be truly predictable. This means the

system must account for:

Asynchrony — The world is not synchronized or
fully predictable, and real time is really continuous.
Thus events and processes occurring in the world
are asynchronous from the control system’s perspec-
tive, and simplified synchronized models of behav-
ior (e.g., turn-taking games, atemporal contingency
plans) will not suffice. Instead, the system must be
designed with the understanding that the world truly
operates in parallel, and either polling or interrupts
must be used to keep the control system aware of
ongoing environmental changes.

The Sense/Act Gap — The assumption that sens-
ing, selecting reactions, and performing actions takes
no time is invalid in hard real-time domains. Instead,
a guaranteed control system must be designed to
explicitly manage asynchronous world changes that
may occur between the time a particular set of sensed
data is acquired and the time the system’s response
action can be selected and completed (Musliner,
Durfee, & Shin 1994). This time gap between sensing
and action may make the selected action problem-
atic: an action that was appropriate for the sensed
state may cause disaster when finally executed. For
example, if an autonomous car sees a green traffic
light, thinks for too long, and then moves into the
intersection, the light may have turned red already.
A safe real-time control system must avoid inadver-

tently causing or enabling failures.

Communication Time — Just as with sensed in-
formation, any communications between the real-
time control system and other systems will take time,
and that delay must be accounted for in any safety-
critical aspects of system operation. For example,
the CIRCA real-time executive relies on repeated
downloads of new reactive plans (Musliner, Durfee,
& Shin 1993). The time it takes to perform these
downloads must be explicitly accounted for in the
executive’s operations, so that the communications
activities do not interfere with the ongoing real-time
reactive control plan.

Continuous Operation — Continuous operation is
problematic for many deployed systems, from
databases to telephone switches. In real-time au-
tonomous systems, the problem is even more acute
because the automatic memory management fea-
tures (e.g., garbage collection) that frequently ad-
dress non-real-time continuous operations (and make
prototyping easier) are yet another consumer of pro-
cessing time that must be carefully predicted and

controlled.

If your system can “check” all of these boxes, then
it is ready for prime time in mission-critical real-time

applications.

Real-Time Metrics: Guiding Questions

The “real-timeness” of a system is not a single dimen-
sion, and cannot be measured by a single metric. In-
stead, I've formulated the following questions to pro-
vide an initial guide to assessing the real-time quali-
fications of a system, and its potential for providing
performance guarantees. This is not a complete list,
but a beginning to be built upon. It is focused on the
currently-popular multilayer architectures that use a
planning system to synthesize plans on the fly, while
a reactive executive runs those plans robustly, filling
in uncompleted details and managing most of the real

world’s contingencies through hand-coded reactions.

Domain — Does the domain always permit some so-
lution that ensures safety? If not, can portions of the
domain’s state space or feature space be broken out
to isolate those aspects for which safety cannot be
guaranteed? For example, suppose a mobile robotic

domain presents moving hazards that can hit and



damage the robot and also the threat of meteorites
crashing down upon the robot. Using existing mo-
tion planning techniques and conservative geomet-
ric reasoning, it is possible to guarantee safety from
the moving hazards (Kohout, Hendler, & Musliner
1996). But the robot may have no way to move fast
enough to escape a meteorite, even if it could detect
it. We can isolate the consideration of the meteorite
threat and still make claims about the system’s guar-
anteed, real-time performance against moving haz-
ards.

Planner — Is the safety of the system dependent on
the planner producing a result? If so, can the planner
always find a solution, quickly enough, if one exists?
Restated: 1s the planner complete and guaranteed
time bounded? If not, is it an anytime planner that
can guarantee an acceptable (if not optimal) result
within a bounded time?

Executive —

Can the executive ensure that plans/reactions will
be executed quickly enough to respond to threats?
Is the executive’s set of contingency handlers guar-
anteed to handle the expected contingencies within
some modeled range of domain behavior, or is it just
hand-coded?

Operating System — Can the OS ensure that the
executive and all other required processing will be
provided the necessary resources, without delay?

Hardware — Is the hardware reliable enough to sup-
port the demands of the processing requirements,

under a given set of fault assumptions?
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