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Portland, Oregon, August 1996, pp. 112-118.Agent and Task Modeling at HoneywellDavid J. Musliner & Christopher A. MillerHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fmusliner,cmillerg@src.honeywell.comIntroductionModeling the activities, knowledge, and requirementsof agents (both human and automated) has been rec-ognized as a recurrent theme in research conducted bymembers of the Software and Systems Technology Area(SSTA) at the Honeywell Technology Center (HTC).In fact, we have formed a special interest group thataims to collate and clarify the broad range of task andagent modeling experiences of the hundred-odd SSTAmembers. This paper gives a high-level overview ofthe various functions agent modeling has played in ourresearch, as exempli�ed in several projects. We hopethat this e�ort will eventually lead to fruitful cooper-ative activities with other researchers pursuing relatedwork.Why Honeywell CaresHTC is Honeywell's main corporate research center,tasked with researching cutting-edge technologies re-lated to the main corporate lines of business, includ-ing industrial control systems, space and aviation con-trol products, and home and building control systems.Many of the advanced concepts in control systems weinvestigate have one or more of the following criticalaspects that make agent/task modeling essential:Distribution, making it imperative that di�erent dis-tributed control centers have useful models of whatcan be done by others, and what they are planningto do.High-Level Automation, requiring powerful tech-niques for specifying automated behavior.Human Interaction, making it essential for the sys-tem to understand what the human can do, is doing,should do, needs to know, can assimilate, etc.De�ning the Problem(s)The general term \agent modeling" subsumes a largenumber of modeling tasks including representing andmanipulating:� Capabilities (what an agent can do).� Desires/goals (what an agent wants to do).� State information (what an agent knows and is do-ing).At HTC, the applications-oriented nature of ourwork has tended to focus projects on these problems

with a particular slant that we loosely label \task mod-eling." As the name implies, the focus tends to be onmodeling the tasks an agent can perform, as opposedto the agent-centered focus implied by \agent model-ing." Still, many of the modeling issues are similar oridentical. Task modeling is generally aimed at describ-ing and reasoning about what tasks need to be done,what resources they take, who is in charge of them,how automation can do them, what human operatorsneed to know in order to do them, etc. In other words,it's a very practical orientation centered around accom-plishing some tasks in a given domain, as opposed tobeing centered around enabling capabilities in agents.Task modeling is also used for widely varying purposesranging from static analysis of a system design to au-tomating the system design process to actually drivingthe behavior of a dynamic control system. Perhaps thebest way to describe what we mean by task modeling isthrough examples; the following sections of this paperdescribe some of the major classes of task informationwe model, the tools we use, and examples of the relatedresearch projects.Modeling for a Single HumanSome of the earliest uses of task modeling focus onmodeling the behaviors of a single human engaged invarious tasks. Such task models can be used duringthe design process for complex human interfaces andother systems, to facilitate e�ective human-centereddesign. Many fairly generic software tools are avail-able to capture models of human tasks and analyzethose models to extract various performance featureswith respect to operational environments and candi-date system designs. For example, the W/Index andCREWCUT tools can be used to study the expectedperformance qualities of an aircraft cockpit design (Du-ley et al. 1994). Designers input descriptions of thetasks the human can perform, the interface capabili-ties the cockpit design provides, and a \scenario" thatdrives the tool's analysis, simulating the human en-gaging in a series of tasks. The tools output workloadanalyses showing how busy the various human capabil-ities (e.g., visual perception, cognition) were at varioustimes during the scenario (see Figure 1).The Lab Notebook project, part of Honeywell's
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intelligent taskFigure 1: Example RPA workload pro�le with and without intelligent task reallocation between pilots.Prototyping Technologies (ProtoTech) program, alsoexempli�es the use of task modeling information ina static, design-time role. Prototech is an ARPA-sponsored e�ort to develop a next-generation environ-ment for the rapid assembly of large software proto-types. Our Prototech environment includes a Labora-tory Notebook tool that helps engineers record theirdesign decisions and rationales. The Lab Notebooktool is based on a model of human question asking andanswering and is designed to maximize communicationbetween members of a design team while minimizingengineer workload in recording rationales. This is ac-complished via an interview process which provides asimple, familiar structure on natural language ratio-nales. This structure can be used for later retrievaland navigation of the recorded rationales.Task models of a single human can also be used in amuch more dynamic, run-time environment to controlthe behavior of an interactive system. For example, thePilot's Associate (PA) system, sponsored by DARPAand the U.S. Air Force, contained models of many tasksthat pilots were expected to perform (Miller & Riley1994). During a 
ight, the PA actively monitored thehuman pilot's activities and attempted to match themagainst its task models, in order to understand whatinformation needs the human had, and what tasks thePA should perform autonomously when, for example,the human was too busy. One successor to the PA,the Rotorcraft Pilot's Associate, is described in moredetail in Section .Modeling for Multiple HumansSigni�cant extensions to a single-agent modelingmethod are required when capturing a description ofmultiple agents interacting or cooperating. For exam-ple, HTC has a NASA Advanced Air Transport Tech-nologies (AATT) Topical Area Study program titled

\Analyzing the Dynamics of a Next-Generation AirTransportation Management System". This one-yearprogram is investigating methods for improving hu-man performance simulation tools at NASA and Hon-eywell (such as NASA's MIDAS and HTC's W/Index)for evaluating candidate advanced air transportationtechnology concepts long before working prototypes areavailable for human-in-the-loop studies. There are twothrusts within this program. First, we are developingtechniques, utilizing HTC's Mixed-Initiative Model ofhuman/machine interactions (Riley 1989), for extend-ing current simulation tools so that they can considerthe information 
ow between multiple distributed in-telligent actors| enabling them to better analyze thecomplex interactions between ground crews, multipleair crews, and intelligent automation systems whichwill characterize most advanced air tra�c managementconcepts. The Mixed-Initiative Model, illustrated inFigure 2, breaks out the various perceptual, cognitive,and actuation capabilities of each agent, expressingfunctional behaviors and interactions between these ca-pabilities. In essence, these capabilities represent mod-ular sub-elements of a single agent's behavioral model,and we are starting to use task modeling methods tospecify each capability.Second, we are working to make the use of hu-man/machine performance simulationsmore a�ordableby beginning the construction of a knowledge-basedsuite of model-building and analysis tools around thesimulation systems themselves. In this program weare concentrating on the construction of an object-oriented, graphical model-building tool to facilitatethe construction of simulation scenarios and expectedagent tasks/behaviors. This tool will be built usingHTC's Domain Modeling Environment (DoME) andwill instantiate an \informationmodel" of the conceptsand entities used to construct mixed-initiative system



Figure not available onlineFigure 2: The Mixed-Initiative Model of human-machine systems [from (Riley 1989)].performance simulations. One piece of this informa-tion model will be a set of task modeling structuresand forms suited to expressing the behavior of eachMIM capability.Modeling for AutomationMuch of the AI community's work on \agent modeling"is focused on capturing the capabilities and behaviorsof fully automated systems. At HTC, many of thereal-world programs are aimed at developing mixed-initiative systems, and thus modeling for automationalone is less common. However, several technology ar-eas have consistently involved models for fully auto-mated systems. For example, our work on constraint-based scheduling systems uses complex task modelsto describe the control semantics and temporal de-tails of a set of tasks to be scheduled on a set ofresources (e.g., petrochemical processing units). TheSAFEbusTM scheduler, for example, builds static pro-cessing schedules for a networked multiprocessor sys-tem that controls the Boeing 777 aircraft informationmanagement system. The scheduler is given a detailedmodel of the set of tasks to be executed, their pe-riods, jitter, latency, and other temporal constraints,and various additional information such as precedencerequirements. Using this task model, the scheduleruses an iterative constraint envelope scheduling tech-nique (Boddy, Carcio�ni, & Hadden 1992) to developa schedule that meets all the requirements. Although

this program initially seems less related to agent mod-eling, the complex task modeling capabilities (particu-larly the expressive temporal constraint language) areclosely tied to traditional AI planners and plan repre-sentations.HTC also has projects that use models of au-tonomous behavior in the prescriptive plan-and-execute fashion common in AI. For example, oneproject is pursuing an agent-based approach to human-computer interaction and dynamic generation ofcontext-sensitive displays. In this program, the UM-PRS (Lee et al. 1994) implementation of the Pro-cedural Reasoning System (George� & Ingrand 1989;Ingrand, George�, & Rao 1992) is being used to cap-ture and reactively execute the procedures involved ina search-and-rescue (SAR) domain. UM-PRS providesan underlying task representation and syntax, andcomplex task models are instantiated to express thenumerous SAR activities. In addition, the task modelsdescribe how to generate e�ective displays based on thecurrent context and available display resources. Thusexplicit task modeling serves to capture several levelsof the system's behavior.Modeling for Mixed-Initiative TeamsAs noted above, many HTC projects involve complexmixed-initiative systems in which humans and automa-tion systems share responsibility and control. Taskmodels play a variety of roles in these systems, ranging
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Figure 3: The RPA Cognitive Decision Aiding System Architecture.from the design-time analysis illustrated in the aboveAATT example to speci�cation of run-time behaviorto the target information form for learning systems.Rotorcraft Pilot's Associate (RPA)The RPA program is a �ve-year Advanced Technol-ogy Demonstration (ATD) sponsored by U.S. Army'sAviation Applied Technology Directorate to develop,extensively evaluate, and 
ight-test an intelligent as-sociate system in the cockpit of an advanced Armyattack helicopter. The objective of this program isto establish revolutionary improvements in combat he-licopter mission e�ectiveness through the applicationof knowledge-based systems for cognitive-decision aid-ing and the integration of advanced pilotage, targetacquisition, armament and �re control, communica-tions, controls and displays, navigation, survivabilityand 
ight control equipment. Similar to the Pilot's As-sociate programs, the RPA will consist of a suite of �vecooperating knowledge-based systems whose collectivegoal will be to assist the aircraft crew in understandingthe vast array of battle�eld information, planning themission, and managing the complex systems of an ad-vanced helicopter (McBryan & Hall 1994). Figure 3illustrates the overall architecture for the RPA sys-tem. Task modeling plays signi�cant roles in severalof the system modules and their inter-module commu-nications.Honeywell is participating in the design, develop-ment and evaluation of the Cockpit Information Man-ager (CIM) module (Miller & Riley 1994). Overall, theRPA architecture relies on task modeling to coordinateits cooperating knowledge-based systems. The situa-tion assessment modules must recognize and announcethe tasks that the pilots are pursuing, as well as theexternal situation, potentially including the task plansbeing pursued by other entities in the domain. The

planning module uses this information to generate aprojected course of action for the automation systemand the humans, and again this is essentially expressedas a task model. Then the CIM uses this task mod-eling information to actively manage the cockpit dis-plays and interaction mechanisms. Figure 4 illustratesthe CIM architecture and shows several roles for taskmodels, including the inputs to the CIM system, theoutputs of the crew intent estimator module, and thestored elements of the goals/side-e�ects modelingmod-ule.At HTC, we are using a set of workload assessmentand human factors analysis tools to optimize crewsta-tion design and function allocation policies betweenmultiple crew members and automation during the ini-tial phases of the program. In addition, the policies de-veloped using these analysis tools will be captured indynamic informationmanagement and function alloca-tion algorithms to increase the 
exibility and context-sensitivity of the CIM.Learning Systems for Pilot Aiding (LSPA)The LSPA program was a 3.5 year e�ort sponsoredby AFWAL's Crewstation Directorate to demonstratemachine learning applications for large scale, pilot-aiding expert systems| speci�cally, Lockheed's Pilot'sAssociate. The program consisted of two interactingparts, Learning System for Tactical Planning (LSTP)and Learning System for Information Requirements(LSIR). Our goals were to facilitate knowledge acquisi-tion and knowledge engineering by semi-automaticallylearning tactical plans and pilot information require-ments from simulator-
own learning instances, therebyreducing the time and cost associated with knowledgebase scale-up and modi�cation. At program end, LSTPhas successfully used an Explanation-Based Learningapproach to learn eight new leaf-level plans for the



Figure not available onlineFigure 4: The RPA Cockpit Information Manager.Tactics Planner (TP) module of the PA, substantially
eshing out the TP branches for degrading SAM sitesand evading missiles. LSIR has developed a \linkedlearning" technique which takes a newly-learned planfrom LSTP and reasons about the information a hu-man pilot will need in order to perform that plan. Theresult is an Information Requirements data structurewhich is used by the Pilot-Vehicle interface module ofthe PA in selecting and con�guring displays for Infor-mation Management. Experimental evaluation of theLSPA systems indicates that when human knowledgeengineers use LSPA outputs, even novices can createplans and IR data structures faster and with greateraccuracy and completeness than when relying on tra-ditional knowledge engineering techniques alone.Explanations for Model-Based SystemsThe purpose of this IR&D project was to provide expla-nation and \argumentative" capabilities for a model-based diagnostic expert system. The target appli-cation was Honeywell's model-based Flight ControlMaintenance and Diagnostic System. We developedan approach to organizing the presentation of largeamounts of model-based data in an interactive formatpatterned after human-human explanatory and argu-mentative discourse in order to increase user trust,accuracy of usage, and embedded training potential.The discourse approach was a convenient, powerful,intuitive and broadly applicable method of organizingmodel-intensive data for information exchange in hu-

man/machine and human/human interactions.SummaryThese examples display the broad scope of task model-ing and agent modeling e�orts at the Honeywell Tech-nology Center. Many of these projects have a morehuman-centered focus than current AI software agentmodeling work, but we see many common themes andapproaches. In the long term, we hope to developshared agent modeling representations and tools thatcan ful�ll several of the roles currently addressed byseparate techniques. At HTC, task modeling supportsmany roles including:� Automated control and associate systems, throughdynamic planning, scheduling, and execution of taskmodels.� Domain knowledge acquisition, through models ofdiscourse and communication, as well as abstracttask models representing structural constraints onthe target knowledge being acquired.� Intelligent tutoring systems, using task models asboth the object to be trained and as a guide for howto provide training.� Intent inferencing (plan recognition), by mappingobserved user activities against existing task mod-els.� User interface generation, using task models as thebasis of determining what information a user needs.



� Interface design and analysis, using explicit taskmodels for domain-speci�c scenarios as the testbedagainst which to evaluate various hypothetical inter-face designs.� Information management and interaction manage-ment systems, which may build task models dynam-ically (in conjunction with an intent inferencing ortask tracking system), to provide adaptive assistanceto human operators.ReferencesBoddy, M.; Carcio�ni, J.; and Hadden, G. 1992.Scheduling with partial orders and a causal model. InProceedings of the Space Applications and ResearchWorkshop.Duley, J. A.; Miller, C. A.; Schultz, E.; and Hannen,M. 1994. A human resource based crew station designmethodology. In Proc. AIAA/IEEE Digital AvionicsSystems Conference, 233{238.George�, M. P., and Ingrand, F. F. 1989. Decision-making in an embedded reasoning system. In Proc.Int'l Joint Conf. on Arti�cial Intelligence, 972{978.Ingrand, F. F.; George�, M. P.; and Rao, A. S. 1992.An architecture for real-time reasoning and systemcontrol. IEEE Expert 34{44.Lee, J.; Huber, M. J.; Durfee, E. H.; and Kenny,P. G. 1994. UM-PRS: An implementation of the pro-cedural reasoning system for multirobot applications.In Proc. AIAA/NASA Conf. on Intelligent Robots inField, Factory, Service, and Space.McBryan, B., and Hall, J. 1994. Engineering approachfor rotorcraft pilot's associate cognitive decision aid-ing system development. In Proc. AIAA/IEEE DigitalAvionics Systems Conference, 76{81.Miller, C. A., and Riley, V. 1994. Achieving theassociate relationship: Lessons learned from 10 yearsof research and design. In Proc. IEEE Int'l Conf. onSystems, Man and Cybernetics.Riley, V. 1989. A general model of mixed-initiativehuman-machine systems. In Proc. Human Factors So-ciety 33rd Annual Meeting, 124{128.


