
Using Concolic Testing to Refine Vulnerability Profiles in FUZZBUSTER

David J. Musliner, Jeffrey M. Rye, Tom Marble
Smart Information Flow Technologies (SIFT)

Minneapolis, MN, USA
Email: {dmusliner, jrye, tmarble}@sift.net

Abstract—Vulnerabilities in today’s computer systems are
relentlessly exploited by cyber attackers armed with sophisti-
cated vulnerability search and exploit development toolkits. To
protect against such threats, we are developing FUZZBUSTER,
an automated system that provides adaptive immunity against
a wide variety of cyber threats. FUZZBUSTER uses custom
and off-the-shelf fuzz-testing tools to find vulnerabilities, create
vulnerability profiles identifying the inputs that drive target
programs to the corresponding faults, and synthesize adap-
tations that prevent future exploits. We have adapted the
CREST concolic testing tool so that FUZZBUSTER can refine
a vulnerability profile by extracting the symbolic constraints
stemming from concrete execution of a target program. This
novel use of concolic testing enables FUZZBUSTER to automat-
ically generalize a single fault-inducing input example into a
symbolic description of the vulnerability, and thus create more
effective adaptations.

Keywords-self-adaptive immunity, cyber-security, fuzz-testing.

I. INTRODUCTION

Modern computer systems face constant attack by so-
phisticated adversaries, and the number of cyber-intrusions
increases every year [1], [2]. Cyber-attackers use numerous
vulnerability scanning tools that automatically probe target
software systems for a wide array of vulnerabilities. For
example, attackers use fuzz-testing tools (such as Peach [3]
and SPIKE [4]) that try to crash target applications and
SQL injection tools (such as sqlmap [5] and havij [6])
that attempt to manipulate the contents of databases. Upon
discovering a potential vulnerability, attackers use powerful
exploit development toolkits (such as Metasploit [7] and
Inguma [8]) to quickly craft exploits that take advantage
of vulnerabilities.

We are developing FUZZBUSTER under DARPA’s Clean-
slate design of Resilient, Adaptive, Survivable Hosts
(CRASH) program to provide self-adaptive immunity from
these and other cyber-threats. FUZZBUSTER provides long-
term immunity against both observed and novel (zero-day)
cyber-attacks. For an in-depth discussion of FUZZBUSTER’s
capabilities, see [9], [10].

As shown in Figure 1, FUZZBUSTER operates proactively
to find vulnerabilities before they can be exploited, and
reactively to address exploits observed “in the wild.” FUZZ-
BUSTER directs the execution of custom and off-the-shelf
fuzz-testing tools to find and characterize vulnerabilities.
Fuzz-testing tools find software vulnerabilities by exploring
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Figure 1. When reacting to a fault, FUZZBUSTER creates an exemplar test
case that reflects the environment and inputs at the time of the observed
fault. During proactive exploration, FUZZBUSTER synthesizes exemplar test
cases that could lead to a fault.

millions of semi-random inputs to a program. FUZZBUSTER
creates a vulnerability profile representing the nature of each
vulnerability, including the ranges of inputs that lead to the
vulnerability. These vulnerability profiles represent as much
of the vulnerability as FUZZBUSTER can identify. After con-
structing a vulnerability profile, FUZZBUSTER synthesizes
defenses to shield or repair the flaw, protecting against entire
classes of exploits that may be encountered in the future.

FUZZBUSTER uses semi-random inputs and other fuzz-
testing tools to find and replicate vulnerabilities. When a vul-
nerability is discovered, FUZZBUSTER tries to determine the
inputs (command line arguments, inputs to stdin, environ-
ment variables) relevant to that vulnerability. FUZZBUSTER
also uses test tools that try to minimize fault-inducing inputs
by eliminating content that is not needed to trigger the fault.
FUZZBUSTER then attempts to synthesize an adaptation from
the refined vulnerability profile. Unfortunately, adaptations
based on information gathered with black-box tools tend to
be too narrowly focused, failing to block all fault-inducing
inputs. When source code is available, FUZZBUSTER uses
concolic testing (a combination of concrete and symbolic
execution) to find more general constraints specifying the
input values that lead to the fault. Once FUZZBUSTER has
eliminated irrelevant parts of the inputs, concolic testing can
generalize the vulnerability profile to cover a broader range
of fault-inducing inputs.

In this paper, we describe FUZZBUSTER’s novel use of
the CREST concolic testing tool to identify the inputs that
cause a target program to reach a fault.



II. CREST
CREST [11] is an open source concolic testing tool for

C programs. As with other concolic testing tools [12], [13],
[14], [15], it uses a combination of symbolic and concrete
execution to drive a target program through many different
code paths.

CREST uses C Intermediate Language (CIL) [16] to
instrument a target program to simultaneously perform sym-
bolic and concrete execution. To use CREST normally,
a user identifies a set of variables that he is concerned
with and CREST rewrites the target program so that those
“symbolic” variables can be controlled and tracked. During
each test iteration, CREST writes an inputs file, executes
the instrumented program and updates its internal state with
the results of the run. Each time the instrumented program
executes, it initializes the symbolic variables with the values
from the inputs file. If there are not enough inputs or if
no inputs are specified, the target program initializes each
symbolic variable with a random value. As it executes, the
target program records its execution, including the loads,
stores, assignments, branches, function calls, and returns
that relate to the symbolic (traced) variables. User-specified
search modes, such as random or depth first, use this
execution information to choose inputs for subsequent test
iterations. CREST runs test iterations until it executes every
code path in the target program or meets other stopping
criteria.

III. APPROACH

Traditionally, concolic test tools try to find a set of inputs
that maximize test coverage. In contrast, FUZZBUSTER uses
CREST to accumulate the symbolic constraints for a single
fault-inducing test case. The resulting constraints specify the
range of values the inputs can take without changing the
execution path.

We implemented this functionality by adding a new,
“concrete” execution mode to CREST that executes the
target program once and then prints the constraints for
the branches taken during the run. When the instrumented
program executes a load instruction on a symbolic variable
in this concrete mode, the instrumented code creates a
concrete binding and returns the value already stored in the
memory location being accessed. Using the already-stored
value instead of a random one results in the target program
following the desired path through the code. However, this
requires additional infrastructure to provide the specified
command line arguments and standard inputs.

While refining vulnerability profiles, FUZZBUSTER works
with fault-inducing test cases that were either observed in the
wild or found by proactive searches. If test programs have
suitable source code available, FUZZBUSTER “crestifies” the
target program, creating a new version of the source code
containing additional statements. The “crestified” version
calls functions to identify command line arguments and

inputs from stdin as symbolic variables. Then, FUZZ-
BUSTER executes CREST on the “crestified” target pro-
gram using the new concrete mode. Because the symbolic
variables capture the command-line arguments and standard
inputs to the target program, the resulting constraints specify
how an end-user (or attacker) can invoke the target program
to induce a fault. This same symbolification can be per-
formed for environment variables, file inputs and network
streams.

IV. EXAMPLE

Listing 1. 100over.c

1 /∗ D i v i d e s 100 by a number .
2 ∗
3 ∗ I f t h e d i v i s o r i s z e r o a F l o a t i n g
4 ∗ P o i n t E x c e p t i o n w i l l r e s u l t
5 ∗ /
6 # i n c l u d e <s t d i o . h>
7
8 i n t main ( i n t argc , char ∗ a rgv [ ] ) {
9 i n t d = 0 ;

10 i n t r = 0 ;
11
12 d = 1 ;
13 i f ( a r g c >= 2) {
14 d = a t o i ( a rgv [ 1 ] ) ;
15 }
16 r = 100 / d ;
17 p r i n t f ( ”%d\n ” , r ) ;
18 re turn 0 ;
19 }

To illustrate FUZZBUSTER’s process in more detail,
we now describe a simple example based on a trivial,
deliberately-faulty program. Listing 1 contains the source
code for 100over, our simple brittle program that converts
its first argument to an integer and divides it into 100. If
the argument is 0, 100over crashes with a floating point
error. Suppose that FUZZBUSTER detected this fault, either
by random proactive fuzz-testing or by observing a user
triggering the fault accidentally. FUZZBUSTER would begin
by trying to refine a new vulnerability profile to describe the
fault. This might include trying to determine which inputs
to the program are critical to causing the fault; in particular,
testing to see if any environment variables, command-line
arguments, or stdin inputs affect the reproducibility of the
fault. Having determined that the command-line arguments
are important and because the 100over source code is
available, FUZZBUSTER could then use CREST to derive
a more precise description of what kinds of command line
arguments cause the fault.



Listing 2. Segment from 100over_crest.c

1 i n t main ( i n t argc , char ∗ a rgv [ ] ) {
2 /∗ CRESTify argc ∗ /
3 CREST int ( a r g c ) ;
4 /∗ CRESTify argv ∗ /
5 i n t i ; / / argc i n d e x
6 i n t j ; / / argv [ i ] i n d e x
7 i n t l e n ; / / s t r l e n ( argv [ i ] )
8 f o r ( i = 1 ; i < a r g c ; ++ i ) {
9 l e n = s t r l e n ( a rgv [ i ] ) ;

10 / / save n u l l a l s o
11 f o r ( j = 0 ; j <= l e n ; ++ j ) {
12 CREST char ( a rgv [ i ] [ j ] ) ;
13 }
14 }
15 /∗ CRESTify s e n t i n e l b e f o r e main
16 ∗ v a r i a b l e s ∗ /
17 i n t c r e s t i f y = −889270259;
18 CREST int ( c r e s t i f y ) ;
19 /∗ main v a r i a b l e s ∗ /
20 i n t d = 0 ;
21 i n t r = 0 ;
22 /∗ CRESTify main v a r i a b l e s ∗ /
23 CREST int ( d ) ;
24 CREST int ( r ) ;
25 /∗ i n s t a l l CRESTify s i g n a l h a n d l e r

∗ /
26 i n t s ignums [ ] = {SIGHUP , SIGINT ,
27 SIGQUIT , SIGILL ,
28 SIGABRT , SIGFPE ,
29 SIGUSR1 , SIGSEGV ,
30 SIGUSR2 , SIGALRM,
31 SIGTERM , SIGSYS ,
32 0} ;
33 f o r ( i = 0 ; s ignums [ i ] > 0 ; ++ i )
34 { s i g n a l ( s ignums [ i ] , g o t s i g n a l ) ;}
35 /∗ o r i g i n a l program f o l l o w s ∗ /
36 d = 1 ;
37 i f ( a r g c >= 2) {
38 d = a t o i ( a rgv [ 1 ] ) ;
39 }
40 r = 100 / d ;
41 p r i n t f ( ”%d\n ” , r ) ;
42 re turn 0 ;
43 }
44 void g o t s i g n a l ( i n t signum )
45 a t t r i b u t e ( ( c r e s t s k i p ) )
46 {
47 p s i g n a l ( signum , ” g o t s i g n a l ” ) ;
48 C r e s t S i g n a l H a n d l e r ( ) ;
49 e x i t ( 1 ) ;
50 }

FUZZBUSTER’s “crestify” script transforms the 100over
main function into the form shown in Listing 2. The
crestified code calls CREST_int and CREST_char to
identify user-controlled variables as symbolic. When CREST
runs the crestified program, all accesses (loads, stores,
assignments) of these variables are recorded. The crestified
code also sets up a signal handler so that if a fault is
encountered (such as the floating point error), the target
program will exit cleanly and the execution information will
be available to CREST.

Listing 3. Segment from 100over_crest.cil.c

1 Cres tLoad ( 2 9 7 , ( unsigned long ) 0 ,
( long long ) 1 ) ;

2 C r e s t S t o r e ( 2 9 8 , ( unsigned long ) (&
d ) ) ;

3 # l i n e 156
4 d = 1 ;
5 {
6 Cres tLoad ( 3 0 1 , ( unsigned long ) (&

a r g c ) , ( long long ) a r g c ) ;
7 Cres tLoad ( 3 0 0 , ( unsigned long ) 0 ,

( long long ) 2 ) ;
8 Cres tApp ly2 ( 2 9 9 , 17 , ( long long ) (

a r g c >= 2) ) ;
9 # l i n e 157

10 i f ( a r g c >= 2) {
11 C r e s t B r a n c h ( 3 0 2 , 105 , 1 ) ;
12 # l i n e 158
13 mem 12 = a rgv + 1 ;
14 # l i n e 158
15 d = a t o i ( ( char c o n s t ∗ ) ∗mem 12 ) ;
16 C r e s t H a n d l e R e t u r n ( 3 0 5 , ( long

long ) d ) ;
17 C r e s t S t o r e ( 3 0 4 , ( unsigned long )

(& d ) ) ;
18 } e l s e {
19 C r e s t B r a n c h ( 3 0 3 , 106 , 0 ) ;
20
21 }
22 }

When CREST runs on the target program, it uses CIL
to add additional instrumentation (see the code segment in
Listing 3). CREST links this instrumented file with a library
that records the operations. CREST can only track memory
accesses and branches in instrumented source code, so the
target program either needs to include the implementations
of all functions (such as atoi and strlen) or needs to
be linked with libraries that were instrumented by CREST.

As shown in Figure 2, running CREST on 100over with
“0” as the command line argument yields five initial values
and eleven constraints. The constraints describe the bounds
on input variables that will always lead to the same faulty
code, i.e., the vulnerability.



initial 0: argc = 2; # int
initial 1: argv[1][0] = ’0’; # char
initial 2: argv[1][1] = ’\0’; # char
initial 3: _crestify = -889270259; # int
initial 4: d = 0; # int
initial 5: r = 0; # int
constraint 0: (< (+ 1 (* -1 argc)) 0)
constraint 1: (>= (+ 2 (* -1 argc)) 0)
constraint 2: (>= (+ -2 (* 1 argc)) 0)
constraint 3: (/= (+ -32

(* 1 argv[1][0])) 0)
constraint 4: (/= (+ -45

(* 1 argv[1][0])) 0)
constraint 5: (/= (+ -43

(* 1 argv[1][0])) 0)
constraint 6: (>= (+ -48

(* 1 argv[1][0])) 0)
constraint 7: (<= (+ -57

(* 1 argv[1][0])) 0)
constraint 8: (< (+ -58

(* 1 argv[1][0])) 0)
constraint 9: (< (+ -48

(* 1 argv[1][1])) 0)
constraint 10: (= (+ -48

(* 1 argv[1][0])) 0)

Figure 2. Running CREST with the concrete search mode yields two
lists: the initial variable assignments and the constraints corresponding to
the branches taken during concrete execution.

In Figure 2, constraints 0 and 1 come from the nested
loops at the start of main (lines 8–14 in Listing 2) that
make the contents of argv symbolic. Constraint 2 reflects
the check to ensure that argv[1] is set (line 39 in Listing
2). Constraints 3 through 9 reflect the branches in the source
code for atoi. Constraint 3 states that the character is not
a space (ASCII code 32). Constraints 4 and 5 state that
the character is not a “-” or “+” (ASCII codes 45 and 43).
Constraints 6 and 7 enforce that the character is a digit.
Constraints 8 and 9 reflect the end conditions for the main
loop in atoi.

The final constraint, 10, reflects the condition for
the floating point exception— i.e., that the input is
exactly zero. This last constraint is added by the
__CrestSignalHandler() that we developed (see line
51 in Listing 2). When the target program throws the
floating point exception, this signal handler records all of
the symbolic expressions on the stack, adding constraints
specifying that these expressions must equal the concrete
value stored in memory. Without this special signal-handling
code, CREST cannot tell that a branch occurred and cannot
record a suitable constraint.

V. NEXT STEPS

FUZZBUSTER currently parses the constraints identified
by CREST and updates the vulnerability profile accordingly.
We are working on several extensions that will enable
FUZZBUSTER to synthesize security-improving adaptations
directly from the identified constraints.

FUZZBUSTER currently generates adaptations that wrap
the target program and remove fault-inducing inputs or
prevent execution when they are present. In the future,
FUZZBUSTER could generate an adaptation that checks if
inputs match every identified constraint and, if so, aborts
the execution of the target program. Such an adaptation
would have minimal impact on normal operation, but might
not catch other execution paths that lead to the fault.
Alternatively, FUZZBUSTER could generate an adaptation
that checks an individual constraint and aborts execution
if that constraint is met. This type of adaptation would
have potentially broad coverage, but might have a negative
impact on normal operation. Additionally, FUZZBUSTER
could generate adaptations that check any subset of the
identified constraints.

Because FUZZBUSTER regression tests adaptations before
applying them, it could generate numerous adaptations from
the constraints and then test them to find an adaptation
with a suitable balance between fault prevention and impact
on normal operation. Thus, FUZZBUSTER could take into
account the precise conditions leading to a fault and prevent
the fault with limited impact to the normal (non-faulting)
execution of the target program.

For many target programs, CREST may generate sets of
constraints where not every constraint must be satisfied to
reach the fault. For instance, a command-line argument trig-
gering verbose output could result in numerous constraints,
but might not influence the overall execution of the target
program. We could identify such constraints by constructing
inputs that violate one of the constraints at a time to see if
that constraint is required to reach the fault.

More generally, a target program may contain numerous
paths that lead to the faulting location; FUZZBUSTER also
needs to protect against inputs driving the target program
down these paths. To identify these paths, we could add
another mode to CREST that uses the control flow graph to
search for additional paths that reach the fault’s location.

In addition to creating wrapper adaptations that protect
vulnerable programs by modifying inputs, FUZZBUSTER
uses the evolutionary program repair tool, GenProg [17]
to synthesize source code adaptations. GenProg uses a
regression test suite to identify potential sites for source
code modifications. FUZZBUSTER could use the constraints
identified by CREST to provide guidance to GenProg about
what source code sites are relevant. This would speed
GenProg’s operation and increase the chances of finding a
suitable repair.



VI. RELATED WORK

As previously noted, the FUZZBUSTER approach has
roots in fuzz-testing, a term first coined in 1988 applied to
software security analysis [18]. It refers to invalid, random
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers— and the
closely related “fault injectors”— are good at finding buffer
overflow, XSS, denial of service (DoS), SQL injection, and
format string bugs. They are generally not highly effective
in finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [19]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement and
decision-making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUZZBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created specialized
self-adaptive systems for protecting software applications.
For example, both AWDRAT [20] and PMOP [21] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [22] used a different approach,
placing a dynamically-programmed proxy in front of a
replicated database server and using active experimentation
based on learned (not hand-coded) models to diagnose new
system vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

VII. CONCLUSION AND FUTURE WORK

FUZZBUSTER is intended to augment and eventually
outmode various post-exploit security tools such as virus
scanners. Rather than scanning a computer all night to see
if it has been compromised by an exploit, FUZZBUSTER
will scan for vulnerable software and repair or shield it.
FUZZBUSTER’s novel use of CREST is a major step toward
the fully automatic use of concolic testing for vulnerability
refinement and protection.
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