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Abstract— This paper presents a recently achieved incremental 

milestone on the long path toward more intelligently adaptive, 

automated and self-managed computer systems. We 

demonstrate the feasibility of integrated cyber-defense 

connecting anomaly detection and isolation mechanisms 

operating at different system layers with two complementary 

mediation policy adaptation techniques in service of automatic 

remediation against observed attacks and their future variants. 

We describe a number of experiments evaluating the relevance 

and effectiveness of the integrated cyber-defense operation. 
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I. INTRODUCTION 

Traditionally, cyber-defense meant protecting perimeter 
routers and entry points at the network border. Defense also 
implied static preventive policy enforcement, for instance in 
the context of perimeter defense, filtering firewalls. The 
prevalence of preventive protection at the perimeter, and in 
some cases being the only defense available in the system, 
has led to the infamous crunchy on the outside, soft inside 
description of computer systems, implying that once an 
adversary compromises the outside barrier, he has free reign.  

Like-minded researchers including ourselves, have been 
working on changing that perception on both counts. First, 
cyber defense is no longer confined to static and prevention 
focused security policy enforcement. Adaptive response 
plays a major role in an organization’s cyber-defense 
strategy. Second, there is no single defensive boundary 
anymore; defensive layers permeate the entire system.  

Major R&D efforts such as the DARPA CRASH and 
MRC programs are developing new defensive technologies 
that have the potential to become fundamental building 
blocks across all system layers, including the hardware, OS, 
programming languages and middleware-based execution 
management environments. To achieve better preparedness 
against the growing threat and increasing sophistication of 

cyber-attacks, the R&D trend has been to push the envelope 
on adaptive security—developing new types of adaptation 
mechanisms with deeper and wider scope, smarter and more 
effective management of defensive adaptation, as well as 
pushing the perimeters to be defended inward. Part of that 
has meant attempting to move from perimeter firewalls at the 
network border to distributed managed firewalls at individual 
hosts, and moving up the application stack in the form of 
application specific filtering.  

We recently showed the feasibility and practicality of 
integrated components of a managed execution environment 
mounting automated post-incident responses to immunize a 
protected application against future attacks of the same or 
similar kind. Attacks are launched through the application’s 
network interface and immunity is achieved by principled 
adaptation of its I/O mediation policy. Attack effects are 
detected by undesired I/O and execution behavior. The 
application is restored to a pre-attack state, a quick policy 
patch in the form of decision-tree classifiers is followed up 
by detailed fuzzing experiments to derive a more precise 
model of the input that triggers the exploited vulnerability. 
The resulting regular expression is then applied as a second 
policy patch. By utilizing the two complementary patch 
generation technologies, the resulting updated policy is able 
to block future I/O events that are similar in content 
signature (e.g., regular expression filter) or in character (i.e., 
classifier that separates the manifestation causing events). 
The post-incident workflow described above is implemented 
in the A3 execution management environment we are 
developing and accepts operator intervention as necessary. 
This technique covers novel attacks that eventually manifest 
a known undesired I/O or execution state, under the 
conditions that (for the current implementation) (1) at least a 
subset of the I/O events contributing to the manifestation 
occur after the last check pointed state, and (2) the attack 
does not exploit timing flaws.  

This paper concentrates its contributions in three areas. 
First, we present a high-water mark working prototype for 
defense-oriented self-adaptation, demonstrating automation 
of complex multi-stage post-incident response, closing the 
loop between detection at the victim’s execution state and 
patching at the processes I/O perimeter. This significantly 
reduces the time required to devise and deploy a patch, and 
in turn reducing the time the application remains unpatched 
and vulnerable. Second, we establish the effectiveness of 
pushing the I/O filtering perimeter defense inward to a 
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boundary point near an application, without interfering with 
other defenses or other computations running on the same 
host. Third, we demonstrate an application-centric open 
architecture platform for cyber-attack management, 
integrating synergistic capabilities from multiple external 
technologies like FuzzBuster’s input fuzzing and the Weka 
machine-learning framework with A3 core services like 
replay and execution introspection to realize robust 
automated cyber-defense and resiliency objectives. We 
discuss initial experimental evaluation of the post-incident 
policy patching capabilities using real as well as injected 
attacks against an illustrative Apache-PHP application. 

II. BUILDING TO THE NEW CAPABILITIES 

Our approach to automated adaptation of near-
application perimeter protection is informed by our past 
experience in developing and demonstrating advanced 
adaptive cyber defense technologies. In the DPASA project 
[1] we divided a high-valued network into four distinct quads 
so that 4-fold Byzantine tolerant replicated services can have 
each replica in different quads, and used hardware voting to 
cut off suspected quads that showed abnormal behavior 
detected by IDSs and the BFT protocols.  Beyond 
introducing a 2 layer hierarchy (i.e., the entire network vs. 4 
independent quads), we also used managed distributed 
firewalls [2] running on the network interface cards of each 
host. The distributed firewalls enabled fine grained control of 
the inbound and outbound network traffic at each host, based 
on peer IP address, local and remote port and protocol. In the 
CSISM project [3]  we advanced this type of adaptive and 
managed perimeter defense further by adding a sophisticated 
reasoning component to make blocking and quarantining 
decisions based on interpreting alerts and lifecycle events as 
accusations and evidence. Around the same time, the 
CORTEX [4] project developed a taste-tester framework to 
provide intrusion-tolerant database services. In response to 
detected malicious SQL requests, CORTEX would develop a 
generalized SQL filter that will block future SQL requests 
that attempt to exploit the same vulnerability. The 
FuzzBuster project has developed a more general approach 
to application-level protection, using fuzz-testing to refine 
vulnerability models and develop adaptations to prevent 
future attacks. AWDRAT and PMOP [8] demonstrated use 
of library reloading, alternative methods and rebuilding 
application data structures as a means to defend against 
future instances of observed attacks. These adaptations were 
implemented by wrappers interposed between system and 
library calls, and are similar in spirit to A3’s I/O mediation.  

Many of the precursor technologies, unless it is 
integrated with a specific application, such as the database in 
CORTEX, suffer from co-tenancy at the network enclave 
level and at the host. The subtle ways the co-tenants interact 
and interfere, knowingly or unknowingly, through shared 
system resources like the network and stable storage, make 
enforcement of application-specific policy at the network or 
host level, let alone dynamic adaptation of such policies, 
much more difficult and less effective. The policy 
enforcement points handle the aggregate interaction of all 
tenants and what is good for one is typically not so good for 

another. Even if a workable coarse grain policy is found after 
careful planning and profiling, flaws and gaps are inevitably 
found by novel and zero-day attacks, necessitating changes 
in the policy, entailing lengthy rounds of profiling and 
testing, during which the applications remains vulnerable.  

   The A3 execution management environment addresses 
this problem by containerizing the protected application in 
such a way that (a) the protected application has an entire 
(virtual) host to itself and (b) all network and storage I/O is 
subjected to mandatory mediation, so that a tight application-
specific policy (a) is feasible and (b) does not interfere with 
any other application. In this context an application means 
one or a collection of cooperating processes working to 
provide a single, well-defined service. The illustrative 
example we use in this paper is an Apache-PHP document 
management application that consists of multiple processes. 
The A3 environment offers a number of core services and an 
open architecture for integrating synergistic capabilities to 
facilitate self-adaptive post incident response. As we explain 
next, the A3 and FuzzBuster integrated operation is an 
example narrowly focused on adapting the application’s I/O 
mediation, closing the loop between attack manifestations 
and patching the mediation policies.  

III. SYSTEM UNDER TEST 

Both A3 and FuzzBuster have been introduced and 
discussed in papers from the last AHANS workshop [5, 6]. 
Before describing the A3-FuzzBuster integrated operation, 
we briefly introduce A3’s post-incident response handling. In 
this context, incidents are manifestation of known undesired 
conditions caused by potentially unknown exploits and 
vulnerabilities, for example, eventual detection of a remote 
network shell or segmentation fault. Figure 1 shows part of 
A3’s post-incident response workflow, primarily focusing on 
the adaptive modification of I/O mediation policy. An 
observed manifestation of an undesired condition pauses or 
restarts the application from a past checkpoint. In parallel, 
A3 initiates Set Reduce, which partitions the recorded input 
events to “benign” and “malicious” sets by playing back 
recorded inputs in a binary-search like algorithm and 
watching which playback sequence reproduces the observed 
undesired manifestation. A policy patching step follows.  If a 

 
Figure 1: The workflow to patch the IO mediation policy 



patch is found, the application is restarted with the patched 
policy. The policy patch, acting as an I/O filter, buys time to 
perform a deeper diagnosis and find a more robust fix.  

As shown in Figure 1, policy patching involves two 
complementary patch generation techniques: decision-tree 
classifiers and input fuzzing. The classifier generation 
process takes both the malicious and benign partitions of the 
recorded inputs, and learns the semantic differentiator 
between the two sets. The classifiers can result in a complex 
predicate involving attributes of the I/O events (i.e., this 
technique is aware of the application’s I/O protocol) and 
their values. Input fuzzing starts with the malicious set and 
employs sophisticated fuzz testing techniques to find a 
regular expression filter. The regular expression filter is a 
generalized signature for the I/O payloads that trigger 
undesired manifestations similar to the members of the 
malicious set, and in that sense is an input-output model of 
the exploited vulnerability. These two techniques highlight 
the two prominent interaction patterns supported in A3’s 
open integration architecture. The classifier generation step 
is performed using the Weka framework, which is invoked 
as an internal on-demand service by A3. In contrast, regular 
expression filters are generated by FuzzBuster, running as an 
external service independent of A3, using a standardized 
interface and interaction protocol, C3PO, designed to 
regularize exchanging fault handling information. 

Figure 2 shows the integrated setup combining A3 and 
FuzzBuster. The protected Apache-PHP application runs in 
its own dedicated AppVM. Network and storage interactions 
of the protected application are subjected to mandatory 
mediation at the Network and Storage crumple zones 
respectively, each realized as different VMs. A3 provides an 
onboard laboratory area where copies of the protected 
application (labeled experiment conglomerate) can be 
started. The experiment conglomerate is used for A3 internal 
purposes i.e., replay-based Set Reduce to partition the 
recorded inputs into benign and malicious sets or testing 
decision-tree classifiers, and is also exposed to external 
services for integrated operation e.g., FuzzBuster’s fuzz 
tests. A3’s VM introspection (VMI) service enables deep 
inspection of the memory state of executing processes, in 
both production and experiment conglomerates. A3 comes 

with a dashboard through which human operators interact 
with the environment controller (running in Dom 0). Only 
the Xen micro-kernel and Dom 0 services are trusted; the 
Dom U VMs are not. The mandatory mediation and deeper 
introspection of executing processes enable A3 to detect 
undesired states that the application should never be in.  

Figure 2 highlights A3-FuzzBuster integrated operation, 
starting with the detection of a manifest undesired condition 
(1), isolating the failure causing inputs (2), notifying 
FuzzBuster (3), setting up an experiment conglomerate (4, 5, 
6), FuzzBuster interaction with the experiment conglomerate 
for fuzzing runs (7) with A3 reporting observed undesired 
conditions back (8), and FuzzBuster providing a patch to A3 
(9). The experiment conglomerate can be started and 
configured beforehand, minimizing the delay associated with 
the handshake in steps 4 and 6.  The protected application 
and/or the experiment conglomerate may need to be restarted 
during fuzzing experiments, depending on the application 
and attack. For example, in the experiments and attacks 
considered in this paper, restarting the Apache application 
(instead of the entire experiment conglomerate) was 
sufficient for continuing the fuzzing runs.  Restarting the 
application takes seconds, whereas restarting the 
conglomerate takes ~2 minutes. 

The steps described above are part of the standardized 
C3PO protocol that enables A3 and FuzzBuster to 
interoperate with each other as well as other conformant 
external services.  For A3, C3PO provides a standard way to 
designate a failure report to other components that may be 
able to produce a patch, while for FuzzBuster it offers a 
standard way to fuzz test externally managed applications. 
Configurable parameters of the C3PO protocol enable tuning 
the integrated behavior in a number of ways such as 
returning a patch within a deadline, incrementally refining 
previous patches, tolerating certain percentage of false 
positives or negatives etc.  

To evaluate the adaptation of mediation policies as part 
of our post-incident response automation, we implemented 
seven known attacks against the Apache-PHP webserver 
application that targeted vulnerabilities in the Apache 2.2 
source code or server configuration. These attacks lead to 
resource exhaustion, data exfiltration, and remote code 
execution.  Five of these attacks can be launched using a 
single input message. Two require multiple message 
sequences, where the first message uploads a file to the 
webserver (exploiting a permissive file upload service), 
followed by sending a trigger message that exploits a 
vulnerability in conjunction with the uploaded file. Since 
fully implementing and weaponizing the attacks requires 
significant development, we instead used a fault injector 
module to inject the end-effects of the attacks.  The fault 
injector triggers computation based on specific patterns in 
input messages, and the existence or contents of local 
configuration files used by Apache, emulating the execution 
the weaponized attack payload.  Examples of injected attack 
effects include termination of the Apache request handling 
child processes, prolonged CPU over-utilization, memory 
exhaustion, access to files outside application’s data folders, 
opening remote connections and listening sockets, etc.  

 

 
Figure 2: A3-FuzzBuster integrated capability 

 



We developed a set of benign clients using the system 
under test in a variety of usage patterns, from periodic single 
file downloads, to bulk batch downloading, random heavy 
bursts of traffic, and periodic index requests.  With benign 
clients providing background traffic and load, we start a 
malicious client that waits a random interval and sends the 
attack sequence.  When the exploits trigger, the fault injector 
module injects the intended attack effects.  This leads the 
protected application to an undesired state. When such states 
are detected by the A3 VMI-based detectors or I/O mediation 
policy it automatically kicks off the workflow described in 
Figure 1, beginning with replay-based set reduction, 
followed by derivation of an appropriate adaptation of the 
I/O mediation policy using decision-tree classifiers and 
regular expression filters. 

IV. RESULTS AND DISCUISSION 

To evaluate the adaptation of mediation polices, we 
considered response time (the time taken to generate an 
enforceable filter), and patch quality (susceptibility to false 
positives (FP) or false negatives (FN)).  The time from 
detectable manifestation to installation of an effective filter is 
the time the application remains vulnerable.  In the 
experiments, we measured this as the elapsed time between 
detection of the undesired condition and the availability of a 
patch. Details about this interval for our two patch generation 
approaches are explained throughout this section.  

By design generated classifiers and regular expression 
filters have no FNs or FPs based solely on repeats of 
previously seen inputs from the last checkpoint. However, 
since attackers can and will try again if they are blocked, and 
new benign clients will continue to access the application it 
is important to understand whether the generated filters can 
produce FPs or FNs going forward. Potential FNs can arise if 
a filter keys off a portion of the input that happened to be 
different for a malicious input set, but was irrelevant to 
actually triggering the failure.  A clever attacker could 
modify his attack by changing the irrelevant section and 
exploit the same vulnerability.  An FP can likewise occur if a 
derived filter is too general based on observed inputs and a 
later benign request from a new client happens to match the 
in retrospect inadvertently blocked section.  

We evaluated the potential for emergent FPs or FNs for a 
generated filter through a manual step after the classifier or 
regular expression filters are generated. Manual analysis of 
the generated filter against the attacks tells us whether FP or 
FN is possible, in which case we generated specific new 
input messages to cause such events. Figure 1 workflow is 
invoked again, adding the new false positive to the benign 
set, and rerunning the filter generation algorithms. 

A. Mediation Policy Adaptation Using Input Classifiers 

Since the malicious set size is generally small, often one 
element, there are many potential decision trees that 
correctly classify it. Our algorithm produces as many 
decision trees as possible that satisfy size constraints and 
correctly classify all the training data. These trees are ranked 
by the information gain present in the root node, as 
determined by the C4.5 algorithm [7]. Trees with the same 

information gain are ranked using a non-optimal 
lexicographic ranking based on feature name. Our host 
controller allows a human operator to assign weights to the 
various features based on knowledge of the defended 
application and the HTTP protocol, which would override 
the standard information gain ranking.  We did not use 
operator assigned rankings for the evaluation avoiding 
having to account for human intervention in response time. 

Trees with high information gain in the root node have 
likely found a specific feature that classifies the malicious set 
as different from the benign set, whereas trees with low 
information gain in the root node are likely over-fitting the 
data. When multiple decision trees with the same ranking are 
generated, there is a decision to be made as to which trees to 
enforce as input filters. Using a single tree reduces potential 
FPs, but increases the potential for FNs, if the chosen tree 
uses extraneous filters that are essentially noise instead of the 
features that are the underlying culprit. Alternatively, using 
all of the trees reduces FN potential, but increases potential 
FPs.  Since FNs are usually more problematic than FPs and 
we wanted to avoid accounting for human involvement in 
response time, we used all trees with the highest information 
gain ranking in the current evaluation. In an operational 
environment, a long running application will have built up a 
large set of benign inputs.  Larger benign input sets will 
reduce the potential for FPs, since an FP requires a new 
benign input with a specific feature value that hasn’t been 
seen before.  The experiments we performed used a small set 
of benign clients (~50 inputs), to present close to a worst 
case scenario for the classifier algorithm.   

 

 
Table 1 gives the results of the decision tree classifiers on 

the seven attacks. The Time column is the time to generate a 
patch. The Filters Generated column indicates the number of 
decision trees converted to input filters, which is the number 
of trees with the same information gain as the top ranked 
tree.  An optimal decision tree is one that if implemented as 
NCZ filters results in no false negatives (the filter will block 
any attempt to exploit the same vulnerability), and no false 
positives (benign clients will not be blocked) as determined 
by manual analysis. The Optimal Tree column indicates 
“Yes” if the optimal tree was present in the set generated, 
“FP”, if the best tree present has potential false positives, and 
“FN” if the best tree present had potential false negatives.  
The Final column indicates whether or not the extended 
manual tests (where experimenter generated false negative or 
false positives are injected) eventually resulted in an optimal 

Attack Time 
(ms) 

Filters 
 

Optimal 
Tree 

Present? 

Eventual  
Optimal 

Tree 

CVE-2011-3192 968 2 No (FP) Yes (1) 

CVE-2011-3368 1490 8 No (FN) Yes (2) 

CVE-2012-0053 441 7 Yes  Yes 

CVE-2011-0419 550 11 Yes  Yes 

CVE-2012-0021 1251 2 Yes  Yes 

CVE-2011-3607 617 6  No (FN)  No (FN) 

Shellcode 1203 7 No (FN)  Yes (1) 

Table 1: Decision Tree Results 



decision tree.  The number in parentheses indicates the 
number of iterations of generating a false negative or 
positive and rerunning the classifier algorithm. 

For six of the seven attacks, the decision tree classifiers 
are eventually able to produce an optimal decision tree. The 
CVE-2011-3368 attack involves the attacker accessing 
private internal servers through a URL rewriting 
configuration error. The optimal decision tree effectively 
blocks the path to the internal server being attacked.  If the 
application has access to multiple internal servers, the 
classifiers would need to see one attack for each internal 
server before blocking all such attacks.  For this experiment, 
we assumed three internal servers, implying that the patch 
resulting from the observed attack will have two FNs. Note 
however, that a filter that allows FNs still slows the attacker 
down, since the attacker would need to spend some time and 
luck determining exactly what message attributes are 
triggering the block to successfully utilize the FN opening. 
The CVE-2011-3607 attack involves uploading a file, adding 
a header defined in that file to a subsequent input, and 
putting shellcode as the value of that header.  The decision 
trees can block an individual header, but the attacker could 
upload a new file with a new header, and a new trigger input 
using that new header. The shellcode attack is similar to 
CVE-2011-3607, however under this attack the shellcode 
injected into a specific header field leads to an optimal tree 
that blocks any use of that field.  Initially that optional tree is 
ranked lower than blocking the specific seen shellcode, 
requiring a second attack (FN) or manual experimenter 
modification of the feature weights to bring it to top ranking. 

In all but one of the attacks (CVE-2012-0021), however, 
the defended application is either still vulnerable after the 
initial attack to a modified attack, or could delay benign 
clients with false positive blocked requests. 

B. Mediation Policy Adaptation Using FuzzBuster 

For the current evaluation, Fuzzbuster was configured to 
return an initial patch after two minutes of operation.  The 
initial patches are susceptible to false negatives, since they 
contain extraneous information from the initial malicious 
input that has yet to be reduced out of the patch expression. 
Fuzzbuster then continued to refine the patch eventually 
producing a final patch when it had run to quiescence. 

 

 
Fuzzbuster results on the seven candidate attacks are 

given in Table 2. The first column lists the total time from 
initial fault detection to final patch generation.  The Inputs 
tested column indicates the total number of synthesized input 

messages tested. The final column indicates whether the final 
patch was susceptible to FPs or FNs as determined by 
manual analysis of the regular expression and the attack. 

To compare the patch generation time of the two 
techniques, we measured the time FuzzBuster takes to 
generate the regular expression filters. Column 1 of Table 2 
shows the FuzzBuster compute time, which does not include 
the time spent in coordinating with A3 during fuzz testing. 
The major component of the additional coordination delay is 
the ~5 second time required to revert the experiment 
conglomerate to a check pointed state, if and when needed 
(depending on the attack being tested). 

FuzzBuster timed out after four hours on the attacks 
involving larger input messages, with the final patches 
blocking the attack, but susceptible to a FN from a modified 
attack. For CVE-2011-3607, the generated regular 
expression was closing in on an optimal solution of blocking 
just the specific triggering bytes wherever they appear, 
leading us to believe that future refinements to the fuzzing 
algorithms can result in an optimal filter.   

Attacks that depend on specific sequences of characters 
in the input messages, such as CVE-2011-3368 and CVE-
2012-0021, are blocked perfectly by the regular expression 
filters, allowing no false negatives or false positives.  In 
attacks such as CVE-2011-3192 and CVE-2012-0053, 
however, the content of the message is irrelevant; the length 
of a specific header is the cause of the vulnerability.  For 
these the resulting final patch still contains extraneous data, 
exploitable to generate a false negative.   

C. Discussion  

We first consider the differences between the decision 
tree and regular expression filters. Figure 3 shows one of the 
highest ranking decision trees generated in response to the 
CVE-2011-3368 attack, allowing the attacker to access a 
private server that should not be accessible.  The “Yes” 
nodes of the decision tree indicate a member of the malicious 

set. Any input request that uses the op=pub query parameter 
or any request that accesses the specific URL 
“/@10.0.1.1/console” is classified as malicious. Therefore, 
the policy that mediates input requests to the protected 
application is modified with a blocking rule with the 

condition ((op=pub) OR (URLPath= 

/@10.0.1.1/console)). Note that the patch is aware 
of the HTTP protocol that the application is using for its 
network I/O. In contrast, the FuzzBuster generated regular 

expression filter for the same attack looks as follows:  “.*? 

Attack Time 
(min) 

Inputs 
Tested 

FP or FN 
Possible 

CVE-2011-3192 96 1165 FN possible 

CVE-2011-3368 53 627 No 

CVE-2012-0053 30 366 FN possible  

CVE-2011-0419 Timed out  FN possible  

CVE-2012-0021 36 444 No  

CVE-2011-3607 Timed out  FN possible   

Shellcode 32 1131 No 

Table 2: FuzzBuster Results 

 
 

Figure 3: Decision tree filter example (CVE-2011-3368)  



/\@10\.0.*?\n”. Although not aware of any protocol, 

the blocking rule using this regular expression effectively 
blocks any use of the “/@10.” character sequence in the 
request URL, which is the trigger that allows access to a 
private internal server via a URL rewrite rule 
misconfiguration, not just the “console” as in the case of the 
classifier. This regular expression filter blocks any message 
that matches this signature, blocking any attempts to exploit 
this same vulnerability to access a different private internal 
server, or a different section of the same one. 

The run time of the entire decision tree classifier learning 
algorithm is on the order of one second, providing a patch 
almost immediately. The short response time enables the 
application to continue operating and serving benign requests 
while the vulnerability is further examined. The response 
time for regular expression filters on the other hand, is tens 
of minutes, although it can obtain a partial patch earlier, on 
the order of minutes. The seconds to minutes difference in 
response time is due to the fact that the classifier generation 
involves a one shot computing with all its inputs provided at 
the beginning, resulting in the decision trees at the end. In 
contrast, the process of generating a regular expression filter 
involves testing numerous variations of malicious inputs to 
zero-in on triggering the vulnerability causing the observed 
manifestation. FuzzBuster uses a suite of fuzz testing tools to 
synthesize input messages that explore how a vulnerability 
can be triggered.  Each synthesized input is tested by sending 
it to a copy of the application and waiting a specified time to 
see if the undesired condition is reproduced. This iterative 
stop and go process is inherently slower, even when the 
remote interaction overhead is not considered in the response 
time. The wait time to see if an input succeeds in 
reproducing the undesired condition is a configurable 
parameter (1 second for our experiments). To understand the 
impact of the wait time, note that for the CVE-2012-0021 
attack, 444 inputs were tested, so the 36 minute response 
time includes up to ~7.4 minutes of wait time.   

Considering the patch quality and response time together, 
the decision tree classifiers produce a patch within seconds, 
but are limited by what inputs have been already observed.  
FuzzBuster can take longer to produce a patch, on the order 
of tens of minutes, but can produce more general regular 
expressions that can block variations on the attack that have 
not been attempted yet. The test results confirm that the 
combination of classifier and regular expression filters 
complement each other providing a patch in seconds that 
may result in FP or FN, and buying time to find a more 
robust patch, either by the operator assisted optimal decision-
tree or extensive FuzzTesting, that can block future attack 
variants more accurately. 

V. CONCLUSION AND SOME NEXT STEPS   

We have demonstrated effective, automated self-adaptation 
embedded within an application-centric perimeter defense 
concept. This represents substantial and important progress 
on two fronts: adaptive cyber-defense with quasi-realtime 
responsiveness to novel attacks that eventually manifest in 
detectable system conditions, and software engineering of 

self-improving software systems that integrates multiple 
synergistic technologies such as deep execution 
introspection, decision-tree classifier generation and 
targeted fuzz testing in the context of an execution 
management environment. While the initial evaluation is 
encouraging, further research would improve the quality of 
the defense against novel attack, and the scope and 
effectiveness of the self-management mechanisms. For 
example, the combination of faster but less precise protocol-
aware adaptation followed by a generalized signature 
combination may be suitable for some but not all protected 
applications. We are expanding the set of remediation 
options available, both in depth and breadth to have more 
options as well as more synergistic combinations. Examples 
based on our current techniques include making 
FuzzBuster’s regular expression filters protocol-aware and 
formulating the classifiers in a protocol independent manner 
for a more effective mix against a larger class of use cases. 
Simultaneously, we are working on expanding the scope of 
available adaptation responses from current I/O mediation 
policies to variants of executable binaries [10] as well as 
automated source code modifications [9], pushing the 
frontier of adaptive defense even deeper. 

We are also working on enhancing the core A3 
capabilities. One aspect is extending the scope of closed-
loop adaptation to cover attacks that may have timing 
dependency using deterministic replay. Another is 
augmenting the concentration on reactive adaptation 
strategies with proactive approaches. Using FuzzBuster’s 
meta-control to intelligently share the A3 laboratory area for 
proactively discovering and remediating vulnerabilities even 
before they are exploited is an example.  
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