
Automated Self-Adaptation for Cyber-Defense - Pushing Adaptive Perimeter

Protection Inward

Brett Benyo, Partha Pal, Richard Schantz, Aaron

Paulos

Raytheon BBN Technologies

Cambridge, USA

{bbenyo, ppal, schantz, apaulos}@bbn.com

David J. Musliner, Tom Marble, Jeffrey M. Rye,

Michael W. Boldt, Scott Friedman

SIFT LLC

Minneapolis, USA

{musliner, tmarble, jrye, mboldt, sfriedman}@sift.net

Abstract— This paper presents a recently achieved incremental

milestone on the long path toward more intelligently adaptive,

automated and self-managed computer systems. We

demonstrate the feasibility of integrated cyber-defense

connecting anomaly detection and isolation mechanisms

operating at different system layers with two complementary

mediation policy adaptation techniques in service of automatic

remediation against observed attacks and their future variants.

We describe a number of experiments evaluating the relevance

and effectiveness of the integrated cyber-defense operation.

Keywords-adaptive defense, survivable application, resilience

I. INTRODUCTION

Traditionally, cyber-defense meant protecting perimeter
routers and entry points at the network border. Defense also
implied static preventive policy enforcement, for instance in
the context of perimeter defense, filtering firewalls. The
prevalence of preventive protection at the perimeter, and in
some cases being the only defense available in the system,
has led to the infamous crunchy on the outside, soft inside
description of computer systems, implying that once an
adversary compromises the outside barrier, he has free reign.

Like-minded researchers including ourselves, have been
working on changing that perception on both counts. First,
cyber defense is no longer confined to static and prevention
focused security policy enforcement. Adaptive response
plays a major role in an organization’s cyber-defense
strategy. Second, there is no single defensive boundary
anymore; defensive layers permeate the entire system.

Major R&D efforts such as the DARPA CRASH and
MRC programs are developing new defensive technologies
that have the potential to become fundamental building
blocks across all system layers, including the hardware, OS,
programming languages and middleware-based execution
management environments. To achieve better preparedness
against the growing threat and increasing sophistication of

cyber-attacks, the R&D trend has been to push the envelope
on adaptive security—developing new types of adaptation
mechanisms with deeper and wider scope, smarter and more
effective management of defensive adaptation, as well as
pushing the perimeters to be defended inward. Part of that
has meant attempting to move from perimeter firewalls at the
network border to distributed managed firewalls at individual
hosts, and moving up the application stack in the form of
application specific filtering.

We recently showed the feasibility and practicality of
integrated components of a managed execution environment
mounting automated post-incident responses to immunize a
protected application against future attacks of the same or
similar kind. Attacks are launched through the application’s
network interface and immunity is achieved by principled
adaptation of its I/O mediation policy. Attack effects are
detected by undesired I/O and execution behavior. The
application is restored to a pre-attack state, a quick policy
patch in the form of decision-tree classifiers is followed up
by detailed fuzzing experiments to derive a more precise
model of the input that triggers the exploited vulnerability.
The resulting regular expression is then applied as a second
policy patch. By utilizing the two complementary patch
generation technologies, the resulting updated policy is able
to block future I/O events that are similar in content
signature (e.g., regular expression filter) or in character (i.e.,
classifier that separates the manifestation causing events).
The post-incident workflow described above is implemented
in the A3 execution management environment we are
developing and accepts operator intervention as necessary.
This technique covers novel attacks that eventually manifest
a known undesired I/O or execution state, under the
conditions that (for the current implementation) (1) at least a
subset of the I/O events contributing to the manifestation
occur after the last check pointed state, and (2) the attack
does not exploit timing flaws.

This paper concentrates its contributions in three areas.
First, we present a high-water mark working prototype for
defense-oriented self-adaptation, demonstrating automation
of complex multi-stage post-incident response, closing the
loop between detection at the victim’s execution state and
patching at the processes I/O perimeter. This significantly
reduces the time required to devise and deploy a patch, and
in turn reducing the time the application remains unpatched
and vulnerable. Second, we establish the effectiveness of
pushing the I/O filtering perimeter defense inward to a

This work is being supported by the United States Air
Force and DARPA under Contract Nos. FA8750-10-C-
0242 andFA8650-10-C-7087. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

boundary point near an application, without interfering with
other defenses or other computations running on the same
host. Third, we demonstrate an application-centric open
architecture platform for cyber-attack management,
integrating synergistic capabilities from multiple external
technologies like FuzzBuster’s input fuzzing and the Weka
machine-learning framework with A3 core services like
replay and execution introspection to realize robust
automated cyber-defense and resiliency objectives. We
discuss initial experimental evaluation of the post-incident
policy patching capabilities using real as well as injected
attacks against an illustrative Apache-PHP application.

II. BUILDING TO THE NEW CAPABILITIES

Our approach to automated adaptation of near-
application perimeter protection is informed by our past
experience in developing and demonstrating advanced
adaptive cyber defense technologies. In the DPASA project
[1] we divided a high-valued network into four distinct quads
so that 4-fold Byzantine tolerant replicated services can have
each replica in different quads, and used hardware voting to
cut off suspected quads that showed abnormal behavior
detected by IDSs and the BFT protocols. Beyond
introducing a 2 layer hierarchy (i.e., the entire network vs. 4
independent quads), we also used managed distributed
firewalls [2] running on the network interface cards of each
host. The distributed firewalls enabled fine grained control of
the inbound and outbound network traffic at each host, based
on peer IP address, local and remote port and protocol. In the
CSISM project [3] we advanced this type of adaptive and
managed perimeter defense further by adding a sophisticated
reasoning component to make blocking and quarantining
decisions based on interpreting alerts and lifecycle events as
accusations and evidence. Around the same time, the
CORTEX [4] project developed a taste-tester framework to
provide intrusion-tolerant database services. In response to
detected malicious SQL requests, CORTEX would develop a
generalized SQL filter that will block future SQL requests
that attempt to exploit the same vulnerability. The
FuzzBuster project has developed a more general approach
to application-level protection, using fuzz-testing to refine
vulnerability models and develop adaptations to prevent
future attacks. AWDRAT and PMOP [8] demonstrated use
of library reloading, alternative methods and rebuilding
application data structures as a means to defend against
future instances of observed attacks. These adaptations were
implemented by wrappers interposed between system and
library calls, and are similar in spirit to A3’s I/O mediation.

Many of the precursor technologies, unless it is
integrated with a specific application, such as the database in
CORTEX, suffer from co-tenancy at the network enclave
level and at the host. The subtle ways the co-tenants interact
and interfere, knowingly or unknowingly, through shared
system resources like the network and stable storage, make
enforcement of application-specific policy at the network or
host level, let alone dynamic adaptation of such policies,
much more difficult and less effective. The policy
enforcement points handle the aggregate interaction of all
tenants and what is good for one is typically not so good for

another. Even if a workable coarse grain policy is found after
careful planning and profiling, flaws and gaps are inevitably
found by novel and zero-day attacks, necessitating changes
in the policy, entailing lengthy rounds of profiling and
testing, during which the applications remains vulnerable.

 The A3 execution management environment addresses
this problem by containerizing the protected application in
such a way that (a) the protected application has an entire
(virtual) host to itself and (b) all network and storage I/O is
subjected to mandatory mediation, so that a tight application-
specific policy (a) is feasible and (b) does not interfere with
any other application. In this context an application means
one or a collection of cooperating processes working to
provide a single, well-defined service. The illustrative
example we use in this paper is an Apache-PHP document
management application that consists of multiple processes.
The A3 environment offers a number of core services and an
open architecture for integrating synergistic capabilities to
facilitate self-adaptive post incident response. As we explain
next, the A3 and FuzzBuster integrated operation is an
example narrowly focused on adapting the application’s I/O
mediation, closing the loop between attack manifestations
and patching the mediation policies.

III. SYSTEM UNDER TEST

Both A3 and FuzzBuster have been introduced and
discussed in papers from the last AHANS workshop [5, 6].
Before describing the A3-FuzzBuster integrated operation,
we briefly introduce A3’s post-incident response handling. In
this context, incidents are manifestation of known undesired
conditions caused by potentially unknown exploits and
vulnerabilities, for example, eventual detection of a remote
network shell or segmentation fault. Figure 1 shows part of
A3’s post-incident response workflow, primarily focusing on
the adaptive modification of I/O mediation policy. An
observed manifestation of an undesired condition pauses or
restarts the application from a past checkpoint. In parallel,
A3 initiates Set Reduce, which partitions the recorded input
events to “benign” and “malicious” sets by playing back
recorded inputs in a binary-search like algorithm and
watching which playback sequence reproduces the observed
undesired manifestation. A policy patching step follows. If a

Figure 1: The workflow to patch the IO mediation policy

patch is found, the application is restarted with the patched
policy. The policy patch, acting as an I/O filter, buys time to
perform a deeper diagnosis and find a more robust fix.

As shown in Figure 1, policy patching involves two
complementary patch generation techniques: decision-tree
classifiers and input fuzzing. The classifier generation
process takes both the malicious and benign partitions of the
recorded inputs, and learns the semantic differentiator
between the two sets. The classifiers can result in a complex
predicate involving attributes of the I/O events (i.e., this
technique is aware of the application’s I/O protocol) and
their values. Input fuzzing starts with the malicious set and
employs sophisticated fuzz testing techniques to find a
regular expression filter. The regular expression filter is a
generalized signature for the I/O payloads that trigger
undesired manifestations similar to the members of the
malicious set, and in that sense is an input-output model of
the exploited vulnerability. These two techniques highlight
the two prominent interaction patterns supported in A3’s
open integration architecture. The classifier generation step
is performed using the Weka framework, which is invoked
as an internal on-demand service by A3. In contrast, regular
expression filters are generated by FuzzBuster, running as an
external service independent of A3, using a standardized
interface and interaction protocol, C3PO, designed to
regularize exchanging fault handling information.

Figure 2 shows the integrated setup combining A3 and
FuzzBuster. The protected Apache-PHP application runs in
its own dedicated AppVM. Network and storage interactions
of the protected application are subjected to mandatory
mediation at the Network and Storage crumple zones
respectively, each realized as different VMs. A3 provides an
onboard laboratory area where copies of the protected
application (labeled experiment conglomerate) can be
started. The experiment conglomerate is used for A3 internal
purposes i.e., replay-based Set Reduce to partition the
recorded inputs into benign and malicious sets or testing
decision-tree classifiers, and is also exposed to external
services for integrated operation e.g., FuzzBuster’s fuzz
tests. A3’s VM introspection (VMI) service enables deep
inspection of the memory state of executing processes, in
both production and experiment conglomerates. A3 comes

with a dashboard through which human operators interact
with the environment controller (running in Dom 0). Only
the Xen micro-kernel and Dom 0 services are trusted; the
Dom U VMs are not. The mandatory mediation and deeper
introspection of executing processes enable A3 to detect
undesired states that the application should never be in.

Figure 2 highlights A3-FuzzBuster integrated operation,
starting with the detection of a manifest undesired condition
(1), isolating the failure causing inputs (2), notifying
FuzzBuster (3), setting up an experiment conglomerate (4, 5,
6), FuzzBuster interaction with the experiment conglomerate
for fuzzing runs (7) with A3 reporting observed undesired
conditions back (8), and FuzzBuster providing a patch to A3
(9). The experiment conglomerate can be started and
configured beforehand, minimizing the delay associated with
the handshake in steps 4 and 6. The protected application
and/or the experiment conglomerate may need to be restarted
during fuzzing experiments, depending on the application
and attack. For example, in the experiments and attacks
considered in this paper, restarting the Apache application
(instead of the entire experiment conglomerate) was
sufficient for continuing the fuzzing runs. Restarting the
application takes seconds, whereas restarting the
conglomerate takes ~2 minutes.

The steps described above are part of the standardized
C3PO protocol that enables A3 and FuzzBuster to
interoperate with each other as well as other conformant
external services. For A3, C3PO provides a standard way to
designate a failure report to other components that may be
able to produce a patch, while for FuzzBuster it offers a
standard way to fuzz test externally managed applications.
Configurable parameters of the C3PO protocol enable tuning
the integrated behavior in a number of ways such as
returning a patch within a deadline, incrementally refining
previous patches, tolerating certain percentage of false
positives or negatives etc.

To evaluate the adaptation of mediation policies as part
of our post-incident response automation, we implemented
seven known attacks against the Apache-PHP webserver
application that targeted vulnerabilities in the Apache 2.2
source code or server configuration. These attacks lead to
resource exhaustion, data exfiltration, and remote code
execution. Five of these attacks can be launched using a
single input message. Two require multiple message
sequences, where the first message uploads a file to the
webserver (exploiting a permissive file upload service),
followed by sending a trigger message that exploits a
vulnerability in conjunction with the uploaded file. Since
fully implementing and weaponizing the attacks requires
significant development, we instead used a fault injector
module to inject the end-effects of the attacks. The fault
injector triggers computation based on specific patterns in
input messages, and the existence or contents of local
configuration files used by Apache, emulating the execution
the weaponized attack payload. Examples of injected attack
effects include termination of the Apache request handling
child processes, prolonged CPU over-utilization, memory
exhaustion, access to files outside application’s data folders,
opening remote connections and listening sockets, etc.

Figure 2: A3-FuzzBuster integrated capability

We developed a set of benign clients using the system
under test in a variety of usage patterns, from periodic single
file downloads, to bulk batch downloading, random heavy
bursts of traffic, and periodic index requests. With benign
clients providing background traffic and load, we start a
malicious client that waits a random interval and sends the
attack sequence. When the exploits trigger, the fault injector
module injects the intended attack effects. This leads the
protected application to an undesired state. When such states
are detected by the A3 VMI-based detectors or I/O mediation
policy it automatically kicks off the workflow described in
Figure 1, beginning with replay-based set reduction,
followed by derivation of an appropriate adaptation of the
I/O mediation policy using decision-tree classifiers and
regular expression filters.

IV. RESULTS AND DISCUISSION

To evaluate the adaptation of mediation polices, we
considered response time (the time taken to generate an
enforceable filter), and patch quality (susceptibility to false
positives (FP) or false negatives (FN)). The time from
detectable manifestation to installation of an effective filter is
the time the application remains vulnerable. In the
experiments, we measured this as the elapsed time between
detection of the undesired condition and the availability of a
patch. Details about this interval for our two patch generation
approaches are explained throughout this section.

By design generated classifiers and regular expression
filters have no FNs or FPs based solely on repeats of
previously seen inputs from the last checkpoint. However,
since attackers can and will try again if they are blocked, and
new benign clients will continue to access the application it
is important to understand whether the generated filters can
produce FPs or FNs going forward. Potential FNs can arise if
a filter keys off a portion of the input that happened to be
different for a malicious input set, but was irrelevant to
actually triggering the failure. A clever attacker could
modify his attack by changing the irrelevant section and
exploit the same vulnerability. An FP can likewise occur if a
derived filter is too general based on observed inputs and a
later benign request from a new client happens to match the
in retrospect inadvertently blocked section.

We evaluated the potential for emergent FPs or FNs for a
generated filter through a manual step after the classifier or
regular expression filters are generated. Manual analysis of
the generated filter against the attacks tells us whether FP or
FN is possible, in which case we generated specific new
input messages to cause such events. Figure 1 workflow is
invoked again, adding the new false positive to the benign
set, and rerunning the filter generation algorithms.

A. Mediation Policy Adaptation Using Input Classifiers

Since the malicious set size is generally small, often one
element, there are many potential decision trees that
correctly classify it. Our algorithm produces as many
decision trees as possible that satisfy size constraints and
correctly classify all the training data. These trees are ranked
by the information gain present in the root node, as
determined by the C4.5 algorithm [7]. Trees with the same

information gain are ranked using a non-optimal
lexicographic ranking based on feature name. Our host
controller allows a human operator to assign weights to the
various features based on knowledge of the defended
application and the HTTP protocol, which would override
the standard information gain ranking. We did not use
operator assigned rankings for the evaluation avoiding
having to account for human intervention in response time.

Trees with high information gain in the root node have
likely found a specific feature that classifies the malicious set
as different from the benign set, whereas trees with low
information gain in the root node are likely over-fitting the
data. When multiple decision trees with the same ranking are
generated, there is a decision to be made as to which trees to
enforce as input filters. Using a single tree reduces potential
FPs, but increases the potential for FNs, if the chosen tree
uses extraneous filters that are essentially noise instead of the
features that are the underlying culprit. Alternatively, using
all of the trees reduces FN potential, but increases potential
FPs. Since FNs are usually more problematic than FPs and
we wanted to avoid accounting for human involvement in
response time, we used all trees with the highest information
gain ranking in the current evaluation. In an operational
environment, a long running application will have built up a
large set of benign inputs. Larger benign input sets will
reduce the potential for FPs, since an FP requires a new
benign input with a specific feature value that hasn’t been
seen before. The experiments we performed used a small set
of benign clients (~50 inputs), to present close to a worst
case scenario for the classifier algorithm.

Table 1 gives the results of the decision tree classifiers on

the seven attacks. The Time column is the time to generate a
patch. The Filters Generated column indicates the number of
decision trees converted to input filters, which is the number
of trees with the same information gain as the top ranked
tree. An optimal decision tree is one that if implemented as
NCZ filters results in no false negatives (the filter will block
any attempt to exploit the same vulnerability), and no false
positives (benign clients will not be blocked) as determined
by manual analysis. The Optimal Tree column indicates
“Yes” if the optimal tree was present in the set generated,
“FP”, if the best tree present has potential false positives, and
“FN” if the best tree present had potential false negatives.
The Final column indicates whether or not the extended
manual tests (where experimenter generated false negative or
false positives are injected) eventually resulted in an optimal

Attack Time
(ms)

Filters

Optimal
Tree

Present?

Eventual
Optimal

Tree

CVE-2011-3192 968 2 No (FP) Yes (1)

CVE-2011-3368 1490 8 No (FN) Yes (2)

CVE-2012-0053 441 7 Yes Yes

CVE-2011-0419 550 11 Yes Yes

CVE-2012-0021 1251 2 Yes Yes

CVE-2011-3607 617 6 No (FN) No (FN)

Shellcode 1203 7 No (FN) Yes (1)

Table 1: Decision Tree Results

decision tree. The number in parentheses indicates the
number of iterations of generating a false negative or
positive and rerunning the classifier algorithm.

For six of the seven attacks, the decision tree classifiers
are eventually able to produce an optimal decision tree. The
CVE-2011-3368 attack involves the attacker accessing
private internal servers through a URL rewriting
configuration error. The optimal decision tree effectively
blocks the path to the internal server being attacked. If the
application has access to multiple internal servers, the
classifiers would need to see one attack for each internal
server before blocking all such attacks. For this experiment,
we assumed three internal servers, implying that the patch
resulting from the observed attack will have two FNs. Note
however, that a filter that allows FNs still slows the attacker
down, since the attacker would need to spend some time and
luck determining exactly what message attributes are
triggering the block to successfully utilize the FN opening.
The CVE-2011-3607 attack involves uploading a file, adding
a header defined in that file to a subsequent input, and
putting shellcode as the value of that header. The decision
trees can block an individual header, but the attacker could
upload a new file with a new header, and a new trigger input
using that new header. The shellcode attack is similar to
CVE-2011-3607, however under this attack the shellcode
injected into a specific header field leads to an optimal tree
that blocks any use of that field. Initially that optional tree is
ranked lower than blocking the specific seen shellcode,
requiring a second attack (FN) or manual experimenter
modification of the feature weights to bring it to top ranking.

In all but one of the attacks (CVE-2012-0021), however,
the defended application is either still vulnerable after the
initial attack to a modified attack, or could delay benign
clients with false positive blocked requests.

B. Mediation Policy Adaptation Using FuzzBuster

For the current evaluation, Fuzzbuster was configured to
return an initial patch after two minutes of operation. The
initial patches are susceptible to false negatives, since they
contain extraneous information from the initial malicious
input that has yet to be reduced out of the patch expression.
Fuzzbuster then continued to refine the patch eventually
producing a final patch when it had run to quiescence.

Fuzzbuster results on the seven candidate attacks are

given in Table 2. The first column lists the total time from
initial fault detection to final patch generation. The Inputs
tested column indicates the total number of synthesized input

messages tested. The final column indicates whether the final
patch was susceptible to FPs or FNs as determined by
manual analysis of the regular expression and the attack.

To compare the patch generation time of the two
techniques, we measured the time FuzzBuster takes to
generate the regular expression filters. Column 1 of Table 2
shows the FuzzBuster compute time, which does not include
the time spent in coordinating with A3 during fuzz testing.
The major component of the additional coordination delay is
the ~5 second time required to revert the experiment
conglomerate to a check pointed state, if and when needed
(depending on the attack being tested).

FuzzBuster timed out after four hours on the attacks
involving larger input messages, with the final patches
blocking the attack, but susceptible to a FN from a modified
attack. For CVE-2011-3607, the generated regular
expression was closing in on an optimal solution of blocking
just the specific triggering bytes wherever they appear,
leading us to believe that future refinements to the fuzzing
algorithms can result in an optimal filter.

Attacks that depend on specific sequences of characters
in the input messages, such as CVE-2011-3368 and CVE-
2012-0021, are blocked perfectly by the regular expression
filters, allowing no false negatives or false positives. In
attacks such as CVE-2011-3192 and CVE-2012-0053,
however, the content of the message is irrelevant; the length
of a specific header is the cause of the vulnerability. For
these the resulting final patch still contains extraneous data,
exploitable to generate a false negative.

C. Discussion

We first consider the differences between the decision
tree and regular expression filters. Figure 3 shows one of the
highest ranking decision trees generated in response to the
CVE-2011-3368 attack, allowing the attacker to access a
private server that should not be accessible. The “Yes”
nodes of the decision tree indicate a member of the malicious

set. Any input request that uses the op=pub query parameter
or any request that accesses the specific URL
“/@10.0.1.1/console” is classified as malicious. Therefore,
the policy that mediates input requests to the protected
application is modified with a blocking rule with the

condition ((op=pub) OR (URLPath=

/@10.0.1.1/console)). Note that the patch is aware
of the HTTP protocol that the application is using for its
network I/O. In contrast, the FuzzBuster generated regular

expression filter for the same attack looks as follows: “.*?

Attack Time
(min)

Inputs
Tested

FP or FN
Possible

CVE-2011-3192 96 1165 FN possible

CVE-2011-3368 53 627 No

CVE-2012-0053 30 366 FN possible

CVE-2011-0419 Timed out FN possible

CVE-2012-0021 36 444 No

CVE-2011-3607 Timed out FN possible

Shellcode 32 1131 No

Table 2: FuzzBuster Results

Figure 3: Decision tree filter example (CVE-2011-3368)

/\@10\.0.*?\n”. Although not aware of any protocol,

the blocking rule using this regular expression effectively
blocks any use of the “/@10.” character sequence in the
request URL, which is the trigger that allows access to a
private internal server via a URL rewrite rule
misconfiguration, not just the “console” as in the case of the
classifier. This regular expression filter blocks any message
that matches this signature, blocking any attempts to exploit
this same vulnerability to access a different private internal
server, or a different section of the same one.

The run time of the entire decision tree classifier learning
algorithm is on the order of one second, providing a patch
almost immediately. The short response time enables the
application to continue operating and serving benign requests
while the vulnerability is further examined. The response
time for regular expression filters on the other hand, is tens
of minutes, although it can obtain a partial patch earlier, on
the order of minutes. The seconds to minutes difference in
response time is due to the fact that the classifier generation
involves a one shot computing with all its inputs provided at
the beginning, resulting in the decision trees at the end. In
contrast, the process of generating a regular expression filter
involves testing numerous variations of malicious inputs to
zero-in on triggering the vulnerability causing the observed
manifestation. FuzzBuster uses a suite of fuzz testing tools to
synthesize input messages that explore how a vulnerability
can be triggered. Each synthesized input is tested by sending
it to a copy of the application and waiting a specified time to
see if the undesired condition is reproduced. This iterative
stop and go process is inherently slower, even when the
remote interaction overhead is not considered in the response
time. The wait time to see if an input succeeds in
reproducing the undesired condition is a configurable
parameter (1 second for our experiments). To understand the
impact of the wait time, note that for the CVE-2012-0021
attack, 444 inputs were tested, so the 36 minute response
time includes up to ~7.4 minutes of wait time.

Considering the patch quality and response time together,
the decision tree classifiers produce a patch within seconds,
but are limited by what inputs have been already observed.
FuzzBuster can take longer to produce a patch, on the order
of tens of minutes, but can produce more general regular
expressions that can block variations on the attack that have
not been attempted yet. The test results confirm that the
combination of classifier and regular expression filters
complement each other providing a patch in seconds that
may result in FP or FN, and buying time to find a more
robust patch, either by the operator assisted optimal decision-
tree or extensive FuzzTesting, that can block future attack
variants more accurately.

V. CONCLUSION AND SOME NEXT STEPS

We have demonstrated effective, automated self-adaptation
embedded within an application-centric perimeter defense
concept. This represents substantial and important progress
on two fronts: adaptive cyber-defense with quasi-realtime
responsiveness to novel attacks that eventually manifest in
detectable system conditions, and software engineering of

self-improving software systems that integrates multiple
synergistic technologies such as deep execution
introspection, decision-tree classifier generation and
targeted fuzz testing in the context of an execution
management environment. While the initial evaluation is
encouraging, further research would improve the quality of
the defense against novel attack, and the scope and
effectiveness of the self-management mechanisms. For
example, the combination of faster but less precise protocol-
aware adaptation followed by a generalized signature
combination may be suitable for some but not all protected
applications. We are expanding the set of remediation
options available, both in depth and breadth to have more
options as well as more synergistic combinations. Examples
based on our current techniques include making
FuzzBuster’s regular expression filters protocol-aware and
formulating the classifiers in a protocol independent manner
for a more effective mix against a larger class of use cases.
Simultaneously, we are working on expanding the scope of
available adaptation responses from current I/O mediation
policies to variants of executable binaries [10] as well as
automated source code modifications [9], pushing the
frontier of adaptive defense even deeper.

We are also working on enhancing the core A3
capabilities. One aspect is extending the scope of closed-
loop adaptation to cover attacks that may have timing
dependency using deterministic replay. Another is
augmenting the concentration on reactive adaptation
strategies with proactive approaches. Using FuzzBuster’s
meta-control to intelligently share the A3 laboratory area for
proactively discovering and remediating vulnerabilities even
before they are exploited is an example.

REFERENCES

[1] P. Pal, F. Webber, R. Schantz, “The DPASA Survivable JBI- A High-
water Mark in Intrusion Tolerant Systems,” Proc. EuroSys Workshop
on Recent Advances in Intrusion Tolerant Systems, Mar 2007

[2] C. Payne, T.Markham, "Architecture and Applications for a
Distributed Embedded Firewall,” Proc. 17th ACSAC, Dec. 2001

[3] D. Benjamin, P. Pal et al., “Using a Cognitive Architecture to
Automate Cyberdefense Reasoning,” Proc. ECSIS Symp. on Bio-
Inspired Learning and Intelligent Systems for Security, Aug 2008

[4] Cortex: Mission-Aware Cognitive Self-Regeneration Technology.
Final Report, US AFRL Contract No. FA8750-04-C-0253, Mar 2006.

[5] P. Pal, R. Schantz, A. Paulos et al., “A3:An Environment for Self-
Adaptive Diagnosis and Immunization of Novel Attacks,” Proc.
SASO workshop on Adaptive Host and Network Security, 2012

[6] D. Musliner, J. Rye, T. Marble, “Using Concolic Testing to Refine
Vulnerability Profiles in FUZZBUSTER,” Proc. SASO workshop on
Adaptive Host and Network Security, 2012

[7] J. Quinlan, “C4.5: Programs for Machine Learning,” Morgan-
Kaufmann, San Fransico, USA, 1993

[8] H. Shrobe, R. Laddaga, B. Balzer, et al., "Self-Adaptive Systems for
Information Survivability: PMOP and AWDRAT," Proc. SASO
Conference, Boston, MA, 2007

[9] W. Weimer, et al., “Automatically Finding Patches Using Genetic
Programming.” In Proc. ICSE 2009

[10] T. Jackson, et al.,“Compiler-Generated Software Diversity;” in S.
Jajodia et al (Eds.), Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats; Springer, September 2011

