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Abstract

CIRCA is an architecture for real-time intelligent control.
The CIRCA planner can generate plans that are guaranteed to
maintain system safety, given certain timing constraints. To
prove that its plans guarantee safety, CIRCA relies on formal
verification methods. However, in many domains it is impos-
sible to build 100% guaranteed safe plans, either because it
requires more resources than available, or because the possi-
bility of failure simply cannot be eliminated. By extending
the CIRCA world model to allow for uncertainty in the form
of probability distribution functions, we can instead generate
plans that maintain system safety with high probability. This
paper presents a procedure for probabilistic plan verification
to ensure that heuristically-generated plans achieve the de-
sired level of safety. Drawing from the theory of quality con-
trol, this approach aims to minimize verification effort while
guaranteeing that at most a specified proportion of good plans
are rejected and bad plans accepted.

Introduction
Realistic domains for autonomous agents present a broad
spectrum of uncertainty, including uncertainty in external
events and in the outcome of internally-selected actions.
Planning to achieve system goals and maintain safety in the
face of this uncertainty can be highly challenging. We can
attempt to generate a universal plan (cf. (Schoppers 1987)),
taking every contingency into account, but with limited re-
sources this may be futile. A more advantageous approach
may be to quantify the uncertainty and incorporate this infor-
mation into the reasoning process. This enables us to set an
arbitrary failure threshold for plans, and we can reject plans
with failure probability above the threshold. Furthermore,
the additional information can be used to focus our plan-
ning efforts on situations we are more likely to encounter
(cf. (Atkins, Durfee, & Shin 1996)).

In this paper we introduce a probabilistic extension to
CIRCA—an architecture for real-time control—(Musliner,
Durfee, & Shin 1993). The original planner in CIRCA
builds reactive control plans that achieve system goals and
maintain system safety, subject to strict time bounds and
models of the dynamic external world (the environment).
While the original CIRCA model includes nondeterminism
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Figure 1: Interaction between planner and verifier.

in the outcome of actions and uncertainty about the tim-
ing and occurrence of externally-caused transitions, it does
not have quantified uncertainty information. The extended
model includes quantified uncertainty in the form of prob-
ability distributions on the timing of different transitions.
This allows CIRCA to build plans that are not completely
guaranteed to prevent failure—plans may allow for the pos-
sibility of failure, as long as the failure probability is below
some threshold. The world model of the probabilistic exten-
sion corresponds to a generalized semi-Markov process.

To verify that a potential plan meets the necessary safety
threshold, we have developed an efficient probabilistic plan
verifier that decides whether to accept or reject a plan. Our
verifier uses Monte Carlo simulation, or more precisely dis-
crete event simulation, to generate sample execution paths
given a plan and a world model. Requiring relatively few
sample paths, the verifier can guarantee that at most a speci-
fied proportion of good plans are rejected and bad plans ac-
cepted.

The interaction between planner and verifier is depicted in
Figure 1. The planner generates a plan to achieve given ob-
jectives in a given dynamic real-time environment. The plan
is passed to the verifier that tests if the plan satisfies given
safety constraints. The result of the verification is passed to
the planner, which based on the given information decides
whether the generated plan needs to be revised. If the plan
passed the verification, then no revision is needed, and oth-
erwise the verification result is used to guide plan revision.
We are not concerned with how to generate and revise plans
in this paper, but only how to verify plans.



The World Model
Musliner, Durfee, & Shin (1993) introduced a formalization
of the CIRCA world model, and later extended it (Musliner,
Durfee, & Shin 1995). We will deviate slightly from their
formalization here. The purpose is to enable us to view
the CIRCA world model as ageneralized semi-Markov pro-
cess(GSMP), which is a formalism for discrete event sys-
tems introduced by Matthes (1962) (see also (Glynn 1989;
Shedler 1993)). The formal non-probabilistic world model
has seven elements(S, SF , S0, T, E, min∆, max∆):
1. A finite set of statesS, where each state represents a de-

scription of relevant features.

2. A set of failure statesSF ⊂ S, which consists of all states
in S that violate domain constraints or control-level goals.

3. A set of possible initial statesS0 ⊂ S.

4. A finite set of transitionsT = TE ∪TA ∪TT , whereTE is
a set of event transitions representing world occurrences
as instantaneous state changes,TA is a set of action transi-
tions representing actions performed by the run-time sys-
tem, andTT is a set of temporal transitions representing
the progression of time.

5. A function E : S → 2T mapping a states to a set of
transitions enabled ins.

6. A functionmin∆ : T → R mapping transitions to mini-
mum trigger times.

7. A functionmax∆ : T → R mapping transitions to maxi-
mum trigger times.

Each transitionτ ∈ T is a mapping between states;τ : S →
S.

For a given planning problem, the environment is repre-
sented by a world modelMenv without any action transi-
tions. GivenMenv, the planner generates a plan (orpolicy)
π, which is a mapping from states to action transitions. The
composition ofMenv and π is a stochastic process repre-
senting the execution ofπ in the given environment. When
verifying that a planπ is safe, we are really verifying that
certain properties hold for the stochastic process represent-
ing the composition ofπ and the environment model. Fig-
ure 2(a) shows an environment for an unmanned aerial ve-
hicle. In Figure 2(b), actions constituting a plan have been
added to the environment.

Model Dynamics
At any particular point in time, the world is considered to
occupy a single state in the model. The initial world state
can be any states ∈ S0. The world state changes when a
transition is triggered. If the current state iss and transition
τ is triggered, the next state is given byτ(s). Not all tran-
sitions are necessarily enabled in all states. For each state
s ∈ S, E(s) is the subset ofT denoting the set of transitions
that can be triggered in states. Only one transition can be
triggered in each state at any given time, so transitions in
E(s) compete to trigger a state change.

We can associate a clockrs,τ with each enabled transition
τ in a states, showing the time remaining untilτ is sched-
uled to occur ins. The clock valuers,τ is called theresidual

lifetimeof τ in s (Glynn 1989). When a transitionτ∗ is trig-
gered in states, causing a transition to states′ = τ ′(s), then
the lifetimes of the transitions enabled ins′ are initialized as
follows:

1. If τ ∈ E(s) \ {τ∗}, then letrs′,τ = rs,τ − rs,τ∗ .

2. If τ 6∈ E(s) \ {τ∗}, thenrs′,τ is set to some value in the
interval[min∆(τ), max∆(τ)].

The type of a transition determines the general form of the
interval [min∆(τ), max∆(τ)]. Event transitions can occur
at any time, and thus have a lower limit of zero and an upper
limit of infinity. Temporal transitions are similar to events,
but can have a non-zero lower limit. An action transition
represents an action taken by the run-time system, and has a
finite upper limit representing the worst-case execution time
for that action.

Note that with the formalism given here, the possible trig-
ger time of a transition in a given state at a given time can
depend on the history of state transitions, making the world
model non-Markovian.

Probabilistic Extension
The world model, as presented so far, has limited expressive
power. We can say that an event may occur in a states by
representing the event with a transitionτ which is enabled
in s, and we can bound the time that the world must stay in
s before the event may (or must) occur. We can, however,
say nothing about theexpectedtime that the world must stay
in states before the event occurs. There is no way to dis-
tinguish more frequently occurring events, such as rain de-
laying a tennis match at Wimbledon, from far less frequent
events, such as a player being struck by lightning.

A natural extension is to associate a probability distribu-
tion functionF (t; τ) with each transitionτ , giving the prob-
ability that τ will be triggeredt time units after it was last
enabled. We can easily define the previously used interval
limits in terms ofF :

min∆(τ) = sup{t | F (t; τ) = 0}
max∆(τ) = inf{t | F (t; τ) = 1}

We require thatF (0; τ) = 0 (i.e. the distribution function
corresponds to a positive random variable), because no tran-
sition can be triggered before it has been enabled. A typical
choice of distribution for an event transition would be an ex-
ponential distribution, and for a temporal transition a shifted
exponential distribution. For an action transition one could,
for example, use a uniform distribution or a truncated nor-
mal distribution.

In addition we can replaceS0 with a probability distribu-
tion p0 overS, wherep0(s) is the probability that the world
starts in states. The set of possible initial states is then sim-
ply

S0 = {s | p0(s) > 0}.
This way we obtain a probabilistic world model consist-

ing of six elements(S, SF , p0, T, E, F ). To make this a
GSMP we need to define transition probabilitiesp(s′; s, τ)
expressing the probability of the next state beings′ given
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Figure 2: Three different world models. To the left is a world model representing the environment. The initial state is drawn
as an oval, and there is only one failure state. The solid arrow represents an event transition, and the double arrows represent
temporal transitions. The arc between the two “hit” transitions indicate that they are in fact the same transition enabled in two
different states. In the middle, actions (dashed arrows) constituting a plan have been added to the environment. To the right is
the same plan/environment model, but with probability distributions associated with each transition instead of just intervals.

that τ is triggered in states. This is straightforward, how-
ever, because the next state is determined byτ(s). We thus
get the following:

p(s′; s, τ) =
{

1 if τ(s) = s′
0 otherwise

In addition, we set all clock speedsr(s, τ) to 1. The ele-
ments(S, p0, p, T, E, F, r) constitute a GSMP. In fact, the
form of the state transition probabilities and the probabil-
ity distribution functions makes this atime-homogeneous
GSMP (Glynn 1989).

Figure 2(c) shows the probabilistic version of the model in
Figure 2(b). Instead of an interval, a probability distribution
function is given for each transition.

Plan Verification
In the non-probabilistic world model, a safe plan is one
where no states ∈ SF is reachable from the set of possi-
ble initial statesS0. Action transitions are planned to “pre-
empt” temporal transitions to failure states. Transitionτ1

preemptsτ2 in states if it can be proven thatτ1 will al-
ways be triggered beforeτ2, independent of the history of
state transitions. This immediately rules out plans that have
event transitions to failure states. Because event transitions
can trigger instantaneously, no other transition can preempt
them. Safety of a plan can be verified by applying certain
correctness-preserving model transformations, pruning out
unreachable states (Musliner, Durfee, & Shin 1995). As was
shown above,S0, min∆, andmax∆ can be extracted from
the probabilistic world model, enabling us to verify proba-
bilistic plans using the same technique. This would, how-
ever, be a waste of all the extra information available to us
regarding the stochastic behavior of transitions.

In probabilistic terms, the above technique can only dis-
tinguish between zero and non-zero probability of reaching
a set of states. Plans with non-zero probability of reaching
a failure state are considered unsafe. With probability dis-
tribution functions available for the transitions, we can set

an arbitrary thresholdθ representing the highest acceptable
failure probability of a plan. Settingθ = 0 we revert to the
old model. Withθ > 0, though, we can accept plans that
would have otherwise been discarded. For example, it now
becomes possible to have a plan with event transitions to
failure states provided that the events represented by these
transitions are sufficiently infrequent, or the probability of
entering a states in which such events are enabled is suffi-
ciently low.

As an example, consider the plan in Figure 2(b). The “be-
gin evasive” action preempts the “hit” transition in the bot-
tom state, but the “hit” transition can still be triggered in the
center state. If, for example, the lifetime of “begin evasive”
is 50 time units, the lifetime of “safe” is 100 time units, and
the lifetime of “hit” is 120 time units, then “hit” will trig-
ger before “safe” in the center state, causing a transition to
the failure state. The plan in Figure 2(c) is the same as in
Figure 2(b), but the intervals have been substituted for prob-
ability distribution functions. We will see later that this plan
is acceptable with a failure threshold of 0.05, and an upper
limit on the execution time set to 200 time units.

We use an acceptance sampling algorithm to probabilisti-
cally determine if a plan should be accepted. The samples
used by the algorithm are sample execution paths generated
through discrete event simulation.

Generating Sample Execution Paths

A plan π, when executed, represents a stochastic process
{Xπ(t) | t ≥ 0}, whereXπ(t) is the state of the worldt
time units after the plan is set in action. We are interested
in determining whether the probability of visiting a failure
states ∈ SF within a specified time limittmax from the
start of the execution ofπ is below a given thresholdθ.

For any one states, the probability of visitings before
time tmax is Pr[inf{t | Xπ(t) = s} ≤ tmax]. For a set
of absorbing states, such as the set of failure statesSF , at
most one state in the set can be visited during execution.



Furthermore, ifXπ(t) = s for an absorbing states at time
t, thenXπ(t′) = s for all t′ ≥ t. The failure probability of a
plan aftertmax time units is therefore

Pr[inf{t | Xπ(t) ∈ SF } ≤ tmax] =∑
s∈SF

Pr[Xπ(tmax) = s].

Depending on the stochastic characteristics of the process,
an analytical calculation of the failure probability may be
impossible, and the only feasible approach may be to use
sampling techniques that make use of simulation to generate
sample paths (Heidelberger 1995).

Let us define the random variableYπ(s) as follows:

Yπ(s) =
{

1 if inf{t | Xπ(t) = s} ≤ tmax

0 otherwise

Clearly, Yπ(s) is a binomial variate with parameters1, ps;
ps being the probability that states is visited within tmax

time units. Givenn samplesy1(s) throughyn(s) of Yπ(s),
let xn(s) = |{yi(s) | yi(s) = 1}|. This is the number of
samples in which states is visited withintmax time units. A
point estimate ofps is xn(s)/n. This estimate can be used
as a heuristic to guide the effort of the planner towards the
most likely states (cf. (Atkins, Durfee, & Shin 1996)). Note
thatxn(s) can be computed as

∑n
i=1 yi(s). Let fn denote

the number of failures observed inn samples. Clearly

fn =
∑
s∈F

n∑
i=1

yi(s). (1)

Each sampleyi(s) is generated using discrete event simu-
lation. Algorithm 1 outlines a procedure for generatingyi(s)
for each states ∈ S′ ⊂ S simultaneously (cf. Algorithm
4.17 of (Shedler 1993)).

The sample generation algorithm does not consider the
case of two transitions being triggered simultaneously. If all
distribution functionsF are continuous, the probability of
this happening is in fact zero. Yet when implementing the
sampling algorithm on a computer, where real numbers are
represented by finite precision floating-point numbers, the
occurrence of simultaneous transitions becomes an issue we
have to deal with. We can address this by modifying step
4, so that instead of simply lettings′ = τ∗(s), we selects′
with uniform probability from the set of transitions with the
shortest residual lifetime ins.

Acceptance Sampling
A planπ, when executed, can either fail or succeed. We de-
note the probability of failure bypF . As alluded to earlier,
we can specify a positive thresholdθ representing the max-
imum acceptable failure probability. IfpF does not exceed
θ we are willing to acceptπ, but would reject it otherwise.
Deciding whether to accept or reject a plan can be cast as the
problem of testing the hypothesispF ≤ θ against the alter-
native hypothesispF > θ. This is an important problem
in manufacturing industry and engineering, and has been
studied thoroughly in the field of statistical quality control
(cf. (Chorafas 1960; Montgomery 1991)). The problem also
arises in the area of software certification (Poore, Mills, &
Mutchler 1993).

Algorithm 1 Procedure for generatingyi(s) for all s ∈ S′ ⊂
S simultaneously.

1. Lett = 0 andyi(s) = 0 for all s ∈ S′. Generate an initial
states in accordance with the probability distributionp0.

2. For each transitionτ ∈ E(s), sample a residual lifetime
rs,τ (cf. (Glynn 1989)) according to the distribution func-
tion F (·; τ). This is the amount of time remaining untilτ
triggers a transition out of states.

3. Setyi(s) to 1. Terminate the simulation ifs ∈ SF or
E(s) ∩ TA = ∅.

4. Letτ∗ be the transition with the shortest residual lifetime
in s. Terminate the simulation ift + rs,τ∗ > tmax. Other-
wise, lets′ = τ∗(s).

5. Generate new residual lifetimes for transitionsτ ∈ E(s′)
as follows:

• If τ = τ∗ or τ 6∈ E(s), then samplers′,τ according to
F (·; τ).

• Otherwise, letrs′,τ = rs,τ − rs,τ∗ .

6. Sets to s′ andt to t + rs,τ∗ , and go to step 3.

Risk Tolerance and Hypothesis Testing. We would ide-
ally like to accept only those plans with a failure probability
no larger thanθ and reject all other plans. In general, how-
ever, we cannot calculate the failure probability of a plan
analytically, nor can we determine it with absolute certainty
if falling back on sampling techniques. In the latter case
the reason is the potentially infinite sample space. There-
fore we must tolerate a certain risk of rejecting a plan with
true failure probability at mostθ, or accepting a plan with
failure probability aboveθ. In statistical quality control the
former kind of error is referred to as a type I error (reject
when acceptable), and the latter a type II error (accept when
rejectable). We associate a risk level with each type of er-
ror. The risk levels are denoted byα andβ respectively, and
these represent the acceptable probability of making an error
of respective type.

Let H0 be the hypothesis thatpF ≤ θ (null hypothesis),
and letH1 be the alternative hypothesis thatpF > θ. We
would like to test the hypothesisH0 againstH1 so that the
probability of acceptingH1 whenH0 holds is at mostα, and
the probability of acceptingH0 whenH1 holds is at mostβ.

In order to be able to chooseα and β freely, however,
we need to relax the hypotheses somewhat.1 For this pur-
pose we introduce an indifference region of non-zero width
δ. Let pF ≤ θ − δ beH0 and letpF ≥ θ + δ beH1. We use
acceptance sampling to test hypothesisH0 againstH1. The
motivation for the indifference region, other than that it al-
lows us to choose the two risk levels independently, is that if
the true failure probability is sufficiently close to the thresh-
old, then we are indifferent to whether the plan is accepted
or rejected.

1We would have to chooseα = 1 − β without the suggested
relaxation, which means if one of the risk levels was low, then the
other would have to be high.



Sequential Sampling. A sequential test is one where the
number of observations is not predetermined but is depen-
dent on the outcome of the observations (Wald 1945). Wald
(loc. cit.) develops the theory ofsequential analysis, and
defines the sequential probability ratio test (see also (Wald
1947)), which is optimal for testing a simple hypothesis
against a simple alternative in the sense that it minimizes
the expected number of samples needed to reach a decision.

Let X be a binary random variable with unknown param-
eterp such thatPr[X = 1] = p. The sequential probability
ratio test is carried out as follows to test the hypothesisH0

thatp ≤ θ − δ against the hypothesisH1 thatp ≥ θ + δ. At
each stage of the test, calculate the ratio

p1n

p0n
=

∏n
i=1 Pr[X = xi | p = θ + δ]∏n
i=1 Pr[X = xi | p = θ − δ]

,

wherexi is the sample ofX generated at stagei. AcceptH1

if

p1n

p0n
≥ 1 − β

α
.

AcceptH0 if

p1n

p0n
≤ β

1 − α
.

Otherwise, generate an additional sample and repeat the ter-
mination test. This test procedure respects the risk levelsα
andβ.2

Let θ0 = θ− δ andθ1 = θ + δ. Applied to the problem of
validating a plan, if at stagen we have observedfn failures,
the ratio to compute is

p1n

p0n
=

θfn

1 (1 − θ1)n−fn

θfn

0 (1 − θ0)n−fn

.

For purposes of practical computation we work with log-
arithms, and carry out the test as follows. At the inspection
of thenth sample, compute

log
p1n

p0n
= fn log

θ1

θ0
+ (n − fn) log

1 − θ1

1 − θ0
.

Continue sampling if

log
β

1 − α
< log

p1n

p0n
< log

1 − β

α
.

Terminate by accepting hypothesisH1 if

log
p1n

p0n
≥ log

1 − β

α
.

Terminate by acceptingH0 if

log
p1n

p0n
≤ log

β

1 − α
.

Alternatively, we can compute an acceptance numberan

and a rejection numberrn. We acceptH0 if fn ≤ an, reject
2There is a slight approximation involved in the stopping crite-

ria of the test. See (Wald 1945) for details.

H0 (acceptH1) if fn ≥ rn, and continue sampling other-
wise. Let

u = log
θ1

θ0
and v = log

1 − θ0

1 − θ1
.

The acceptance number at stagen is

an =
log

β

1 − α
+ nv

u + v
, (2)

and the rejection number is

rn =
log

1 − β

α
+ nv

u + v
. (3)

Verification Algorithm
We now have all the pieces needed to specify a plan veri-
fication algorithm. Algorithm 2 describes the steps of the
procedure. The algorithm uses Wald’s sequential probabil-
ity ratio test, and so has input parametersθ, δ, α, andβ. In
addition, the parametertmax needs to be specified for the
sample generation algorithm used by the verification proce-
dure.

Algorithm 2 Procedure for verifying planπ.
1. Letn = 0.

2. Incrementn by one and generate samplesyn(s) of Yπ(s)
for all s ∈ SF (Algorithm 1).

3. Computefn (equation (1)).

4. Computean (equation (2)) andrn (equation (3)).

5. Acceptπ if fn ≤ an, and rejectπ if fn ≥ rn. Otherwise
go to step 2.

Figure 3 graphically represents the execution of the verifi-
cation algorithm on the plan in Figure 2(c) using parameters
θ = 0.05, δ = 0.01, α = β = 0.05, and withtmax set to200
time units. The acceptance and rejection lines correspond to
equations 2 and 3 respectively. The curve starting out be-
tween the two lines represents the number of observed fail-
ures. After generating 201 sample execution paths (of which
3 ended in a failure state), the curve crosses the acceptance
line, which means we accept the plan. Had the curve crossed
the rejection line instead, we would have rejected the plan.
With the given parameters, we are 95% confident that the
true failure probability of the plan is less than0.06.

The number of samplesn that the algorithm needs to in-
spect before a decision is reached does not have a definite
upper bound. Wald (1947) proves that the sequential proba-
bility ratio test terminates with probability 1. Although the
probability is small that the required sample size will exceed
twice or three times the expected number of required sam-
ples, it may be desirable to set an upper boundnmax in some
cases. If an upper bound is provided and the test does not ter-
minate forn ≤ nmax, Wald (loc. cit.) suggests that the null
hypothesis be rejected iffnmax ≥ (anmax +rnmax)/2 and ac-
cepted otherwise. If the upper bound is set sufficiently high
(e.g. three times the expected value ofn), then truncating the
process has negligible effect on the strength of the test.
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Figure 3: Result of executing the verification algorithm on
the plan in Figure 2(c).

Performance
The performance of our verification algorithm depends on
several factors. We can separate these factors into two
groups—domain dependent and domain independent.

The domain dependent factors affect the performance of
Algorithm 1, used for generating the samplesyi(s). The
main factors of this kind are the time period considered
(tmax) and the mean values of the distribution functionsF .
If the mean values are small relative totmax, the number of
transitions triggering before the simulation terminates will
be high, hence increasing the time needed to generate each
set of samples. Note, however, that the size of the state space
plays a minimal role. Only once, in the initialization step,
do we need to perform work at most linear in|S|. This work
amounts to clearing all theyi(s)’s, which can be done quite
efficiently using a bit-vector to represent each set of samples.

As a domain independent factor we view the number of
samples,n, needed to be generated before the verification
algorithm terminates. We will show below how this num-
ber depends on the true failure probabilitypF . Although
arguably dependent on the domain and the current planπ,
because this ultimately determinespF , we can estimate the
sample size needed independently of any particular domain
or plan, hence motivating the label “domain independent”.

Sample Size
We can expect to need fewer samples the further the true
failure probability is from the indifference region. IfpF is
significantly less thanθ0, we can expect to satisfy the ac-
ceptance criterion at an early stage. Conversely, ifpF is
much aboveθ1, the number of failures observed will tend to
quickly exceed the rejection number. The number of sam-
ples,n, required by the verification algorithm is a random
variable since it depends on the outcome of the observations.
The expected value ofn, often called theaverage sample
number, depends onpF .

Wald (1945) provides an approximation formula for the
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Figure 4: Average number of samples forδ = 0.01 and (1)
α = β = 0.05 and (2)α = β = 0.10, and forδ = 0.02 with
(3) α = β = 0.05 and (4)α = β = 0.10 (θ = 0.05 in all
cases).

expected sample size. LetEp[n] denote the expected number
of samples required givenpF = p. An approximate value
for this expectation is

Ẽp[n] =
L(p) log

β

1 − α
+ (1 − L(p)) log

1 − β

α

p log
θ1

θ0
+ (1 − p) log

1 − θ1

1 − θ0

, (4)

whereL(p) is the probability that the sequential test termi-
nates with acceptance ifpF = p.

Figure 4 plots the average sample number in a region
close toθ (for θ = 0.05) and with different choices ofδ, α,
andβ. We can see that by raising the risk levels or widening
the indifference region, we will need fewer runs on average
to reach a decision. This gives us an opportunity to trade
quality for performance.

Truncated Test. As mentioned earlier, we may want to set
an upper limitnmax on the number of samples generated.
Equation (4) can help us choose this upper bound. The av-
erage sample number is at a maximum at, or close to, the
common slopes of the acceptance and rejection lines:

s =
log

1 − θ0

1 − θ1

log
θ1

θ0
− log

1 − θ1

1 − θ0

The average sample number at this point is approximately

Ẽs(n) =
log

β

1 − α
log

1 − β

α

log
θ1

θ0
log

1 − θ1

1 − θ0

.

With nmax = 3Ẽs(n), the probability that the sequential
test has terminated beforen reachesnmax is nearly1, and
the truncation has a negligible effect on the strength of the
test.



Related Work
BURIDAN uses a notion of plan failure similar to ours,
where a threshold is given representing the maximum ac-
ceptable failure probability (Kushmerick, Hanks, & Weld
1995). BURIDAN implements several methods for plan as-
sessment, computing a guaranteed upper bound on the fail-
ure probability. The cost of obtaining a guaranteed bound
is that the efficiency of these methods vary significantly be-
tween domains. In our approach, we can trade efficiency for
accuracy by adjusting the risk levels. A further difference
is that our world model allows for external events, while in
BURIDAN only actions can be represented, and there is only
a limited notion of time, where each performed action rep-
resents a discrete time step. The same holds for planners
adopting a model based on Markov decision processes.

The work by Dean & Kanazawa (1989) is more closely
related to ours. They use what they call probabilistic pro-
jection to reason about persistence of propositions, but their
model is Markovian. They construct a belief network in or-
der to compute probabilistic predictions. Blythe (1994) uses
a similar approach for computing the failure probability of a
plan subject to external events. Probabilistic inference in be-
lief networks is known to be NP-hard (Cooper 1990), how-
ever, and current exact algorithms have worst-case exponen-
tial behavior. Both Blythe and Dean & Kanazawa consider
approximate algorithms, but they do not provide any guar-
anteed error bounds, and the convergence is often slow.

Atkins, Durfee, & Shin (1996) consider a probabilistic ex-
tension of CIRCA similar to ours. Their approach is analyt-
ical, and they present an iterative algorithm for state prob-
ability estimation. Their state probability calculations are
based on heuristic approximations of transition times, but
no quantitative error bounds are provided by the algorithm.
Furthermore, they do not propagate probabilities around cy-
cles in the state space, which can lead to serious underesti-
mation (although this problem is addressed in later work (Li
et al. 2000)).

Alur, Courcoubetis, & Dill (1991) describe an algo-
rithm for verifying formulas specified in a language called
TCTL, with an underlying GSMP world model. TCTL is
a branching-time temporal logic for expressing real-time
properties, but lacks support for expressing quantitative
bounds on probabilities. Azizet al. (1996) present CSL
(continuous stochastic logic), which is a formalism in which
quantitative probability bounds can be expressed, and they
show that the problem of verifying CSL formulas is decid-
able. Baier, Katoen, & Hermanns (1999) describe an imple-
mentation of a model checker using an analogous formal-
ism. The underlying model for this work is continuous-time
Markov chains, however, and not GSMPs. The difference is
that in the former model only exponential probability distri-
bution functions are permitted.

Conclusions
We have presented a probabilistic extension to CIRCA. The
extended world model can be viewed as a generalized semi-
Markov process. We use discrete event simulation to gener-
ate sample paths in a world model, and use acceptance sam-

pling theory to minimize the expected number of samples
needed to determine if the failure probability is sufficiently
low. Our work differs from other probabilistic planners in
that our world model is more expressive. Yet, we are able to
bound the fraction of erroneous classifications that our plan
verifier makes. Using sequential acceptance sampling, we
often need very few samples to reach a decision with suffi-
cient confidence, but the user (or a higher-level deliberation
scheduling module) can easily trade efficiency for accuracy
by varying the parametersδ, α, andβ.

For future work, we would like to combine importance
sampling (Heidelberger 1995) with acceptance sampling.
Doing so could improve performance of our verification al-
gorithm when the failure threshold is close to zero, or when
the indifference region is narrow. In addition, more work
on how to use probabilistic information in guiding plan gen-
eration is needed. We have mentioned how to obtain point
estimates of state probabilities from sample execution paths,
and that these could be used to guide the planning effort to-
wards more likely states, effectively pruning the least likely
states from the search space if limited resources are given to
the planner. We would like to investigate the effectiveness
of such pruning techniques in the future.
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