
To appear in Proc. Symposium on AI in Real-Time Control
Valencia, Spain, October 1994AUTOMATING THE DESIGN OF REAL-TIME REACTIVESYSTEMSDAVID J. MUSLINER�, KANG G. SHIN�� and EDMUNDH. DURFEE���Institute for Advanced Computer Studies, The University of Maryland, College Park, Mary-land 20742, USA. Email: musliner@umiacs.umd.edu.��Department of EE & Computer Science, The University of Michigan, Ann Arbor, Michigan48109, USA. Email: fkgshin,durfeeg@eecs.umich.edu.Abstract. The Cooperative Intelligent Real-time Control Architecture (CIRCA) automatesthe process of designing, scheduling, and executing real-time reactive monitoring and controlsystems. This paper provides an overview of CIRCA from a design-automation perspective,and illustrates the architecture's ability to dynamically alter its control system design basedon resource limitations or environmental constraints.Keywords. Arti�cial intelligence; real-time computer systems; robots; control system de-sign; self-adapting systems.1. INTRODUCTIONThe Cooperative Intelligent Real-time ControlArchitecture (CIRCA) (Musliner et al. 1993,Musliner et al. 1995) is designed to automate theentire process of building a real-time reactive mon-itoring and control system, from planning tasks,to deriving their constraints, to scheduling them,and �nally to executing them predictably. By au-tomating this design and implementation process,CIRCA is \intelligent about real-time." That is,CIRCA uses AI methods to dynamically and ex-ibly develop and modify its real-time behavior inthe face of changing goals, capabilities, and/or do-mains. While many real-time AI systems can onlypromise \best-e�ort" performance, CIRCA is ableto make explicit guarantees about its ability toachieve its goals within particular domains usinglimited sensor, processor, and actuator resources.As illustrated in Fig. 1, CIRCA consists of sev-eral parallel subsystems. The AI Subsystem (AIS)is responsible for using complex AI methods toreason about a world model, deriving appropri-ate monitoring and control reactions for the sys-The work reported in this paper was supported in partby the National Science Foundation under Grants IRI{9209031 and IRI{9158473, by a NSF Graduate Fellowship,by the O�ce of Naval Research under Grant N00014{91{J{1115, and by the ARPA/Rome LaboratoryPlanning Ini-tiative (F30602-93-C-0039). David Musliner is also a�li-ated with the University of Maryland Institute for SystemsResearch (NSF Grant CDR-88003012).

Real-Time Subsystem

Environment

control sensor data
signals

Scheduler

AI Subsystem

World Model

reactions
selected

schedules
reaction

reaction schedules

feedback dataFig. 1. CIRCA, the Cooperative IntelligentReal-Time Control Architecture.tem. These reactions are built into an executionschedule by the Scheduler module, and then down-loaded to the Real-Time Subsystem (RTS). TheRTS is designed to provide a predictable execu-tion environment which can enforce hard real-timeresponse guarantees for the planned reactions.The development of CIRCA makes several contri-butions to the state of the art, including a worldmodel and planning algorithm tailored to theneeds of hard real-time environments (Muslineret al. 1995), and a structured interface throughwhich the arbitrarily complex AI planning sub-system can communicate with and control the pre-dictable, guaranteed RTS (Musliner et al. 1993).This paper focuses on describing the overall oper-ations of CIRCA from an automated-design per-spective, emphasizing the way CIRCA retains pre-dictable real-time behavior while also providingthe exibility and adaptability required for intel-ligent real-time control.

Fig. 2. The example Puma domain.Examples of CIRCA's adaptive design behaviorwill be drawn from the prototype implementationcontrolling a simulated Puma robot arm whichmust pack parts arriving on a conveyor belt into anearby box (see Fig. 2). The parts arriving on theconveyor can have di�erent shapes (e.g., square,rectangle, triangle), each of which requires a dif-ferent packing strategy. The control system maynot initially know how to pack all of the possi-ble types of parts| it may have to perform somesearch algorithm to derive an appropriate box-packing strategy. However, it is critical that therobot does not allow any parts to fall o� the endof the conveyor, so if the robot does not know howto pack an arriving part, it is allowed to simplyplace the part on the nearby table and proceedwith other activities. The robot arm is also re-sponsible for reacting to an emergency alert light.If the light goes on, the system must push thebutton next to the light before a �xed deadline.The Puma domain thus includes two sourcesof hard real-time deadlines (arriving parts andemergency alerts) as well as the opportunityto use search-based AI methods to derive part-packing strategies that will improve performance.CIRCA's primary goal in this domain is to alwaysavoid catastrophic failures due to missed dead-lines, and to also try to pack as many parts aspossible into the box. When viewed from the real-time system design perspective, CIRCA's task isessentially to design, verify, redesign, and imple-ment control systems that meet hard deadlinesin the dynamic environment (part arrivals andemergency alerts) and also intelligently deal withchanges that are not predicted (new part shapes).

2. THE AUTOMATED DESIGN PROCESSFig. 3 shows a owchart mapping the steps of atraditional control system design process to re-lated portions of the CIRCA approach. Beginningin the upper left of the �gure, the designer (hu-man or automated) is given a speci�cation of thesystem to be controlled. In the case of CIRCA,this speci�cation has three parts: a set of possi-ble initial world states, a set of state transitionsthat describe how the world can change, and aset of agent capabilities, describing how the agentcan change the world. In the Puma domain, eachpossible initial world state describes the status ofthe robot, the conveyor belt, the alert light, etc.The state transitions describe the states in whichexternal events may occur, and the new statesthat result from the events. For example, a statetransition is used to describe the possibility of apart falling o� the conveyor after some time de-lay, leading to an unacceptable failure state. Theagent capabilities describe the robot's methods formoving parts and pushing the emergency button.The output speci�cation describes the desired be-havior; for CIRCA, the speci�cation includes bothgoals of avoidance (to stay out of some undesirablesituations) and goals of achievement (to attainsome desirable situations). In the Puma domain,the avoidance goals correspond to parts falling o�the conveyor and the emergency alert timing out.The goal of attainment is to pack parts into thebox.The design phase of the process builds a tentativecontrol system; CIRCA builds a reactive controlplan using lookahead planning methods similar toSTRIPS (Nilsson 1980). The reactions are cast inthe form of simple Test-Action Pairs (TAPs) thatspecify the appropriate control actions for vari-ous possible future states of the world. Each TAPimplements a set of tests to recognize a partic-ular class of world states, and an action to per-form when the system is in that class of states.For example, a simple TAP in the Puma domainmight detect when the emergency light is activeand the robot is not holding any parts, and initi-ate an action to push the emergency button, thuscancelling the alert and avoiding the undesirablefailure (timeout) state. Deadlines de�ned by thetransitions in the world model are translated intoresponse-time requirements for each TAP that iscritical to system safety. Thus, the TAP that re-sponds to an emergency-alert would have to betested (and possibly activated) frequently enoughto ensure that no emergency alert condition is al-lowed to time-out and result in failure.The next phase of the design process veri�es thatthe proposed control system can be executed tomeet the timing speci�cations. CIRCA's planner

(tradeoff methods)

Modification

 achievement goals)
(avoidance goals,

Output Specifications (planning)

Design

 scheduling)
(model proofs,

Verification

(RTS)

Implementation

Input Specifications

(initial world states,
world transitions,

 agent capabilities)

Fig. 3. A owchart showing the stages of real-time system design.ensures the logical correctness of a TAP controlplan when it is built, based on the world model.The Scheduler reasons about the worst-case exe-cution times of the TAPs, and the limited execu-tion resources available on the RTS, attempting tobuild an execution schedule that meets all of theresponse-time constraints1. By developing a TAPschedule that meets all of the hard deadlines insome region of interactions with the environment(i.e., some portion of the overall system's statespace), CIRCA is essentially designing a real-timereactive control system.Assuming that the Scheduler is able to producea feasible schedule that meets all the timing re-quirements, the AIS can send the schedule to theRTS, which will then execute the TAPs in a pre-dictable manner, enforcing the safety guaranteesand behaviors speci�ed by the planning system. Aprimary feature of these scheduled reactive plansis that, because they are designed to meet allof the domain deadlines in some region of thesystem's state space, they essentially isolate theAI-based planning system from the real-time re-sponse requirements of the environment. Whilethe AIS is performing its planning process, theRTS is simultaneously executing the previously-generated reactive control plan, maintaining guar-anteed system safety. This unique combination ofcommunicating but isolated AI methods and hardreal-time response guarantees is one of the mainperformance features of the CIRCA architecture(Musliner et al. 1993, Musliner et al. 1995).Following the dashed arrows in the owchart, it isalso possible for the design or veri�cation phaseto fail, indicating that some modi�cations mustbe made to the initial design or the speci�cations.1Some TAPs are not responsible for meeting hard dead-lines, and these are not assigned response-time require-ments. Instead, they are labelled as \if-time" TAPs, whichcan be executed if time and resources remain unused by theguaranteed TAPs.

For example, the Scheduler may �nd that it is notpossible to run the emergency-alert-response TAPas frequently as speci�ed, so it will return a failuremessage to the AIS. Feedback from TAPs alreadyexecuting on the RTS may also initiate modi�ca-tions to the control system being designed. Forexample, when parts of a new shape arrive, theRTS will send that information to the AIS, whichmust develop a new control plan that can packthose parts. Such modi�cations are essential toautomating the overall design process, for two rea-sons. First, because heuristics are used to gener-ate designs, the initial set of proposed TAPs maybe impossible to schedule. A mechanism mustbe available to modify the planning process (orsome other system aspect) so that a di�erent de-sign is heuristically generated and tested. Sec-ond, because CIRCA is intended to control an au-tonomous agent with bounded resources, it is notpossible to ensure that the agent will always havesu�cient resources to accomplish every task thatmight arise. As a result, CIRCA must dynami-cally consider how to apply its limited resourcesto best achieve its goals, possibly by preferringsome goals over others, by changing plans, or bymaking other modi�cations to the planning pro-cess or speci�cations.This capability distinguishes CIRCA's approachfrom a more traditional design process, in whichthe input and output speci�cations are �xed. Incontrast, CIRCA may have to modify the I/Ospeci�cations of its control system design, whenfaced with resource limitations. For example, ifthe conveyor belt is moving very quickly, the sys-tem may be unable to guarantee that it will bothprevent emergency timeouts and avoid droppingparts. In response, CIRCA might have to pri-oritize one goal over another, or alter the speedof the conveyor. Both of these changes actuallymodify the problem speci�cation for the controlsystem, rather than just the control system de-sign. The following section discusses two exam-

ples of the types of design tradeo�s CIRCA hasexperimentally demonstrated.3. DESIGN TRADEOFFSSuppose the Puma domain is speci�ed to haveparts arriving as little as 45 seconds apart, andemergency alerts as little as 50 seconds apart. TheAIS will build a plan including the pickup-part-from-conveyor and push-emergency-buttonreactions, both of which must be guaranteed tomeet certain deadlines. The Scheduler will thenbe invoked to see if the available RTS resourcesare su�cient for those tasks. Fig. 4a shows the re-sults of many such plan/schedule iterations, com-piled together to represent essentially a perfor-mance pro�le for the overall task. The axes ofthe graph show di�erent rates at which alerts andparts may arrive, representing di�erent domains.If the arrival rates match a point below the lower,\normal plan" curve, then the system can build aschedule that will guarantee to both avoid emer-gency failures and prevent parts from falling o�the conveyor. The form of this curve illustratesthe tradeo� that the scheduling mechanism canmake between tasks: when the emergency rate isrelatively high, the system will still build a sched-ule, as long as the part arrival rate is su�cientlylow that the Scheduler can allocate more resourcesto the tasks that respond to the alert. Conversely,when the emergency rate is lower, the system candeal with a faster rate of part arrivals.3.1 Tradeo� Example: Ignoring Potential FailureIf the arrival rates match a point above the lowercurve, then CIRCA cannot build a schedule thatwill guarantee to avoid both emergency failuresand dropping parts. The AIS must make sometype of tradeo� to arrive at a plan which is fea-sible. Suppose, for example, that the systemdecides that dropping parts o� the conveyor isnot catastrophic, but merely undesirable. Thisis equivalent to the system automatically chang-ing the input problem speci�cation so that cer-tain states are no longer considered catastrophic.In that case, CIRCA can build guaranteed sched-ules for all of the domain instances below the up-per line, the maximum rate of emergency alertarrivals that can be handled with the given primi-tives. The part arrival rate is no longer critical tothe scheduling problem because the system doesnot need to guarantee the pickup-part-from-conveyor action.To illustrate the non-guaranteed nature of the re-sulting behavior, this tradeo� method was testedin the Puma domain by increasing the rate of

emergency alerts and part arrivals so that the orig-inal plan of actions was not schedulable. The AISthen chose to ignore the danger of parts falling o�the conveyor, re-planned, and built a new TAPplan in which the pickup-part-from-conveyoraction was no longer guaranteed, but was insteadimplemented by an if-time TAP. Fig. 4b showsthe expected results: as parts and emergencyalerts arrived more frequently, the number of partsfalling o� the conveyor increased, because the sys-tem had less and less free time to apply to if-timebehaviors. In this instance, CIRCA traded awayits guarantee of preventing parts from falling o�the conveyor, in exchange for the ability to guar-antee its response to the emergency alert.3.2 Tradeo� Example: Method SelectionIn addition to making changes to the I/O speci�-cations in response to resource restrictions, theAIS can also make changes directly to the im-plemented form of the planned actions. In par-ticular, the AIS can make changes to the TAPsbuilt to implement action transitions. One pow-erful modi�cation is to simply alter the speci�cprimitives used to perform the tests and actionrequired by a TAP. The AIS may have severaldi�erent methods for performing an action (or atest), and it can choose amongst them accordingto the resources available. This tradeo� methodis equivalent to the \con�guration selection" (Kuoand Mok 1991), \version selection" (Malcolm andZhao 1991), and \design-to-time" (Garvey andLesser 1994) approaches.For example, suppose that the Puma controlsystem provides the RTS with two di�erenttypes of part-placement operations, a slow, high-accuracy, \�ne-motion" operation and a faster,lower-accuracy, \coarse-motion" operation. Thismeans that the system has two possible primi-tive operators for the place-part-in-box actiontransition. Using the �ne-motion operator allowsthe system to place the parts very close together,thus yielding densely-packed boxes. But the �ne-motion operator needs four seconds to �nish theplacement operation. Using the coarse-motion op-erator requires the system to leave more spacebetween the parts, since the placement is less-certain. As a result, the system will produce less-densely packed boxes, but it can produce themmore quickly, because the coarse-motion opera-tor only needs 2.5 seconds. Thus, in this exam-ple, method selection allows the system to tradeo� the quality of its results (the packing density)for the timeliness of its long-term and short-termbehaviors (the speed of packing whole boxes andindividual parts). Given the faster coarse-motionoperator, the system may be able to guarantee to

 Plan ignoring part failures
� �

 Normal plan

|
1.0

|
1.1

|
1.2

|
1.3

|
1.4

|
1.5

|
1.6

|
1.7

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

|2.4

|2.6

 Part Arrival Frequency (parts/minute)

 E
m

er
ge

nc
y

A
rr

iv
al

 F
re

qu
en

cy
 (

al
er

ts
/m

in
ut

e)

���� �

� � � � � � � � � � �

� � � � � � � �

�

� �

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0

|1

|2

|3

|4

|5

|6

 Part Arrival Frequency (parts/minute)
 A

ve
ra

ge
 N

um
be

r
of

 D
ro

pp
ed

 P
ar

ts

(a) Schedulability. (b) Performance.Fig. 4. Tradeo�s by ignoring a potential failure.respond in time to a higher frequency of emer-gency alerts than with the slower operator.To provide a more quantitative demonstration ofthis tradeo�, experiments using these coarse/�neoperators were performed. The �ne-motion opera-tor was de�ned to require no space at all surround-ing parts being placed in the box: essentially, itcould achieve 100% packing density with a fortu-itous series of part arrivals.2 The coarse-motionoperator, on the other hand, required one inch ofclearance on all sides of the parts in order to placethem in the box. Naturally, the achievable pack-ing density is lower with this operator, since partsoccupy spaces larger than their actual size.Fig. 5a shows the improvement in response-timeachieved by using the coarse-motion operator, il-lustrated here by the increased rate of emergencyalerts and part arrivals that can be handled. Theupper curve shows the response tradeo�s that canbe made using the faster coarse-motion packingoperator, while the lower curve shows the perfor-mance for the �ne-motion operator used in theprevious experiment (and previously graphed inFig. 4a). The coarse-motion operator reduces thetime allocated to the place-part-in-boxTAP, sothe system can respond in time to more frequentpart arrivals, emergency alerts, or both.However, Fig. 5b shows the corresponding de-crease in performance quality that resulted from2The box-packing strategy does not deliberately reorderthe parts by placing them on the table and packing themlater. Parts were only put on the table if the packing op-eration was aborted to deal with an emergency.

the coarse-motion operator, when applied to 100trials using randomly ordered arrivals of four dif-ferent part shapes. On average, the density of thepacked box was reduced from 70% using the �ne-motion operator to 59% with the coarse-motionoperator. In these experiments, simulations of thebox-packing algorithm were continued until the�rst arrival of a part that did not �t in the box.The �ne-motion version was able to pack an aver-age of 45 parts in the box, while the coarse-motionversion packed an average of only 26 parts. Thusthe improved schedulability and response time il-lustrated in Fig. 5a are only achieved at the costof sti� performance degradation.4. CONCLUSIONSIn summary, by automating the entire processof designing and implementing reactive real-timesystems, CIRCA is able to intelligently adapt itsbehavior while still meeting hard real-time dead-lines. The view of CIRCA as an automated designsystem highlights the importance of its mecha-nisms for making the tradeo�s that are inevitablein resource-bounded real-time systems. CIRCAderives a high-quality plan based on its model ofthe world, then checks to see if the plan's resourcerequirements are feasible. If not, the system hasmany alternatives for making tradeo�s, includ-ing sacri�cing its guarantees of avoiding particulartypes of failures, and degrading other performancequalities in exchange for schedulability.The experiments described above have demon-strated these tradeo� methods. It is important

 Plan using coarse-motion operator
� �

 Normal plan using fine-motion operator

|
0.8

|
1.0

|
1.2

|
1.4

|
1.6

|
1.8

|
2.0

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

|2.2

 Part Arrival Frequency (parts/minute)

 E
m

er
ge

nc
y

A
rr

iv
al

 F
re

qu
en

cy
 (

al
er

ts
/m

in
ut

e)

�����

�����������

� � � � � � � �

�

� �

 Fine-motion operator
� Coarse-motion operator

|
0

|
20

|
40

|
60

|
80

|
100

|0.00

|0.10

|0.20

|0.30

|0.40
|0.50

|0.60

|0.70

|0.80

|0.90

 Trial index

 D
en

si
ty

 o
f p

ac
ke

d
bo

x

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

(a) Schedulability. (b) Density of packed box.Fig. 5. Tradeo�s by using di�erent TAP implementations.to realize that, because CIRCA can reason in-ternally about the e�ects these tradeo� methodshave on its performance, the system is \aware"of the tradeo�s it can make, and can choose thee�ects that are most suited to its overall goals.One of the major directions for future researchis the determination of the precise conditions towhich each of the available tradeo� methods isbest-suited. 5. REFERENCESGarvey, A. and V. Lesser (1994). A survey of re-search in deliberative real-time arti�cial intel-ligence. Journal of Real-Time Systems 6(3),pp. 317{347.Kuo, T.-W. and A. K. Mok (1991). Load adjust-ment in adaptive real-time systems. In Proc.Real-Time Systems Symposium, pp. 160{170.Malcolm, N. and W. Zhao (1991). Version selec-tion schemes for hard real-time communica-tions. In Proc. Real-Time Systems Sympo-sium, pp. 12{21.Musliner, D. J., E. H. Durfee and K. G. Shin(1993). CIRCA: a cooperative intelligent real-time control architecture. IEEE Trans. Sys-tems, Man, and Cybernetics 23(6), pp. 1561{1574.Musliner, D. J., E. H. Durfee and K. G. Shin(1995). World modeling for the dynamic con-struction of real-time control plans. To ap-pear in Arti�cial Intelligence.Nilsson, N. J. (1980). Principles of Arti�cial In-telligence. Tioga Press, Palo Alto, CA.

