
Execution Monitoring and Recovery Planning with TimeDavid J. Musliner Edmund H. Durfee Kang G. ShinDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, Michigan 48109-2122AbstractFocusing on Allen and Koomen's temporal planningscheme [1], this paper characterizes the possible loca-tions for failure during plan execution. By observ-ing the interval collapse criterion during plan gener-ation, the planner is able to integrate the planningof goal-directed actions and execution veri�cation ac-tions. This allows the planner to schedule sensor usageand reason about sensing and data processing delays.We also present a simple and robust recovery plan-ning scheme which inserts corrective steps into theoriginal plan. We generate purely inserted recoveryplans e�ciently, without destroying the original planand without unnecessary temporal inferencing.1 IntroductionTo work in the real world, an AI system must of-ten interact with a dynamic, time-constrained envi-ronment. Several planning systems have recognizedthe need to deal explicitly with deadlines, scheduledevents, and actions that take time [1, 9, 12]. However,since real-world domains cannot be modeled perfectly,a system that predicts the results of planned actionsin a simulated world must be able to detect and re-cover from discrepancies between its expected and ac-tual state during execution. Verifying the correct ex-ecution of a plan can be di�cult, because a variety ofsensor inputs and expected condition changes must bemonitored almost continuously.Our execution monitoring and replanning techniquesare described in the context of the planning and execu-tion system shown in Figure 1. We emphasize the tem-poral aspects of execution monitoring which are notaddressed by previous integrated and reactive systems[2, 5, 11]. Examples will be drawn from a blocks-worlddomain in which a robot (R) performs the �ne-grainactions Pick-Up, Move-Over, and Put-Down on threeblocks (A, B, C) and one table (T ). Figure 2 summa-rizes a simple temporal plan to stack A on B.The work reported in this paper was supported in part by theNational Science Foundation under Grant DMC-8721492 and aNSF Graduate Fellowship.

World Model

TIMELOGIC

A
C B

R

Planner
Execution 


System
Robot Controller

Sensor Processors

plans

replan
requestsdata Figure 1: Overview of the system.2 The World Model & PlannerThe World Model (WM) portion of our system isresponsible for maintaining a database of the system'sbelieved and sensed knowledge about the world. TheWM uses Koomen's TIMELOGIC system to imple-ment Allen's interval temporal logic [1, 7]. In addi-tion to the relational constraints which Allen de�nedto indicate relative order between intervals, TIME-LOGIC supports durational constraints indicating rel-ative magnitude between intervals. Our WM code as-sociates world data with intervals and provides a dataindexing scheme. The WM also includes several infer-ence mechanisms which monitor the addition of datafrom the planner, enforcing domain constraints suchas \no two blocks can be ON the same block at thesame time." If a proposed addition to the WM vio-lates either these domain constraints or the temporalconstraints maintained by TIMELOGIC, the additionis rejected and the planner must chronologically back-track to try a di�erent search path.Our planning system implements Allen andKoomen's algorithm [1], using constraint-based inter-val temporal logic to generate complex plans involv-

Time

Move-Over(A)
[action]

Pick-Up(A)
[action]

Move-Over(B)
[action]

Put-Down(A)
[action]

R ABOVE T R ABOVE A R ABOVE T R ABOVE B R ABOVE A

R HOLDING NIL R HOLDING A R HOLDING NIL

A ON T, B ON T B ON T A ON B, B ON T
[goal conditions]

B UNDER NIL B UNDER A
[goal condition]

Figure 2: Temporal plan to stack A on B. Dottedlines connect equal interval endpoints.



R HOLDING A
[precondition]

Put-Down(A)

Pick-Up(A) R HOLDING A
[postcondition]Figure 3: An interval collapse.ing multiple agents, overlapping actions, and explicittime constraints like deadlines. Interval constraintsalso permit a \minimal commitment on order" strat-egy, so that temporal orderings are postponed as longas possible. The planning algorithm performs a depth-�rst search by backward-chaining from the goals to theinitial world state.Our implementation maintains a goal stack, and be-gins by examining (but not removing) the top goal andits interval. If an assertion in the world model is equiv-alent to the goal and its interval can be equal to thegoal interval, we do not need to plan anything, the goalis already achieved| we simply express the temporalequality constraint and pop the goal from the stack(see Figure 3). This behavior is the only way to re-move a goal from the stack, and corresponds to Allenand Koomen's \interval collapse" [1]. If no intervalcollapse is possible, we must plan a step to achieve thegoal, adding its postconditions to the WM and push-ing its preconditions onto the goal stack. Recursing onthis algorithm via an iterative control scheme gives therequisite operator-subgoaling, depth-�rst search.3 Execution MonitoringLimited sensing and/or processing abilities maymake it impossible to verify all of the expectations ex-pressed by a plan [3, 9]. Thus, we must restrict exe-cution monitoring as much as possible by addressingtwo important questions: what expectations must beveri�ed, and how often must they be veri�ed.3.1 What To Verify?When resource limitations are a consideration, wewould like to restrict execution monitoring to onlythose assertions which are critical to the plan's suc-cess. Doyle, Atkinson, and Doshi noted that onlypostconditions which are used to satisfy preconditionsare on the critical path representing the dependenciesbetween actions [3]. Unfortunately, their state-basedrepresentation makes identifying these dependenciescostly. Our temporal planning formulation makes theconditions on the critical path very easy to locate au-tomatically: only those conditions involved in intervalcollapses must be veri�ed.Characterizing the critical conditions as interval col-lapses highlights two special cases which might other-wise be overlooked. Interval collapses occur when aplan's initial conditions are used to satisfy the precon-ditions of a plan step, and when the postconditions ofa step achieve a �nal goal. Since signi�cant planning

time may elapse between the time the initial condi-tions are sensed and the time the �rst step of the planis executed, the initial conditions may no longer betrue. And since plans for conjunctive goals may attainone goal long before another, there is a chance that anachieved goal condition may be disrupted before theplan is completed. The interval collapse condition au-tomatically requires veri�cation for these special cases.3.2 How Often To Verify?Expected conditions might be veri�ed only once,when they are achieved. However, conditions whichhave signi�cant duration should be con�rmed againbefore they are used as preconditions of later actions,since they may have been violated by an interveningunexpected event [3]. Even this double veri�cation ap-proach is undesirable if signi�cant time elapses betweenthe two veri�cation actions, because unexpected con-ditions may not be detected quickly. For example, con-sider a robot which must grasp an object and move itthirty feet. If the robot only checks to make sure it isholding the object at each end of the trip, recoveringan object dropped in transit may be quite expensive.On the other hand, the robot probably cannot a�ordto focus its sensors solely on checking that the object isstill held. Using the temporal information in our planrepresentation, we must balance the frequency of mon-itoring various conditions against the sensor resourcelimitations.3.3 Taking Veri�cation Time into AccountOne aspect of veri�cation which other systems [2, 3]did not consider is the time cost of the monitoringactions themselves: sensing and processing sensed datacan take signi�cant time. Inserted veri�cation actionscan prolong the duration of a plan so that it no longermeets deadlines. Therefore, veri�cation actions shouldbe of concern to the planner itself, not relegated toa separate postprocessor as in the GRIPE and SANsystems [3, 4]. Just as regular plan steps use robotsover signi�cant time intervals, veri�cation actions usesensors over time intervals.We have modi�ed the basic temporal planning sys-tem to plan monitoring actions and take veri�cationtime into account. The system sensors are explicitlyrepresented in the WM. Each time an interval collapseis performed, we insert an appropriate veri�cation ac-tion into the plan. Veri�cation actions have precon-ditions and postconditions in the same way as regularplan steps. Figure 4 shows an example in which averi�cation action uses a vision system to con�rm thecondition (B UNDER NIL). The action has a post-condition indicating that it makes the camera BUSYwhen the action is in progress. WM domain constraintmechanisms ensure that only one action can make aresource (sensor or robot) BUSY at any time, so the



CAMERA UNOBSTRUCTED
[precondition]

Vis-Confirm(B UNDER NIL)
[verification action]

CAMERA BUSY
[postcondition]

B UNDER NIL
[collapse condition]Figure 4: Example veri�cation action.planner only schedules one veri�cation action to usea sensor at any one time. The example veri�cationaction also has a precondition which can be a candi-date for subgoaling: if the camera's view is blocked, wecreate a subgoal to move the obstructing objects. Be-cause the GRIPE and SAN systems plan veri�cation ina postprocessor, they can only achieve this behavior bypassing a subgoal back to the planner and requestinga plan modi�cation. By fully integrating our veri�-cation planning and goal-directed planning, we avoidad hoc methods and allow �ne-grained interleaving ofveri�cation actions and regular actions.Veri�cation actions have durations determined byhow rapidly the system can execute the correspondingsensor checks. When a veri�cation action is planned,its interval is constrained to start with, and end be-fore, the collapse interval. Thus, the collapse interval'sduration must be at least as long as the veri�cationaction's (see Figure 4). After the planner creates aninitial plan, each condition on the critical path hasbeen assigned exactly one veri�cation action.When the plan is completed, the interval collapse du-rations have stabilized, and the planner can detect con-ditions whose durations are signi�cantly longer thantheir single veri�cation actions. Unlike the single anddouble veri�cation strategies discussed in Section 3.2,our planner can exploit the temporal representation toschedule periodic veri�cation actions for these persis-tent conditions. Sharing the limited sensor resourcesamong the veri�cation actions will require a sophis-ticated periodic task scheduling algorithm [8]. Thisalgorithm must balance the frequency with which var-ious concurrent conditions are monitored against theprobability and recovery cost of an execution error.In its current form, our approach to execution moni-toring has one potential disadvantage: plans that can-not be veri�ed because of sensor limitations are simplynot produced. Every interval collapse must have a ver-i�cation action successfully scheduled, or the plannerbacktracks to form a di�erent plan.4 Recovery PlanningWhen a veri�cation action fails during plan execu-tion, the execution system sends a replan request tothe planner, listing the violated expectations and theunexpected conditions. Figure 5 shows an example re-plan request generated when an external agent unex-pectedly drops C onto B, violating the expectation thatB is UNDER NIL before the action Move-Over(B) in

Figure 2. The request includes the last step executedin the real world, so the planner can understand howfar the execution system and the world have progressedin the plan.4.1 Inserted Recovery PlansWe have focused on a recovery planning scheme inwhich new plan steps are inserted to make the worldrejoin the original plan. Figure 6 shows an example ofa purely inserted recovery plan, corresponding to thereplan request in Figure 5. The recovery plan is in-serted after the failure, moving C o� of B and rejoin-ing the plan where it was disrupted. Gini and Ginidescribe a similar recovery insertion technique [6], buttheir system only �res hand-coded recovery rules, andthus lacks the generality which our recovery methodachieves by using the planner. We generate purely in-serted recovery plans in three steps:1. Push the WM conditions existing at the end ofthe last action onto the planner's goal stack, withthe violated condition at the top. The recoveryplan may alter existing conditions, but must re-store them before rejoining the original plan.2. Modify the WM state to match the real worldstate (i.e., alter it by the violated and unexpectedconditions).3. Run the planning algorithm, constraining the re-covery plan to �t between the last executed stepand the next step in the original plan.4.2 Discussion of Inserted Recovery PlansThe inserted recovery plan technique has a numberof advantages over other recovery planning methods.By retaining all of the future section of the originalplan, we avoid destroying the work done in previousplanning cycles. Thus, the insertion method mini-mizes the disruption of potentially large plans, makingit more e�cient than recovery techniques which retainlittle or none of the original plan [10].Retaining the old plan also avoids the di�culty of re-moving sections of the plan which depend on violatedconditions. Backward chaining planners create plansfrom the goal back to the initial state, so the �rst stepsto be executed are the ones most recently planned.Thus chronological backtracking would begin by try-ing to remove plan steps which might already have(request-replan:violated-condition ((B UNDER NIL) INTERVAL18):unexpected-conditions ((C ON B) (B UNDER C)):last-action (Vis-Confirm (B UNDER NIL)))Figure 5: Replan request for unexpected appear-ance of C on B.



Put-Down(A)
[action]

Move-Over(C)
[action]

Pick-Up(C)
[action]

Move-Over(T)
[action]

Put-Down(C)
[action]

Move-Over(A)
[action]

Pick-Up(A)
[action]

B UNDER NIL
[collapse condition]

Move-Over(B)
[action]

Vis-Confirm(B UNDER NIL)
[verification action: fails]Figure 6: Purely inserted recovery plan for unexpected appearance of C on B.been executed [10]. Dependency-directed backtrack-ing and case-based reasoning methods address some ofthese di�culties, but removing information that de-pends on a violated condition can be costly because itmay force the system to re-derive previous plan infor-mation. Inserted recovery plans do not require delicateplan surgery or undoing actions, and they retain theunderstanding that an expectation violation has oc-curred.Inserted recovery plans also avoid excessive tempo-ral inferencing. Since the recovery plan is de�ned to becontained entirely within the violated condition's col-lapse interval, no temporal inferencing need be donebetween the recovery plan intervals and those out-side of the collapse interval. Since temporal constraintpropagation currently accounts for 91% of the plan-ning time, avoiding temporal inferencing is a majorconsideration.Inserting recovery plans is a highly robust recoverymethod: the technique can resolve any reversible exe-cution error, if enough time is available. Irreversible er-rors like deadline violations cannot be �xed by insertedrecovery plans, because a deadline violation requires anew plan which either makes up for the overrun ormitigates the resulting problems. Inserting a recoveryplan also fails if the recovery sequence cannot be tem-porally constrained to �t within the collapse intervalduration. In either case, more is required than simplyrejoining the original plan. Note, however, that theplanner recognizes when it cannot generate a purelyinserted recovery plan. We may extend the system toattempt a more complex replanning technique whenthe simpler insertion method fails.5 Current Status & Future DirectionsWe have implemented our planning and recoveryplanning methods in Common Lisp and CLOS. Thesystem has successfully planned recovery from a va-riety of blocks-world scenarios involving unexpectedevents, including the examples presented in this paper.Unfortunately, the planner's memory requirements ap-pear to scale exponentially with task complexity. Weattribute this unacceptable performance to the tem-poral inferencing mechanism, rather than the methodswe have introduced here. We will examine how thesemethods can be extended to other planning mecha-

nisms which have superior scaling characteristics. Ourcurrent research is focused on developing and interfac-ing an execution system which carries out plans underhard real-time constraints.References[1] J. F. Allen and J. A. Koomen, \Planning Using a Tem-poral World Model," in Proc. Int'l Joint Conf. on Ar-ti�cial Intelligence, pp. 741{747, 1983.[2] J. A. Ambros-Ingerson and S. Steel, \Integrating Plan-ning, Execution and Monitoring," in Proc. Nat'l Conf.on Arti�cial Intelligence, pp. 83{88, August 1988.[3] R. J. Doyle, D. J. Atkinson, and R. S. Doshi, \Gener-ating Perception Requests and Expectations to Verifythe Execution of Plans," in Proc. Nat'l Conf. on Ar-ti�cial Intelligence, pp. 81{88, August 1986.[4] E. Gat et al., \Path Planning and Execution Monitor-ing for a Planetary Rover," in Proc. IEEE Conf. onRobotics and Automation, 1990.[5] M. P. George� and A. L. Lansky, \Reactive Reason-ing and Planning," in Proc. Nat'l Conf. on Arti�cialIntelligence, pp. 677{682, July 1987.[6] M. Gini and G. Gini, \Towards Automatic Error Re-covery in Robot Programs," in Proc. Int'l Joint Conf.on Arti�cial Intelligence, pp. 821{823, 1983.[7] J. A. Koomen, \The TIMELOGIC Temporal Reason-ing System," in University of Rochester Computer Sci-ence Department Technical Report 231, 1989.[8] C. L. Liu and J. W. Layland, \Scheduling Algorithmsfor Multiprogramming in a Hard Real-Time Environ-ment," Journal of the ACM, vol. 20, no. 1, pp. 46{61,January 1973.[9] D. P. Miller, Planning by Search Through Simulations,PhD thesis, Yale University, 1985.[10] H. J. Porta, \Dynamic Replanning," in Proc. SecondAnnual Workshop on Robotics and Expert Systems,pp. 109{115, June 1986.[11] M. J. Schoppers, \Universal Plans for Reactive Robotsin Unpredictable Environments," in Proc. Int'l JointConf. on Arti�cial Intelligence, pp. 1039{1046, 1987.[12] S. A. Vere, \Planning in Time: Windows and Dura-tions for Activities and Goals," IEEE Trans. PatternAnalysis and Machine Intelligence, vol. PAMI-5, no.3, pp. 246{267, 1983.


