Appearsin Proc. Conf. on Decision and Control
pp. 1223-1228, Orlando, FL, 2001

Modifying HYTECH to Automatically Synthesize
Hybrid Controllers

Ranjana G. Deshpande, David J. Musliner, Jorge E. Tierno, Steve G. Pratt, Robert P. Goldman

Automated Reasoning Group
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418

{rdeshpan,musliner,jtierno,spratt,goldman } @htc.honeywell.com

Abstract

We present HONEYTECH, a tool for automatic syn-
thesis of hybrid controllers. HONEYTECH is an ex-
tension of the HY TECH tool, with added features for
linear hybrid automata region modeling and analysis.
The tool has also been enhanced to improve perfor-
mance by reducing the number of redundant opera-
tions during region computations. The tool has been
used to implement the Wong-Toi hybrid controller
synthesis algorithm and has been tested on several
examples. In this paper, we present an extension
of the algorithm to include parametrized controllable
transtions. We discuss the HONEYTECH implemen-
tation of the algorithm and its application to some
simple control examples. We also present a brief per-
formance evaluation of the algorithm for increasing
scales of magnitude of the control problem.

1 Introduction

Hybrid dynamic systems exhibit both continuous
dynamics and discrete event dynamics. Hybrid sys-
tem models are useful for representing and analyzing
a wide variety of real world systems, such as industrial
processes and air control systems. In most of these
domains, the safe and reliable operation of these sys-
tems i1s an area of primary concern. To ensure the
reliability and safety of hybrid systems, we are inter-
ested in automatically synthesizing and verifying hy-
brid controllers. Automatic synthesis of controllers
helps in reduction of design and certification time,
and can help improve the performance of these sys-
tems.

Hybrid systems can be mathematically modeled
as a parallel composition of concurrent hybrid au-
tomata. Linear hybrid automata (LHA) are a subset
of hybrid automata that have been proven computa-
tionally tractable for modeling and analysis and can
model many useful hybrid systems (or their linear
approximations). By generalizing the Ramadge and

Wonham regression algorithm [5], Wong-Toi 7] has
proposed an algorithm for automatic synthesis of con-
trollers for linear hybrid systems.

In this paper,
to the Wong-Toi synthesis algorithm to include
parametrized controllable transitions. We also de-
scribe several new constructs that we have added to
HyTECH [2], a tool that provides symbolic model

we describe our extension

checking (analysis and verification) for LHA models.
The HoNEYTECH! tool includes several new analysis
functions not available in HYTECH, and can auto-
matically synthesize controllers for LHAs. We illus-
trate the implementation of the synthesis algorithm
in HoNEYTECH, with the help of a simple truck nav-
igation control example. Finally, we present a per-
formance evaluation of the algorithm for increasing
levels of complexity in the above example.

2 Definition of Linear Hybrid
Automata

A linear hybrid automaton H is the 9-tuple (X, V,
E,inv, wnit, jump, flow, X, sync) with the fol-
lowing components (for a detailed discussion, see [2]):
&y} in R®

that models the continuous dynamics of the system.
The valuation s of X 1s a point in R™, where s =

X is a finite set of variables {1, ..

{s1,...,8,} and s; is the value of the i-th value of
X.

V is a finite set of control modes. The state of an
automaton is defined as the tuple (v,s) consisting of
v € V and valuation s.

E is a finite multiset of directed edges between a
source control mode and a target control mode. The
control graph (V,E) represents the discrete dynamic
component of an automaton.

'Our HyTECH license agreement requires us to give
our modified version a new name.

v 1s a mapping from V to the predicates over X.
inv(v) is the invariant condition at control mode v.

it 1s a mapping from V to the predicates over
X. init(v) represents the initial conditions at control
mode v. At initial state (v,s), init(v)and inv(v) are
true for the valuation s.

flow 1s a mapping from V to predicates over X U

X. At control mode v, the automaton state evolves
according to the differentiable functions which satisfy
the flow conditions flow(v).

Y is a finite set of events comprising controllable
events Y. and uncontrollable events ¥,,. syncis the fi-
nite set of synchronization labels for each event. Con-
current automata must take transitions with common
synchronization labels simultaneously.

gump is a mapping of E to predicates over X U
X'. The jump condition jump(e) maps the values of
variables X before and after a transition due to the
control switch e.

A hybrid system is the parallel composition of con-
current hybrid autmata. The automata communicate
with each other via shared variables and event syn-

chronization labels.

3 Controller for

LHASs
The Wong-Toi Algorithm

Synthesis

3.1

The Wong-Toi algorithm is an iterative, symbolic
procedure for synthesizing controllers for hybrid sys-
tems modeled as linear hybrid automata. The proce-
dure synthesizes a legal controller by “pruning away
bad configurations from the set of potentially control-
lable configurations to yield a maximal set of control-
lable configurations” (see [7]).

For an LHA H, let K denote the set of unsafe
regions and A denote the extended unsafe regions
KUPre(K,X,). In order to compute the controllable
regions, the algorithm first computes the following
region sets (see Figure 1 for formal definitions):

e F(K) which denotes the escape configurations,
from where the controller can issue a single con-
trol event which avoids the unsafe region.

o flow_avoid(A, E) which denotes the fixpoint
characterization of the set of unsafe regions that
are in A or flow into A as a finite sequence of

linear witness flows, avoiding the escape region
E.

e +/(K) which represents the wunavoidable prede-
cessor regions, from which it is impossible for
the controller to prevent the plant from reach-
ing K in a single control action or in a single
control action followed by a single flow step.

Given an unsafe region, K _init, the synthesis
method iteratively computes the set of controllable
configurations for the automata, as defined by the
fixpoint formula, pW.K _init U ' (W), where W de-
notes the maximal set of unsafe regions.

3.2 Extending Wong-Toi Algorithm

to Handle Parameterized Control-
lable Transitions

In many control situations, it is sometimes desir-
able to allow controllable events to depend on random
parameters, to model, for example, uncertainties in
response times. We have modified the Wong-Toi syn-
thesis algorithm to include parametrized transitions
and present the modification for a single variable z
and a single parameter r. This may be generalized to
allow multi variables and multi parameters.

According to Wong-Toi’s formulas the escape set
corresponding to unsafe set iteration variable, W, is :

E = pre(W,X.)N

pre(W, %) N

w

For sake of brevity, we define region sets A?and B,
such that the escape set computation equation can

now be written as ¥ = AN B N W, where
A={x:30. € 3¢, Post(x,0.) € W}

If 0. depends on r, we should expand the set
A to include all points that map into the set
W for at least one value of r, such that A =
{x : Irdo. € 3¢, Post(x,0.) € W}

The second term of the escape set definition
is the set of regions that map to a safe re-
gion via a controllable event, defined as B =

{x : doe € ¢, Post(x, o) € W} If the controllable

events depend on r, set B is constrained to in-
clude only those regions that map into a safe
set for all allowable values of r. Let R, be

the set of allowable values of r. Then B =

2The region A defined here is merely a region notation
and is distinct from the region A defined in Wong-Toi’s
algorithm

Escape(K) = E=Kn U (Pre(K, o) N Pre(K, o.))
oc€X:

F:C:

A=KUPre(K,%

J

1<i<m

W) =AU UA,

flow_avoid(A;, E) = pyW.A U U (Pre; (Pres (W) Nel(W) Nel(Ci) NE) N Cy)

1< i<m

Y (K)=AU U flow_avoid(A;, E)

1<i<r

Figure 1: Constructs for Wong-Toi controller synthesis method

{x :doe € 3¢, Vr € Ry, Post(x, o) € W} If Ry, is
unknown and Pre(~W,o.) is not empty and if all
values of r are possible for every x, then R, = {r:
3z, Post(x, oc,1) € W}.

No constructs are currently available in LHA mod-
eling tools for the V quantifier. In order to implement

this formula, we have to construct the complement of
B. Let W* = W U {0}. This implies
B = {z:Yo.3rc R, Post(x,0.) € W}

= ﬂ {x :3r € R,_, Post(x,0.) € W*}

O
= (5.
O

where B,, = {z : 3r, (Post(x, 0.),1) € W* x R,_}
and x : Post(x,0.) € W* =z : Post(x,0.) € W.
Since B =1, B,,, we will have B={J, B,,.

Currently no implementations of the Wong-Toi al-
gorithm are available in any standard LHA model-
ing/analysis tool. The next section describes the
modifications we made to the HY TECH tool to be able
to implement this algorithm and the parametrized

controllable transition analysis.

4 HoNEYTECH

HyTECH is a symbolic model checker for perform-
ing automated analysis of hybrid systems. It can ver-
ify the correctness of behavioral constraints such as
temporal and reachability (safety) conditions. But
with the currently available primitives, it cannot be
used to automatically synthesize controllers. We have
enhanced HYTECH by adding a set of operators and

control structures, to form HONEYTECH and imple-
ment Wong-Toi’s synthesis algorithm. We have fur-
ther improved HONEYTECH performance by modify-
ing the implementation of the “complement” opera-
tion, to reduce the number of repetitive reductions
that are done on regions during each and every set
operation.

4.1 Existing HYTECH Features

The input to HYTECH [1] is a text file that consists
of the “system description” and “analysis” sections.
In the system description section, the user models the
concurrent hybrid automata that make up the hybrid
system.

In the analysis section, the user declares the re-
gion variables and writes a sequence of analysis com-
mands for manipulating and outputting the regions.
HyTECH compiles and executes the system descrip-
tion and analysis program to derive results that con-
stitute the analysis of the described system.

The analysis commands and control constructs
used by HYTECH include:

e Basic boolean operations.

e Region successor /predecessor commands
(pre(W) and post(W)). These commands com-
pute the reachable regions from a region W in
one time step or state transition. Safety verifi-
cation of a system 1s done with the help of the
pre/post and reachability commands for an infi-
nite number of time steps and state transitions.

e Reachability analysis commands for forward and
backward reachability.

e Iteration constructs for generating the fixpoint
value of an iteration variable

e Basic control constructs: if-then-else, while etc.

For a complete reference of all features and constructs
available in HYTECH, see the User Guide [1].

4.2 HONEYTECH Features

To support the automatic synthesis of LHA con-
trollers, we have added the following new region op-
erators and control constructs to form HONEYTECH:

e pre_t(<reg exp>)3/ post_t(<reg_exp>)
These commands compute the set of pre- and
post-regions for a flow transition (i.e., the pas-
sage of time).

pre_t(W) = U56R20 Pre(W,6)
post t (W) = Uscrso Post(W,)

e pre_single_event(<reg exp>, <sync>)/
post_single event(<reg exp>, <sync>)
The pre_single event(W ,bsync,) operator
computes ¢, the predecessor region of W along
a single event ¢ identified by the HY TECH event
synchronization label sync.

q|3 eWqg>q

The post_single_event operator computes the
corresponding successor region.

e pre_uncontrollable events(<reg.exp>)/
pre_controllable events(<reg_exp>)
These operators compute the set of predeces-
sor regions, (), of region W for the set of un-
controllable/ controllable events in the system.

QU = UauEEu 4o
>
4o, | Aq,, € Wago, =% ¢,

e closure(<reg exp>)
The closure(W) operator computes the clo-
sure for region W. This is used in computing
the boundary points for witness flows, for each
flow_avoid region in the Wong Toi algorithm.

e escape(<reg_exp>)
The escape(X) operator computes the es-
cape region for an unsafe region K, as de-
fined by Wong-Toi’s algorithm. A similar con-
struct escape_and_hide(K , R,_,7) is available
to compute the escape regions for K given a
parameter r and the set of values R, it can
take. These primitives simplify the synthesis al-
gorithm representation and allow the user to
compute the escape region in a single line of
HoNEYTECH code.

#<reg_exp> denotes an arbitrary region expression.

e loop <var> over <reg_exp> doing <body>
The 1loop K over L doing <body>
construct iterates region K over a convex set

control

of regions, L, executing body statements, where
L =, L; . For eachiteration, K takes the value
of L;. The loop construct is required by the
Wong-Toi procedure to compute the flow_avoid
regions (as defined in the previous section).

All controllable events in HONEYTECH are identi-
fied by the prefix “c”” in their synchronization la-
bels. Events without this prefix are analyzed by
HoNEYTECH as uncontrollable events. This naming
convention helps in easy readability of the automata
model and is useful in computing the escape and the
flow_avoid regions.

Using these new functions, the HONEYTECH im-
plementation of WongToi’s algorithm is shown in Fig-
ure 2.

Enhancements to Baseline HoN-
EYTECH

4.3

As implemented, the baseline HONEYTECH version
of the ”complement” function has intrinsic inefficien-
cies which result directly from the implementations of
the region ”and” (intersection) and ”or” (union) func-
tions. The latter functions are designed to provide
”simplified” ”minimal” representations of the regions
as a union of convex polyhedra which are represented
as a list of systems of equations. The union is ”simpli-
fied” in the sense that none of the polyhedra is wholly
contained in any of the others in the union. Each of
the polyhedra 1s ”minimal” in the sense that none
of the equations can be removed without changing
the set.
expensive, and is performed each time a new poly-

The simplify operation is computationally

hedron is added to the region in an ”or” operation.
The minimize operation is even more expensive, and
is performed each time a new constraint (equation) is
added to a polyhedron in an ”intersection” operation.

Since each intermediate result is simplified and
minimal, the HONEYTECH user need not be con-
cerned with explicit function calls to achieve this rep-
resentation. Unfortunately, it also means that quite
a bit of needless computation might be done in op-
erations which require a large number of union and
intersection operations to produce intermediate re-
sults. Such is the case with the set complement.

The complement function begins by taking the
canonical ”union of intersections” form and produces,
as an intermediate form, an ”intersection of unions”.
This intermediate form is then reduced by binary
intersect/union operations to produce the canonical

form. If the original set had n polyhedra each with m
equations, the set complement operation will require
on the order of m” each of the binary intersect and
union operations. In the baseline implementation of
complement, each pair of operations would require
the expensive set minimize and simplify.

HoNEYTECH has been modified to reduce the com-
putations done during the complement operations, by
deferring the reduction operations till the ver end.
This has resulted in an increased performance of the

-— REGION VARIABLE DECLARATION tool (as seen in the battle resource allocation exam-

var o) ple). However, this deferment is not guaranteed to
K_init, -- initial unsafe region d h nimal . on f 1 b
. _— iterated unsafe regiom produce the minimal region computation for all prob-

’ : g€ lems.The optimal choice of when and how often to
E, C, —-— escape region and complement

. - minimize and simplify representations probably de-
A, A r, flow_avoid_r, C_i, -- temp vars .. .
. ’) pends on the structure of the original region.

flow_avoid, Gamma_prime_K : region;

-— WONG-TOI SYNTHESIS ALGORITHM

5 Examples of Controller Syn-

-- K_init := problem specific K_init thesis
K := iterate K from K_init usi .
iterate K from K_init using { 5.1 Truck Navigation Control
E := escape(X);
€ :="E; We desire to design a navigation control unit for
K := K|pre_uncontrollable_events(X); o .
R an autonomous toy truck (initially moving in the SE

direction), which is responsible for avoiding a 2 by 1
pit aligned in the E-W and N-S directions. It allows
the truck to take 90 degrees left or right turns, which
must alternate. The truck has a time lag for response
and a finite turn radius. The truck should maneuver
early enough to avoid the pit in all instances.

flow_avoid:= A;

loop A_r over A doing {

flow_avoid_r := iterate flow_avoid_r
from A_r using {

loop C_i over C doing {

flow_avoid_r := flow_avoid_r |

pre_t(pre_t(flow_avoid_r) & The iterations of the synthesis algorithm, are
closure(flow_avoid_r) & shown graphically in Figure 4. The letters inside
closure(C_1i) & the diagram denote the discrete state of the machine;
C) & E indicates vehicles moving South-East and W indi-
Cc_i; »;}; cates vehicle moving South-West. The unsafe set is
flow_avoid := flow_avoid | flow_avoid_r;}; the region inside the innermost line and the escape

K:= K | flow_avoid; 7; set 1s the region outside the outmost line.

Gamma_K := K; -- unsafe region

In the first iteration, the unsafe set is the rectan-

gular hole in the pavement, in both directions. The
escape set 1s enabled only when traveling South-East.
Since we consider the delay an integral part of the
mented in HONEYTECH. command, the escape set includes all those areas that
will not fall on the unsafe set after the delay and
turn. The second iteration extends the unsafe set to
those points that will flow into the unsafe set without
touching the previous value of the escape set. This
includes an infinite band NE of the pit with the vehi-
cle traveling SW, and a region NW of the pit, inside
the previous escape set. On the third iteration, the
escape set converges.

Figure 2: The Wong-Toi algorithm imple-

The HONEYTECH analysis code for this problem is
shown in Figure 5.1.

automaton truck
synclabs: c_turnenable;
initially directionl;
loc directionl:
while True wait{dx=xdotl,dy=ydoti}
when True sync c_turnenable do
{x’=x+r,y’=y-r} goto direction2;
loc direction2:
while True wait {dx=xdot2,dy=ydot2}
end
automaton controller
synclabs: c_turnenable;
initially turning & r>=0 & r<=1;
loc turning: while r>=0 & r <=1 wait {}
when r>=0 & r<=1 sync c_turnenable
goto turning;
end

Figure 3: HONEYTECH Model of One Pit,
One Turn Example.

Unsafe Set

Escape Set

Iter. 1

Iter. 2

Iter.3

Escape Set and Unsafe Set Fixed
Point Computation

Figure 4:

viol:= x>holexmin & x<holexmax &
y>holeymin & y<holeymax;
W := iterate W from viol using{
E:="(hide r in pre_single_event(W,c_turnenable)

C:
W:

endhide) & "W &

(hide r in pre_single_event("W,c_turnenable)

endhide);

="E;

=W| (hide r in pre_uncontrolled_events (W)
endhide);

flav:=W;
loop Ar over W doing {

flavr:=iterate flavr from Ar using{

loop Ei over C doing {
flavr:=flavr |
pre_t(pre_t(flavr) & closure(flavr) &
closure(Ei) & C)&
Ei;
};
};
flav:=flav|flavr;
};
W:=hide r in W|flav endhide;
};
Figure 5: Analysis Code for One-Pit-One-
Turn Problem.
5.1.1 Performance Evaluation

steam boiler plant by Wong-Toi [7].

To evaluate the scalability of the Wong-Toi algo-
rithm as implemented in HONEYTECH, we tested it
on increasingly large versions of the truck domain.
The size of the problem was determined by the num-
ber of distinct obstacles. Figure 6 shows the run time
for the computation of both unsafe and escape sets
on a SparcStation. A least-squares linear fit to the
logarithmic data is ¢ = 87.4 x 2.8". As expected, the
controller synthesis process is exponential and even
small problems can overwhelm available computing
resources. As discussed below, we are currently ex-
ploring alternative techniques that may prove to have
more tractable nominal performance.

5.2 Steam Boiler Plant Control

HoNEYTECH was used to replicate the controller
synthesis experiment for water level control in a

Results for the

synthesis experiments with only pump control modes
are discussed.

The algorithm converges in 2 iterations. The plant

10

Time (s)

10

2 3 4 5 6
Number of Obstacles

Figure 6: Computation time as a function
of number of obstacles

is shown to be unsafe at all times for water levels
w < 5 and w > 220. Control action must be en-
abled at the intersection of the escape set and the
unsafe configuration set at pump control modes [go-
ing_on, on], [on, off] and [going_off, off]. An increase
in the number of control modes for the problem- by
introducing water drains or steam vents, increases the
complexity of the problem , leading to non conver-

gence of the algorithm.

Resource Allocation in Combat
Operations

5.3

A control system was designed for resource allo-
cation in a combat scenario. In this scenario, three
battles are occurring simultaneoulsy on three fronts-
Red, South and North. Progress along each line is se-
quential, but some tasks may need to be synchronized
across more than one front.

It is desired to design a campaign controller that
will assign resources to the battles at the end of each
round to ensure maximum probability of success and
safety. At the end of each round, each battle front
suffers a variable number of casualties and in order
to maintain a minimum effective force, it sends a re-
quest for resources. The campaign controller will ei-
ther assign resources from one front to another or will
allocate resources from the available reserves. Since
allocation of resources is done at the end of a round
and each round proceeds at varying rates, the events
need to be synchronized in order to allocate resources
from one battle front to the other. For a more com-

plete description of the problem, see [6].

This problem was initially modeled in the base ver-
sion of HONEYTECH. The synthesis algorithm how-
ever could not run to completion. With the improved
version of HONEYTECH, the algorithm was able to
synthesize a controller in 120 seconds on a SunSparc,
296 MHz station.

Two variants of the problem were solved using this
algorithm. In the first scenario, the battle was mod-
eled for only two controllable actions, allocation of
resources to the north front and to the south front.
In the second example, a third controllable action
is added, where resources are allocated to the south
front as well. Allocation of resources to a front can be
done either from one of the other two fronts or from
the available reserves. The algorithm in both cases,
converges in two iterations. The results show that the
battle is unsafe (from a resource allocation point of
view) for red resources red_res < 4 and red_res > 4.
The HoNEYTECH model for the red front of the prob-
lem 1s shown in Figures 5.3 and 5.3. The automata
for the other fronts are modeled similarly.

6 Future Directions

Wong-Toi’s algorithm explores the entire space of
virtual failures to derive safety-preserving controllers.
Any controller that avoids that virtual failure region
is considered acceptable. However, as seen by our
preliminary performance evaluation, this algorithm
is highly exponential.

To 1mprove performance, we are designing a
modified controller synthesis algorithm that focuses
only on finding a single acceptable (safe) controller
through search. We plan to combine the forward-
projection and search-based controller synthesis tech-
niques from CTRCA [3, 4] with the HONEYTECH rep-
resentational power, to form an automatic hybrid
controller synthesis system that explores a smaller
state space. By exploiting abstraction and the state
space structure, we hope to show that automatic con-
troller synthesis can be applied to large-scale, real
world domains.

References

[1] T. Henzinger, P.-H. Ho, and H. Wong-Toi, “A
User Guide to HyTech,” in Proceedings of the
1st International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Sys-
tems (TACAS’95)., Lecture Notes in Computer
Science 1019, pp. 41-71. Springer-Verlag, 1995.

[2] T. A. Henzinger, P-H. Ho, and H. Wong-Toi,
“HyTech: A Model Checker for Hybrid Systems,”

automaton Northfront
synclabs:end1232,c_allocnorth;
initially NorthFirst & t1=0;

loc NorthFirst:
while t1 <= FirstMax wait {dti1=1}
when t1>=FirstMin & t1<=FirstMax
do {northres’<=northres-minlLoss,
northres’>=northres-maxLoss,t1’=0}
goto NorthSecond;
when reserves>1 sync c_allocnorth
do {northres’=northres+1,
reserves’=reserves-1}
goto NorthFirst;
when redres>1 sync c_allocnorth
do {redres’=redres-1,
northres’=northres+1}
goto NorthFirst;

loc NorthSecond:
while t1 <=SecondMax wait {dti=1}
when ti>=SecondMin & ti1<=SecondMax
& northres>= 6
do {northres’<=northres-minlLoss,
northres’>=northres-maxLoss}
goto NorthLasta;

when ti>=SecondMin & ti1<=SecondMax
& northres <=5
do {northres’<=northres-minlLoss,
northres’>=northres-maxLoss}
goto NorthLastb;
when reserves>1 sync c_allocnorth
do {northres’=northres+1,
reserves’=reserves-1}
goto NorthSecond;
when redres>1 sync c_allocnorth
do {redres’=redres-1,
northres’=northres+1}
goto NorthSecond;

loc NorthLasta:
while ti1<=1
when True

wait {dt1=9/10}

do {northres’<=northres-minlLoss,
northres’>=northres-maxLoss}
goto donel;
when True sync end1232
goto NorthLasta;
when reserves>1 sync c_allocnorth
do {northres’=northres+1,
reserves’=reserves-1}
goto NorthLasta;
when redres>1 sync c_allocnorth
do {redres’= redres-1,
northres’=northres+1}
goto NorthLasta;

loc NorthLastb:
while ti1<=1
when True

wait {dt1=1/10}

do {northres’<=northres-minlLoss,
northres’>=northres-maxLoss}
goto donel;
when True sync end1232
goto NorthLastb;
when reserves>1 sync c_allocnorth
do {northres’=northres+1,
reserves’=reserves-1}
goto NorthLastb;
when redres>1 sync c_allocnorth
do {redres’=redres-1,
northres’=northres+1}
goto NorthLastb;

loc donel:
while True wait {dt1=03}
when True sync end1232
goto donel;

end —— NorthFront

Figure 7: HoNEYTECH Model of Red Front.

Figure 8: HoNEYTECH Model of Red Front

(contd).

Software Tools for Technology Transfer, vol. 1,
pp- 110-122, 1997.

D. J. Musliner, E. H. Durfee, and K. G. Shin,
“World Modeling for the Dynamic Construction
of Real-Time Control Plans,” Artificial Intelli-
gence, vol. 74, no. 1, pp. 83-127, March 1995.

D. J. Mushiner, R. P. Goldman, and M. J. Peli-
can, “Using Model Checking to Guarantee Safety
in Automatically-Synthesized Real-Time Con-
trollers,” in Proc. IEEE Int’l Conf. on Robotics
and Automation, 2000.

P. Ramadge and W.M.Wonham, “Supervisory
Control of a Class of Discrete Event processes,”
SIAM J. on Control and Optimization, vol. 25,
no. 1, pp. 206230, January 1987.

J. Tierno and R.P.Goldman, “Systematic Verifi-
cation of Military Operations,” Technical report,
Honeywell Laboratories, October 2000.

H. Wong-Toi, “The Synthesis of Controllers for
Linear Hybrid Automata,” in Proceedings of
IEEE Conference on Decision and Control, De-
cember 1997.

