BiBDB: A Bibliographic Database for Collaboration

David J. Musliner James W. Dolter

Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122

(313) 936-2495 {djm, jdolter, kgshin} @eecs.umich.edu

ABSTRACT

While researchers strive to develop new systems to enhance
the cooperative document editing process, many authors
already collaborate, using existing text processing systemsto
produce papersand reports. Usingthesetools, one of themost
time-consuming and error-prone collaboration tasksis main-
taining a consistent shared bibliography. We have designed
and implemented the BiBDB system to simplify collaborative
authoring by providing a shared, cooperatively maintained
bibliographicdatabase. BiBDB uses existing networkingtech-
nology and merges seamlessly into the IATEX/BIBTEX text
processing system [5]. The contributions of BiBDB include
a set of user interface policies and software implementation
techniques that support cooperative database maintenance.

KEYWORDS

Bibliographic databases, collaborative writing, distributed &
replicated databases, partial locking, relaxed consistency, in-
crementa indexing.

INTRODUCTION

Despite their overwhelming popularity in the scientific com-
munity, computerized text formatting systems have remained
quite primitive, and do not yet take advantage of the potential
for sharing and cooperation which is embodied in local-area
networks (LANS) and the nationwide Internet. For instance,
every formatting system has some technique for construct-
ing a bibliography of references automatically, but each user
must type the bibliographic reference materia into hisgher
own database file. In addition to a tremendous amount of
replicated effort, this isolation of persona databases leads
to pervasive inconsistency in reference formats (especialy
in abbreviations of journa and proceedings titles) and in-
compatible citation keys. As a result, collaborating authors
find it nearly impossible to smoothly merge their individual
databases and reference styles. A few user groups have co-

Appears in Proc. 1992 ACM Conf. on
Computer-Supported Cooperative Work
pp. 386-393

Kang G. Shin

operated to form larger, shared databases of references, but
the performance of programs which access these databases
does not scale well, because the databases are simply large
text lists of bibliographicentries.

To address the deficiencies of current bibliographic systems
within the context of existing text processing and networking
technology, we have designed and implemented the BiBDB
bibliographi cdatabase system. The BiBDB systemisdesigned
to maintain asingle vast bibliographic database, shared by al
users and accessible to any UNIX machine on the Internet.
The database is not stored or accessed linearly, so search and
access performance does not depend linearly onthesize of the
database. Locd copies of the database are maintained at each
installation (perhaps one install ation per university or LAN),
so that most accesses to the database are done over LANS
rather than the nationwidenetwork. Additionsto the database
are incremental and global, and data is never removed from
the system: once an entry is added at one installation, it is
available (and will not be added again) at al instalations.

Our work on BiBDB has been carefully focused on devel oping
practical mechanisms to alow cooperative database mainten-
ance and to enhance collaborative authoring capabilities. We
have developed a set of user interface policies that encour-
age harmonious cooperative efforts. We have also devel oped
severa unique software mechanisms useful for implementing
this shared distributed database. These implementation de-
tails include a uniquely powerful client/server organization,
a relaxed database consistency criterion, a partia database
locking method, and a dynamic overload scheme leading to
graceful degradation.

The remainder of thispaper isorganizedintosix sections. The
next section presents an overview of the BIBDB system goals
and organization. The following three sections describe the
server and access programs which make up the system. The
last two sections compare BiBDB to competing bibliographic
systems, and describe the current status and future extensions
of the system.

THE BiBDB SYSTEM

Design goals

We designed the BIBDB system to address the variety of
problems perceived in existing bibliographic systems. The

primary goa was to create a system which takes advantage
of cooperative efforts at database maintenance and eases col-
laborative authoring, within the context of currently popular
text processing packages. Based on persona experience and
discussions with other users, we designed BiBDB with the
following specific aims:

o Data sharing. BIBDB maintains a very large database
of bibliographic information entered, maintained, and
shared by al users and accessible over LANs and the
Internet. Sharing the database avoids redundant data
entry.

¢ A one-to-one mapping of keys to references. BIBDB
goes to great lengths to prevent duplicate entries, and
will never issue the same citation key for two different
references. Thus there is never any confusion about
what information a citation pointsto, and collaborating
authors can exchange simple citation keys, rather than
extensive bibliographic data.

o Citation permanence. Once a citation key has been is-
sued for a new entry, it will always point to that entry.
Documents produced using the BIBDB system will never
beinvaidated by changes to the database.

e Consistent referencing. BIBDB encourages users to em-
ploy standard string aliases, so that referencesto similar
works are formatted similarly.

e Powerful searching. BIBDB includes an associat-
ive cross-indexing mechanism, so users can perform
keyword searches for articles. These searching facil-
itiesmake the database amajor resource both for finding
specific references and for blind literature searches.

e Speed and scalability. BiBDB stores references in a
hashed database format which makes retrieval extremely
fast. Thedatabaseisnever processed entirely or searched
linearly.

o Incrementa growth. As users add new entries, BiBDB
does not re-process the entire database in any way.

The BIBDB system is intended to merge seamlesdy into the
IATEX/BIBTEX formatting system [5]. In the IATEX system,
text formatting commands are included in adocument to con-
trol its eventual printed form. The companion BIBTEX sys-
tem provideshbibliographicreferenceindexing and formatting.
BIBTEX bibliographicentries are typed in afixed format, with
each entry assigned a unique key by which it is cited. Fig-
ure 1 shows an example BIBTEX entry for a(mythical) journal
article, as well as the use of strings (or aliases) to abbrevi-
ate commonly used journal names and other text items. The
“@article’ portion specifies that the entry’s type is article,
which the bibtex program knows how to format. The entry
type can aso be “ @inproceedings’, “ @book”, etc. After the
type specification, the entry’s unique key is specified (here,
“musgliner:92”). Then aseriesof “field =value’ pairsspecifies
the bibliographic data.

@string{CCJ = "The Cool Computing Journal'}
@article{musliner:92,

author = "D. J. Musliner and J. W. Dolter",
title = "A Cool Bibliographic System'",
journal = CCJ,

year = 1992 }

Figure 1: An example BIBTEX entry.

System overview

Figure 2 shows the organization of the entire BIBDB system,
which is composed of database files, server programs, and
client programs. A copy of the entire database exists at each
installation, where installations are allocated to LANS with
fairly large groups of users (e.g., universities, research com-
panies). Each ingtalation runs the bibdb-server program,
which provides database maintenance and access services to
users. Users connect to the bibdb-server by running cli-
ent programs on their own computer. The client programs
usually connect to the closest installation’s server, but may
connect to aserver at any installation. The database copies at
each installationare kept consistent by their connection to the
central keymaster. Thekeymaster coordinates al updates
to the database, systemwide, and ensures that different users
do not simultaneously add the same entry.

All of the BIBDB programsare writtenin perl [9], acommonly
available and freely-licensed interpreted language which con-
tainsnearly al of the features of awk, sed, c-shell and C. Like
Lisp, perl hasan ‘eva’ function which runstheinterpreter on
aperl expression. A perl program can writeits own code by
assigning vaid perl codeto astring variableand then eval-ing
thevariable,

Installation

%

Installation
sl []

Client programs

Client programs }

Client programs J

Figure 2: Overview of the BiBDB system.

The server programs

Thebibdb-server providesall database servicestotheuser.
This program embodi es the various administrative policies of
the BiBDB system, which are described in the next section.
Each ingtalation’s server program opens a “well-known”
socket to which the client programs connect. The server
forks copies of itself for each connecting client, so that mul-
tiple clients may access the database simultaneoudly.

The bibdb-server CONNeECts to the keymaster viaawell-
known socket, and tellsthe keymaster about all changes to
the database. The keymaster forks copies of itself for each
connecting bibdb-server, and tells each bibdb-server
about changes that others have made to the database. These
programs and their interactions will be described in more
detail in the following sections.

The client programs

The client programs bibdb and bibextract are actualy
very small perl scripts that ssimply connect to the appropriate
server and act as a“programmable conduit” for information.
Aside from a single routine to connect to the appropriate
server program, the entire body of the client programs is
shown in Figure 3. The client programs connect to a server
and then read lines from the connected socket, either printing
them out or eval-ing them. Thusthe server program can send
executable code to the client program, causing the client to,
for instance, open a file and send its contents back to the
server. All file operations, prompting, and data manipulation
are actually controlled by the server program, and the client
programs just provide a channel over which information can
flow to and from the user’'s computer. This organization has
several beneficial aspects:

e Security. Since the data operations are al completely
controlled from the server program, thereisvirtualy no
way auser can interfere with or alter the database in an
unacceptable manner. The bibdb-server gives users
a limited ability to modify or delete information from
the database, and malicious users cannot expand upon
that ability because the information exchange protocol
is dynamically downloaded from the server. The server
even has to tell the client program when to prompt the
user for input.

e Speed. Since the client programs are very small perl
programs, they start very quickly. The high cost of
parsing the complex database management routines is
paid only when the server program is started, not each
time a user wishes to access the database.

e Optiona distribution. The server program can down-
load subroutine definitions to the client programs and
then send invocations of those subroutines, thus offload-
ing computations from the server computer to the user’s
computer. This feature is most useful for I/O routines
which can be offloaded without compromising security.

¢ Protocol locality. Because the entireinteraction protocol
is contained within the server program, it ismuch easier
to recognize errors in the protocol when writing these
programs. While debugging, we do not need to con-
stantly switch between the client and server programs
to understand how information is being exchanged,
and what the response to various inputs will be. The
keymaster/bibdb-server interface, which does not
share this feature, has been much more difficult to de-
velop and debug.

o Easy code updates. Making changesto theBiBDB imple-
mentationisextremely easy, because there are relatively
few copies of the server program (one per installation).
There may be many thousandsof copiesof thetrivid cli-
ent programs, but these need never be changed, because
the actual interface is contained solely in the server. In
fact, since the client programs were first developed in
this form, we have made hundreds of changes to the
server program, but not one to the client programs.

The fact that the client programs are such minimalist shellsis
not visibleto the user. The user simply starts one of the client
programs, which then appears to prompt and interact with
the user in a normal fashion. Thus we describe the behavior
of the client programs as though they actually define those
interaction patterns, when in fact the server program does.

BIBDB

The bibdb program is the database maintenance program,
allowing the user to add and modify entries and strings, and
communi cating with the keymaster to keep thelocal database
copy up-to-datewiththeother install ations. The programalso
provides a powerful user interface to the database's search-
ing mechanisms, including an associative cross-index which
allows keyword search without linear scanning.

Policy-directed functions

The bibdb program implements many of the policies with
which the BiBDB system addresses the shortcomings of other
bibliographic databases. For instance, each user of areferen-
cing program tends to develop his’her own style of citations.
This means that combining or exchanging databases or even
single citations can be difficult, because citation keys may
conflict, or duplicate entries may not be detected. To avoid
these problems, bibdb automatically generates the citation
keys for al entries when they are added to the database. All
authors then use the same key to cite the same entry in the
shared BIBDB database. Keys are formed from the last name
of the first author, a colon, the last 2 digits of the year, and
asuffixed 'a, 'b’, 'c’, etc, to distinguish otherwise identical
entries (e.g., mudiner:92a). No two entries may have the
same key. When entries are added, if entries with the same
key-root (all but suffix character) exist, the system queriesthe
user to make sure a duplicate entry is not being introduced,
asillustrated in Figure 4. Barring typographic errors in the
first author’slast name or the year, this technique detects al
possible duplicate entries. A title comparison heuristic then

while (<SERVER>) # While (get a line of input from the server)

{
chop; #
if (s/°\001//) #
{ eval; 7} #
else # Else,
{ print "$_\n"; } #
}

Strip newline from input.
If input starts with CTRL-4,
it is executable perl code, so execute it.

just print the input to the user.

Figure 3: Main body of client programs (in perl).

makes continue/abort recommendations to the user. Unfor-
tunately, differing interpretations and typographic errors are
much more commoninthetitlesof papers, and thushumanin-
tervention is still required to make the final decision to abort
an addition. Fortunately, bibliographic systems are not so
critical that we need to worry too much about errors. The
inevitabletypographicerrors[1] are easily fixed, sincebibdb
allows users to modify any entry in the database.

Since BIBDB depends on users to add its entries in the first
place, we must explicitly trust the user when necessary. Des-
pite the best heuristic efforts, some duplicate entries will un-
doubtedly be introduced. In that case, two different citation
keyswill point to (potentially) different datafor the same real
reference. This violates one of our fundamenta goals, since
there is no longer a one-to-one mapping of unique keys to
unique references. However, we cannot allow a user to fix
this problem by simple deleting a citation key and its cor-
responding reference, because that key would no longer be
vaid. Some other user who cited that key in a document
would then have an invalid document, violating the citation
permanence design goal. Once a document is successfully
generated, changes to the bibliographic database should not
alter the citation structure such that the document’s citations
arenolongervalid. Therefore, weallow auser tofix duplicate
entries by “redirecting” one of the keys to the other key for
the same reference. Theredirected key is still avalid citation
key, but now it points to the data associated with the other
key. Changes made to the data will be visible to citations
using either key.

BIBTEX providesthe string alias mechanism both to save typ-
ing effort and to lend consistency to references. For example,
good bibliographic style dictates a consistent format for the
titles of conferences and workshops. A bibliography which
cites“The Proceedings of the Third International Conference
on Widgets’ and also “Proc. 3rd Int’| Conf. Widgets’ isin-
consistent and undesirable. Thus bibdb provides a powerful
automatic string substitution mechanism which encourages
users to employ string aliases, leading to more compact ref-
erences and consistent formatting. The program examines
the fields of each entry, heuristically checking to see if they
resembl e strings which are defined. If so, the program offers
those substitutionsto the user, as illustrated near the bottom
of Figure4.

Finally, since one of the major goals of BIBDB is to conveni-
ently share the bibliographic data, multiple users may run
bibdb in paralel, concurrently accessing and modifying an
installation’s database. Thisis a particularly tricky feature,
since UNIX does not strongly support multiple-writer files.
In fact, al changes to the database files must be seridized,
but bibdb restricts the serialized sections of code (monitors)
to very short operations, thus allowing most bibdbsto carry
oninteractionswith their userswhileonebibdb hasthe data-
base briefly locked. Locks on the database are only acquired
once afinal decision has been made to modify the database.
When any bibdb user is modifying the database, al bibdb
accesses tothesameinstallationare preceded by cache flushes
and reloads, so that the data which the bibdb user seesisas
up-to-date as possible.

The bibliographic database

The BiBDB database is optimized for access by the unique
key which must be associated with each BIBTEX entry. The
bibliographic data is stored in “gdbm” format, which is a
freely-licensed database format based on the “ndom” system
supplied with most UNIX installations. Perl can access these
database files as though they were associative arrays (that is,
arraysindexed by arbitrary strings). So, bibliographicentries
are stored in ahuge associative array, indexed by their unique
Citation key.

key --> [database] --> entry

The cross-index

To alow the user to find an entry whose key is unknown,
al wordsin each entry are used asindicesinto an associative
cross-index, which mapsarbitrary wordsto the keysof entries
which contain those words.

word ——> [cross-index] --> list of keys

The bibdb program gives the user a powerful set of search-
ing primitives which locate references based on boolean
combinations of keywords, as listed in the cross-index.
For example, the command “find author musliner and
title database” specifiesasearch for entriesinwhich the
author field contains “musliner” and the title field contains
“database’. These searches are always case-insensitive. The
cross-index database maps each field/value pair in the search

unix% cat new.bib
Qarticle{ignored-key,

Print out the file of new data.

author = "D. J. Musliner and J. W. Dolter",

title = "A Cool Bibliographic System'",

journal = "J. of Cool Computing",
year = 1992 }

unix% bibdb

Sart the database maintenance program.

Connected to bibdb-server at [huron.eecs.umich.edul

bibdb> add new.bib

WARNING: a key collision has occurred.

The key for the existing entry :
Q@inproceedings{musliner:92,

Add the new datafile.
Bibdb detectsa similar entry.

author = "D. J. Musliner and J. W. Dolter",
title = "Another Neat Bibliographic System",

booktitle = "Proc.
year = 1992 }

Conf.

on Important Things",

Conflicts with the proposed key for the new entry :

Qarticle{musliner:92,

author = "D. J. Musliner and J. W. Dolter",
title = "A Cool Bibliographic System'",
journal = "J. of Cool Computing",

year = 1992 }
Enter one of the following options:
(c)autiously continue:
(a)bort the addition
(r)eplace existing entry with new entry

Title comparison suggests the entries are NOT the same

and you should choose the (c)autious option
key-collision-action> cautious
Continuing addition attempt:

Adding new entry with key [musliner:92a]

The following strings are similar to the
original journal ["J. of Cool Computing"]:

1 : CCJ = "The Cool Computing Journal"

generating new key

Bibdb lists options.

try the next lexical key

And provides advice based

on heuristics.

User agrees entries are different,
so hibdb tries new key

and finds no conflict.

Bibdb detects a common string.

Please choose a number, or <Return> for the original value

string choice> 1
bibdb>

User chooses the suggested alias.

Figure 4: Showing how the bibdb interface tries to prevent duplicate entries and encourages common string usage when a new
data file is added. Note the new entry’s citation key in the data file is ignored, and bibdb creates the key itself.

command to alist of citation keys. The “and” indicates that
the result of the whole search command should be the inter-
section of the two intermediate lists. Replacing “and” with
“or” yieldsthe union of the intermediate lists.

Finding the intersection or union of lists involves a linear
scan of the lists, and thus can have relatively high cost. To
[imit the maximum time which a search can take, and also to
restrict the size of the cross-index entries, words which map
to too many’ entry keys are declared “overloaded,” and are
not allowed as cross-index indices. However, they may till

1N = “too many" is a constant on the order of 500-1000.

be used in searches; as long as a non-overloaded keyword
is specified, the search routines return a list of keys® which
is then scanned by a post-processing step for the overloaded
search terms.

THE KEYMASTER

The keymaster is responsible for ensuring that each of
the ingtallation databases is “consistent.” Essentidly, the
keymaster must make surethat every valid citationkey isas-
signed to exactly one entry (hence the name). No instalation
must be ableto assign akey that has already been used, and all

2of length < N.

install ationsmust agree on which entry aparticular key points
to. However, since our bibliographic database does not have
thetemporal consistency requirements of abanking database,
theinstallationsneed not beidentical at all times. Infact, the
only time it isimportant for an installation to be completely
up-to-date is when a user is trying to modify the database:
bibdb must have access to al the existing entries, so it can
issue an unused key and make sure the user is not creating
a duplicate entry. Therefore, we have implemented a type
of “relaxed consistency” in which installations can become
outdated if they have not been changed recently.

Relaxed consistency

The keymaster assigns a unique, monotonicaly in-
creasing update-id to each database change sent from a
bibdb-server. When a bibdb-server initiates a modi-
fication to the database by contacting the keymaster, it first
requests all the updates sinceitslast contact (as identified by
itsmost recent update-id). Thekeymaster sendsall themore
recent updates back to thebibdb-server, thusensuring that
theingtallation’sdatabase is up-to-date before the change.

Thisapproach hasthe advantagethat install ationsonly need to
be connected to thekeymaster when the user triesto change
the database. Periodsof Internet downtime do not completely
incapacitate the BiBDB system: installations which cannot
connect to the keymaster essentialy become read-only, so
users can still extract entries which they have used before.
Documents which were successfully produced in the past are
not suddenly crippled by network problems.

Despite the relaxed consistency technique, the keymaster
is the bottleneck of the BiBDB system. All changes to the
database must eventually be serialized at thekeymaster (be-
cause UNIX does not support multiple-writer files). The
keymaster does not actualy have a gdbm copy of the data
base: it only maintains a file containing all of the modific-
ations to the database (the updates-file). The updates-fileis
the single-writer bottleneck, since database changes must be
recorded serialy inthefile. Althoughakeymaster isforked
for each bibdb-server which istrying to change the data-
base, these keymasterscannot al writeto the updates-file at
the same time. We have minimized the cost of thisrestriction
through a technique we call “key-root locking.”

Key-root locking

If auser isgoing to add a new entry, the addition may take
as much as a minute or two, because the user may have to
resolve key conflictsand string-substitutions. We do not wish
to have the updates-file locked for that entiretime. So, we al-
low thebibdb-server torequest an exclusive key-root lock,
disallowing all other changes which involve database entries
with the same key-root (author name and year). The key-
root lock isheld for the duration of the bibdb/user interaction
dealing with the new entry. But the updates-file is locked
only briefly, once the user has confirmed the addition. The
bibdb-server sends the confirmation to the keymaster,
which locks the updates-file, writes out the update informa-

tion, and immediately releases the lock on the updates-file.
Thus, thetime during which the forked keymastersmust be
serialized (essentialy, the monitor section of thekeymaster)
isextremely short. Multipleuserscan simultaneoudly interact
with bibdb to arrange changes to the database, as long as the
key-root locks do not conflict.

In fact, the forked keymastersare also serialized when they
issue a new update-id, since that number must be unique and
monotonically increasing. The key-root locks and update-id
locks are implemented through flock, the UNIX file locking
facility.

BIBEXTRACT

Thebibextract programinterfacesthe BiBDB database sys-
temintothenormal IATEX/BIBTEX system. Bibextract finds
the citations in a IATEX document and retrieves the corres-
ponding entries (and all necessary string definitions) fromthe
BiBDB database, building a reference file tailored to the exact
needs of the document.

Normally, the*\cite{ }” commandsin alATEX document will
specify the exact BIBDB citation key, sothat bibextract can
useasimplelookupinthe BieBDB database. Thetimerequired
for thisextraction process does not grow linearly withthe size
of the database, because the database isindexed associatively.

Bibextract asoalowsusersto passthe“\cite{ }” command
an “imprecise citation,” consisting of a set of semicolon-
separated words which appear in the desired bibliographic
entry (i.e, an imprecise citation for this paper might have
the form “\cite{musliner;bibdb;1992}"). Bibextract will
attempt to resolve imprecise citationsto unique entries using
the BIBDB associative cross-index.

COMPETING DATABASES

This section compares BIBDB to a variety of competing bib-
liographic database systems, both commercia and public do-
main. We demonstrate that BiBDB provides a unique set of
features, combining the best aspects of many other systems
whilelargely avoiding their disadvantages.

Refer

The refer system mentioned in the introduction is an older
reference-maintenance system which was devel oped to work
with troff . Since refer has been around so long, many people
have very large refer databases, and there are various modi-
fications available to make the system usable with other text
processing systems. Refer isthe most popular competitor to
BIBTEX.

Aside from minor formatting differences, the primary differ-
ence between the BIBTEX and refer systems is that refer al-
lowsimprecise citations. Refer’s indxbib program examines
arefer text database and creates a cross-index similar to the
BIBDB cross-index. Therefer program usesthiscross-index
to attempt to resolve imprecise citationsto unique articles. If
thecitation is not sufficiently precise, so that it matches more
than one database entry, refer prints an error message. The
citation must then be enhanced to specify a unique reference.

During the design of BisDB, we carefully considered the
strengths and weaknesses of refer-style imprecise citations.
The main advantage of the technique is that a user need not
remember some (possibly cryptic) unique key to cite a pa
per. There are several significant disadvantages. Primarily,
imprecise citations do not permit the “citation permanence”
guaranteeswe desire. Consider the case when auser has cited
areference and generated a paper, but the next day the paper
isno longer properly generated because another user has ad-
ded an entry which also matches the imprecise citation, and
thus the citation is no longer sufficient. We consider this an
unacceptabl e failure, especialy since we intend BieDB to fa
cilitate collaboration and incremental expansion. Confusion
and annoyance could only result if a co-author found that an-
other co-author’simprecise citation suddenly did not indicate
auniqueentry.

However, sincewe aready haveafully devel oped cross-index
to allow nonlinear searches of the database, thereisno reason
we can not aso alow imprecise citations in the refer man-
ner. Thus, bibextract does attempt to resolve imprecise
citations, as described earlier. In fact, BiBDB implementsim-
precise citations with lower cost and greater flexibility than
refer. If arefer user does not run indxbib on the entire
database, refer must use a linear scan to resolve citations.
Each change to arefer database requires that the entire data
base be re-indexed by an indxbib linear scan. BIBDB, on
the other hand, performs its cross-indexing incrementaly, as
each entry isadded, so once an entry hasbeen cross-indexed it
need never be done again. Thebibextract operation never
involves processing the entire database.

The indxbib program itself has a number of limitations
which the BIBDB cross-index does not share. Indxbib trun-
cates all words to six characters and discards words shorter
than 3 characters, numbers less than 1900 or greater than
2000, and the 100 most common English words. The BisDB
overloaded-word mechanism is afar more flexible, dynamic
implementation of the same attempt to reduce the size of the
cross-index. And, since overloaded words can still be used
in imprecise citations as long as at least one non-overloaded
word is used, BiBDB provides more powerful and less costly
imprecise citations than refer.

Mail-servers

A number of bibliographic database projects have recently
made their databases available through mail-servers [2, 4].
In these systems, users email specialy formatted queries to
a public address, where an automated mail server processes
the requests, usually overnight. The main disadvantage of
these systemsisthat they are not on-line. Users must wait for
unpredictable el ectronic mail to transmit their data, and they
cannot find out if their queries were even properly formatted
until at least thenext day. Our queriestotheLIDO mail-server
[4], for instance, took over 2 daysto return.

Mail-servers have the advantage that, since their processing
can be batched to run when other demands on the host system

arelow, they can provide computationally expensive services.
In particular, al of the mail-servers we have encountered use
asimplelinear scan of atext database. Sincethey are aready
doing linear scanning, the mail-servers can afford to alow
regular expressions in the queries. Thus, mail servers can
easily be implemented as front-ends to UNIX filters of the
“grep” family. While regular expressions provide a more
powerful mechanism for blind searching when the desired
reference is not known, we consider the delays associated
with mail-servers to be unacceptably long. Essentialy, these
services can be useful for literature searches, but are not in-
tegrated with text formatting systems and provide no way for
usersto add or modify entries.

However, mail-servers do not require Internet access. any
user who can send and receive email can access the mail-
servers. Thisvastly increases the number of people who can
usetheseservices. Fortunately, nothinginthenature of BisBDB
prevents usfromimplementing asimple mail-server interface
to accommodate those users. While the interactions required
to verify changes to the database could become complex and
slow, the retrieval functions could certainly be on par with
any existing mail-server.

Other BIBTEX systems

Bibliographi c database managers are arecurrent themeon the
electronic newsgroups related to text formatting. A number
of users have made their systems available to the Internet
community [3, 7]. Most of these systems essentialy provide
front-end interfaces to textual BIBTEX databases, usualy in-
cluding regular-expression matching. While these systems
are useful for maintaining small, personal databases, they
have no provisions for sharing data or avoiding linear scan-
ning. BiBDB isafar more powerful and wider-scope database
management system.

Commercial systems

Most modern research libraries have electronic card catalogs
which maintain records of bound publications. There are
also afew serviceswhich list not just bound publications, but
the separate articles within those publications. For example,
the University of Michiganlibrary providesnetwork accessto
theWilson Indexesto Journal Articles, acommercia database
listing references from the Applied Science and Technol ogy
Index, Art Index, Socia Sciences Index, and others. This
resource provides exactly the sort of on-line keyword search-
ing which BiBDB provides, over a much larger database than
BiBDB currently controls. While the system is not interfaced
to any bibliographic system, it probably could be. However,
this may never occur, because the commercia systems all
copyright their data. Using their data to directly create a
document might violate that copyright.

The main advantage of these systems isthat they can achieve
compl ete coverage of the contents of periodicals, because the
licensing feesare used to hire peoplewhose soleresponsibility
isto input data. By relying on users for input, BiBDB grows
slowly and providesonly spotty coverage of publications. On

the other hand, it al so necessarily includes exactly the articles
which users find useful, and thus it may be considered a
pre-filtered source for literature searches, less complete than
commercia systems, but more convenient whenit comestime
to write a paper or report.

Aside from copyright limitations, nothing prevents us from
integrating thedatafrom larger databasesinto the BiBDB data-
base. We hope that in the future, major periodica publishers
likethe IEEE and ACM will send bibliographic information
on their new publications directly into the BiBDB database,
eliminating most user additionsand improving coverage.

CURRENT STATUS & FUTURE WORK

The prototype BIBDB system operates as described in this
paper. The initial release is confined to the University of
Michigan, so only a single bibdb-server is kept running.
The system is currently managing a database of over 15,000
bibliographic entries and over 250 string abbreviations. The
associative retrieval of entriesfrom known keysisessentialy
instantaneous. Searches that require computing the union
and/or intersection of lists of entriestake no morethan afew
seconds. This version and a previous, single-user version
have been in use for over two years, hel ping members of the
Real-Time Computing Laboratory (RTCL) at the University
of Michigan produce dozens of papers. Severa users outside
of RTCL have a so recognized the advantages of the system,
and now use BIBDB full-time. The database has proven quite
useful for blind searches, yiel ding dozens of useful references
in our experience.

We intend to improve several aspects of the implementation,
as outlined below.

Locking

Because BIBDB shares several kinds of writable data among
multiple users, it makes extensive use of locking. We cur-
rently use the UNIX flock mechanism to implement locking.
This method requires file system accesses which make lock-
ing fairly slow, thusincreasing the severity of thekeymaster
bottleneck. Since al thekeymaster copies run on the same
machine, we could use shared-memory semaphores toimple-
ment locking, speeding the keymaster’s response time and
increasing the number of bibdb-servers which could be
served without significant performance degradation. Simil-
arly, al thebibdb-serversat aninstalation run onthe same
machine, and could do their own locking via semaphores.

Data compression

Not surprisingly, the BiBDB database occupies large amounts
of disk space. Whilethe programs are quite small, the data-
baseishuge: the current bibliographi c database occupiesover
4.6 megabytes of disk space, and the cross-index consumes
31.7 megabytes. Obvioudy, using data compression tech-
niques to reduce this excessive space requirement would be a
desirablefeature. We have examined severa mechanisms for
compressing the bibliographic data.

In order to maintain theincremental nature of BIBDB, we can-
not compress the entire database at once: each entry must be
stored in the gdbm file in its compressed form, independent
of the other entries. Thus, so-called “universal” coding al-
gorithms [10] which optimize themselves to their input are
inappropriate, because the bibliographic entries do not sup-
ply enough data to establish valid statistical features. Tests
with the UNIX universal coding compress utility confirm
that strings of 300 bytes® can be compressed as littleas 11%.

Coding a gorithmswhich do not requirelengthy input streams
are more appropriate. Huffman coding provides high com-
pression rates (on the order of 45-65%) when given afixed set
of input probabilities[6, 8]. We have written a utility which
computes these probabilitiesfrom aBiBDB database. The ex-
isting database contains a very large sample of the expected
BiBDB data, and thus provides input probabilities which will
be representative of most new entries. All that remainsisto
integrate Huffman encoding and decoding routines with the
gdbm library.

REFERENCES

[1] C.P Bourne, “Frequency and Impact of Spelling Errors
in Bibliographic Databases” Information Processing
Management, vol. 13, no. 1, pp. 1-12, 1977.

[2] K. Ginther-Webster. A New Resource for AAAI Mem-
bers. Project Mercury: An Electronic Library. in letter
from AAAI, 1990.

[3] P King. Bibtex Database Management Programs.

USENET newsarticle4070 on comp.text.tex, December
1990.

[4] A. Kobsa. The LIDO Mailserver for Al Literature.
USENET news article 7513 on comp.ai, November
1990.

[5] L. Lamport, IATEX : A Document Preparation System,
Addison Wesley, 1986.

[6] D. Severance, “A Practitioner’ sGuideto Database Com-
pression,” Information Systems, vol. 8, no. 1, , 1983.

[7] A. Shah. Bibliography Management Tools, Take 2.

USENET newsarticle4089 on comp.text.tex, December
1990.

[8] J. D. Ullman, Principles of Database Systems, Second
Edition, Computer Science Press, 1982.

[9] L.WalandR.L. Schwartz, Programming perl, O’ Reilly
& Associates, Inc., 1991.

[10] J. Ziv and A. Lempdl, “A Universal Algorithm for Se-
guentia Data Compression,” |EEE Trans. Information
Theory, vol. IT-23, no. 3, pp. 337-343, May 1977.

3The current database averages 280 bytes per entry.

