
Honeywell Technology Center Technical Report SST-R97-030
Minneapolis, MN, October 1997

Authors: David J. Musliner and Robert P. Goldman and Kurt D. Krebsbach and Mark S. BoddyDistributed CIRCA:Guaranteeing Coordinated Behavior in Distributed Real-Time Domains(D-CIRCA)Data Item Number A003Final ReportOctober 1997Project Monitor: Mr. Henry GirolamoSoldier Systems Command Acquisition DirectorateU.S. Army Natick Research, Development and Engineering CenterATTN: SSCNC-P (Mr. Frank Scipione)Kansas StreetNatick, MA 01760{5000Contract Number DAAK60{94{C{0040Honeywell Inc.Honeywell Technology Center3660 Technology DriveMinneapolis, MN 55418Technical Contact:Dr. David J. Muslinerdavid.musliner@honeywell.com(612) 951-7599 Administrative Contact:Jim NelsonNelson James@htc.honeywell.com(612) 951-7490

ABSTRACTThis is the �nal report for DARPA contract DAAK60-94-C-0040-P0006 entitled\Distributed CIRCA: Guaranteeing Coordinated Behavior in Distributed Real-TimeDomains." The goal of this contract e�ort was to begin extending the CooperativeIntelligent Real-Time Control Architecture (CIRCA) into distributed, multiagentoperations. CIRCA is a coarse-grain architecture designed to control autonomous systemswhich require both intelligent, deliberative planning activity and highly reliable,hard-real-time reactions to safety threats. CIRCA allows systems to provide performanceguarantees that ensure they will remain safe and accomplish mission-critical goals whilealso intelligently pursuing long-term, non-critical goals. The D-CIRCA project is a �rststep towards extending this type of intelligent and guaranteed behavior to multiagentsystems. Major issues investigated during this project include planning with incompleteinformation, concurrent plan generation, and runtime plan synchronization. The newDynamic Abstraction Planning (DAP) algorithm, which solves several of the key D-CIRCAplanning problems, represents the primary scienti�c product of the D-CIRCA contract.This report describes how DAP was conceived, designed, and implemented. A detailedevaluation of DAP's performance on several di�erent types of planning problems shows thedramatic improvement DAP provides over the original CIRCA state-space planner.

i

ii

CONTENTSLIST OF FIGURES vPREFACE viiSUMMARY 11. Introduction 32. Overview of CIRCA 33. Distributed CIRCA Issues 73.1. Thought Experiment 1 . 93.2. Thought Experiment 2 . 103.3. Thought Experiment 3 . 103.4. Local Planning with Simple Heuristics plus Plan Comparison 113.5. Alternative Distributed Planning Options . 123.6. Planning in \Don't Care" Situations . 124. Linking Distribution and Abstraction 135. Dynamic Abstraction Planning 135.1. DAP in Theory . 155.2. DAP in Practice . 165.2.1. Limiting the Set of Split Choices . 185.2.2. Limiting the Set of Action Choices 205.2.3. Interaction with Temporal Reasoning 215.2.4. Intelligent Backtracking . 215.2.5. Heuristic Control . 245.2.6. Search Incompleteness . 286. Evaluation 296.1. Eval-1 Domain: Benign Events . 306.2. Eval-2 Domain: Uncertainty in Initial Conditions 326.3. Eval-3 Domain: Required Events . 356.4. Eval-4 Domain: Complex Event Interleaving 40iii

6.5. Eval-5 Domain: Eval-4 with No Deleter Events 416.5.1. Implications of Heuristic Behavior on the DAP Planner 436.5.2. Implications of Heuristic Behavior on the Classic Planner 456.6. Eval-6 Domain: Expensive Splitting on Goals 467. Future Directions 477.1. Extending CIRCA's Expressiveness . 487.2. More Flexible State Re�nement . 497.3. Improving the Heuristic Function . 498. Conclusions 50Appendix A. The CIRCA Temporal Model 53A.1. Notation . 54A.2. Transition Timing . 55A.2.1. Events and Temporals . 55A.2.2. Actions . 55A.3. De�nitions . 56A.4. Algorithm . 58Appendix B. Limitations of CIRCA 59

iv

LIST OF FIGURES1. The Cooperative Intelligent Real-Time Control Architecture. 42. The simulated Puma robot arm domain. 43. Example transition descriptions given to CIRCA's planner. 54. Sample output from the TAP compiler. 65. Summary of the CIRCA planning process. 76. Multiple D-CIRCA agents control a team of autonomous rotorcraft undersupervisory control. 87. A partially-completed CIRCA plan. 158. A re�nement of the NFA in Figure 7. 159. The DAP planning algorithm. 1710. The three reasons to re�ne an abstract state. 1811. Two successive splits, in order to enable an action with preconditions P;Q;R. 1912. A more complete version of the DAP planning algorithm. 2213. A sample operator-proposition graph. 2614. A case where poor choice of next state causes failure to �nd a plan. 2815. The 3-goal, 3-event Eval-1 domain. 3116. DAP plan for the Eval-1 domain with 3 goals and 3 benign events: no state-space explosion. 3217. Classic CIRCA plan for the Eval-1 domain: all combinations of events. . . . 3318. DAP avoids state-space explosion on Eval-1 domains. 3419. Classic CIRCA's runtime is exponential in the number of benign events. . . . 3420. DAP's runtime on Eval-1 domains is linear in the number of goals and benignevents. 3521. Plans for Eval-2 domain with 3 goals and 3 initial states. 3622. Plan size for Eval-2 domains with uncertainty in initial conditions. 3623. DAP solves a 3-goal Eval-3 domain with sub-optimal split choices. 3824. Plan size for Eval-3 domains with required events. 3925. Runtime for Eval-3 domains with required events. 3926. Detailed state space performance for a 4-goal Eval-3 domain. 4027. Plans for Eval-4 domain with 3 goals. 4228. Eval-4 domain shows DAP using non-homogeneous abstraction to advantage. 4329. Plans for Eval-5 domain with 4 goals and no external predicate deleter events. 4430. Eval-5 domains with no deleter events shows Classic CIRCA outperformingDAP planner. 45v

31. A simple domain illustrating the di�culties of prepositioning for fortuitousevents. 4632. Eval-6 domains with many *goals* shows Classic outperforming DAP. . . . 47B.1. A simple problem unsolvable by the CIRCA planner. 60B.2. A trace of the execution of the plan given in Figure B.1. 61

vi

PREFACEThe work reported here was conducted by the Honeywell Technology Center, Minneapolis,MN, during the period May 1996 through October 1997 under U.S. Army Soldier SystemsCommand, Natick Research, Development and Engineering Center contractDAAK60-94-C-0040-P0006. Henry Girolamo, a member of the Advanced SystemsConcepts Directorate, was project o�cer for the contract.

vii

viii

Distributed CIRCA:Guaranteeing Coordinated Behavior in DistributedReal-Time DomainsSUMMARYThis is the �nal report for the Defense Advanced Research Projects Agency (DARPA)contract DAAK60-94-C-0040-P0006 entitled \Distributed CIRCA: GuaranteeingCoordinated Behavior in Distributed Real-Time Domains." The goal of this contract e�ortwas to begin extending the Cooperative Intelligent Real-Time Control Architecture(CIRCA) into distributed, multiagent operations. CIRCA is a coarse-grain architecturedesigned to control autonomous systems which require both intelligent, deliberativeplanning activity and highly reliable, hard-real-time reactions to safety threats. CIRCAallows systems to provide performance guarantees that ensure they will remain safe andaccomplish mission-critical goals while also intelligently pursuing long-term, non-criticalgoals. The D-CIRCA project is a �rst step towards extending this type of intelligent andguaranteed behavior to multiagent systems. Major issues investigated during this projectinclude planning with incomplete information, concurrent plan generation, and runtimeplan synchronization.The new Dynamic Abstraction Planning (DAP) algorithm, which solves several of the keyD-CIRCA planning problems, represents the primary scienti�c product of the D-CIRCAcontract. The DAP technique provides major advantages, including:� The selection of which features to \abstract away" is performed automatically duringplanning.� The abstractions are local, in the sense that di�erent parts of the state space may beabstracted to di�erent degrees.� The abstractions preserve guarantees of system safety.� The planning system need not plan to the level of fully-elaborated states to constructa feasible, executable plan.In all but the most contrived domains, DAP dramatically outperforms the original CIRCAstate-space planner, generating much smaller state spaces and �nal plans using much lesscomputation time. DAP represents a signi�cant new contribution to the planning �eld,bringing practical automated abstraction to bear on the complexity problems that havelong prevented successful application of this technology. We anticipate that furtherdevelopment and re�nement of the DAP concept will lead to major improvements in ourability to apply planning technology to practical, large-scale domains.1

2

1. IntroductionThis is the �nal report for DARPA contract DAAK60-94-C-0040-P0006 entitled\Distributed CIRCA: Guaranteeing Coordinated Behavior in Distributed Real-TimeDomains." The goal of this contract e�ort was to begin extending the CooperativeIntelligent Real-Time Control Architecture (CIRCA) into distributed, multiagentoperations. CIRCA is a coarse-grain architecture designed to control autonomous systemswhich require both intelligent, deliberative planning activity and highly reliable,hard-real-time reactions to safety threats. CIRCA allows systems to provide performanceguarantees that ensure they will remain safe and accomplish mission-critical goals whilealso intelligently pursuing long-term, non-critical goals. The D-CIRCA project is a �rststep towards extending this type of intelligent and guaranteed behavior to multiagentsystems.Section 2 provides an overview of the single-agent CIRCA architecture [6], and Section 3explores the issues involved in extending the CIRCA concept to multiagent domains.Section 4 shows how several of the key CIRCA planning problems introduced bydistribution can be solved by the appropriate use of abstraction [10], and motivates ourfocus on the new Dynamic Abstraction Planning (DAP) algorithm that represents theprimary scienti�c product of the D-CIRCA contract [7]. Section 5 describes how DAP wasconceived, designed, and implemented during the latter half of the contract. Section 6provides a detailed evaluation of DAP's performance on several di�erent types of planningproblems, showing the dramatic improvement DAP provides over the original \Classic"CIRCA state-space planner. Section 7 explores future directions for research on CIRCA,and Section 8 concludes with a brief summary of the contract's results.Appendix A describes the detailed temporal model that CIRCA uses to reason aboutreal-time behaviors. While understanding this model is critical to planning for real-timemission-critical domains, we have described and evaluated DAP in a broader planningcontext that does not require the temporal reasoning component. Appendix B discusses avery narrow class of plans that neither CIRCA planner can succesfully generate, althoughthe plan itself is compatible with both the domain modeling and plan execution semantics.2. Overview of CIRCACIRCA is designed to support both hard real-time response guarantees and unrestrictedArti�cial Intelligence (AI) methods that can guide those real-time responses. Figure 1illustrates the architecture, in which an AI subsystem (AIS) reasons about high-levelproblems that require its powerful but potentially unbounded planning methods, while aseparate real-time subsystem (RTS) reactively executes the AIS-generated plans andenforces guaranteed response times. The AIS and Scheduler modules cooperate to developexecutable reaction plans that will assure system safety and attempt to achieve systemgoals when interpreted by the RTS. 3

sensor data

Environment

control
signals

Real-Time Subsystem
reaction schedules

feedback data

Scheduler

World Model

selected
reactions

reaction
schedules

AI SubsystemFigure 1. The Cooperative Intelligent Real-Time Control Architecture.
Figure 2. The simulated Puma robot arm domain.CIRCA has been applied to real-time planning and control problems in several domainsincluding mobile robotics and simulated autonomous aircraft. In this paper we drawexamples from the domain illustrated by Figure 2, in which CIRCA controls a simulatedPuma robot arm that must pack parts arriving on a conveyor belt into a nearby box. Theparts can have several shapes (e.g., square, rectangle, triangle), each of which requires adi�erent packing strategy. The control system may not initially know how to pack all ofthe possible types of parts| it may have to perform some computation to derive anappropriate box-packing strategy. The robot arm is also responsible for reacting to anemergency alert light. If the light goes on, the system must push the button next to thelight before a �xed deadline.In this domain, CIRCA's planning and execution subsystems operate in parallel. The AISreasons about an internal model of the world and dynamically programs the RTS with aplanned set of reactions. While the RTS is executing those reactions, ensuring that thesystem avoids failure, the AIS is able to continue executing heuristic planning methods to�nd the next appropriate set of reactions. For example, the AIS may derive a newbox-packing algorithm that can handle a new type of arriving part. The derivation of thisnew algorithm does not need to meet a hard deadline, because the reactions concurrently4

EVENT emergency-alert ;; Emergency light goes onPRECONDS: ((emergency nil))POSTCONDS: ((emergency T))TEMPORAL emergency-failure ;; Fail if don't attend toPRECONDS: ((emergency T)) ;; light by deadlinePOSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-buttonPRECONDS: ((part-in-gripper nil))POSTCONDS: ((emergency nil) (robot-position over-button))WORST-CASE-EXEC-TIME: 2.0 [seconds]Figure 3. Example transition descriptions given to CIRCA's planner.executing on the RTS will continue handling all arriving parts, just stacking unfamiliarones on a nearby table temporarily. When the new box-packing algorithm has beendeveloped and integrated with additional reactions that prevent failure, the new scheduleof reactions can be downloaded to the RTS.CIRCA's planning system builds reaction plans based on a world model and a set offormally-de�ned safety conditions that must be satis�ed by feasible plans [11]. To describea domain to CIRCA, the user inputs a set of transition descriptions that implicitly de�nethe set of reachable states. For example, Figure 3 illustrates several transitions used in thePuma domain. These transitions are of three types:Action transitions represent actions performed by the RTS.Temporal transitions represent the progression of time and continuous processes.Event transitions represent world occurrences as instantaneous state changes.The AIS plans by generating a nondeterministic �nite automaton (NFA) from thesetransition descriptions. The AIS assigns to each reachable state either an action transitionor no-op. Actions are selected to preempt transitions that lead to failure states and todrive the system towards states that satisfy as many goal propositions as possible. Aplanned action preempts a temporal transition when the action will de�nitely occur beforethe temporal transition could possibly occur. The assignment of actions determines thetopology of the NFA (and so the set of reachable states): preemption of temporaltransitions removes edges and assignment of actions adds them. System safety isguaranteed by planning action transitions that preempt all transitions to failure, makingthe failure state unreachable [11]. It is this ability to build plans that guarantee thecorrectness and timeliness of safety-preserving reactions that makes CIRCA suited tomission-critical applications in hard real-time domains.5

#<TAP 10>Tests : (AND (PART_IN_GRIPPER NIL) (EMERGENCY T))Acts : push_emergency_buttonMax-per : 9984774Runtime : 2520010#<TAP 9>Tests : (AND(PART_IN_GRIPPER NIL)(EMERGENCY NIL)(PART_ON_CONVEYOR T)(NOT (TYPE_OF_CONVEYOR_PART SQUARE)))Acts : pickup_unknown_part_from_conveyorMax-per : 12029856Runtime : 3540010#<TAP 8>Tests : (AND(TYPE_OF_CONVEYOR_PART SQUARE)(PART_IN_GRIPPER NIL)(EMERGENCY NIL))Acts : pickup_known_part_from_conveyorMax-per : 12029856Runtime : 3520010Figure 4. Sample output from the TAP compiler.The NFA is translated into a memoryless controller for downloading to the RTS. This isdone through a two-step process. First, the action assignments in the NFA are compiledinto a set of Test-Action Pairs (TAPs). The tests are a set of boolean expressions thatdistinguish between states where a particular action is and is not to be executed. EachTAP's test expression is derived by examining all of the planned actions and �nding alogical expression that distinguishes between the states in which the current TAP's actionis planned and the states in which other actions are planned. Some sample TAPs for thePuma domain are given in Figure 4.Eventually, the TAPs will be downloaded to the RTS to be executed. The RTS will loopover the set of TAPs, checking each test expression and executing the corresponding actionif the test is satis�ed. The tests consist only of sensing the agent's environment, ratherthan checking any internal memory, so the RTS is asynchronous and memoryless.However, before the TAPs can be downloaded, they must be assembled into a loop thatwill meet all of the planned deadlines, captured as constraints on the maximum period ofthe TAPs (see Figure 4). This second phase of the translation process is done by thescheduler. In this phase, CIRCA's scheduler veri�es that all actions in the TAP loop willbe executed quickly enough to preempt the transitions that the planner has determinedneed preempting. The tests and actions that the RTS can execute as part of its TAPs have6

Transition Descriptions Goals

Temporal
Constraints

NFA

TAPs

Verified TAP Schedule

PLANNER

TAP Compiler

SCHEDULERFigure 5. Summary of the CIRCA planning process.associated worst-case execution times that are used to verify the schedule. If the schedulingdoes not succeed, the AIS will backtrack and force the state-space planner to revise theNFA, leading to a new set of TAPs and another scheduling attempt. The planning processis summarized in Figure 5.3. Distributed CIRCA IssuesEarly work on CIRCA focused on building an intelligent control system for a single agent,allowing that agent to provide real-time response guarantees while also using complexplanning algorithms. The Distributed CIRCA (D-CIRCA) project extends the concepts ofguaranteed safety and predictable performance into multiagent domains such ascooperating teams of autonomous aircraft (see Figure 6). D-CIRCA agents willcommunicate to allocate tasks and build executable real-time plans that achieve overallteam goals. D-CIRCA will enforce both the logical correctness of coordinated multiagentbehaviors and the timeliness of those behaviors, ensuring that coordinated actions achievetheir goals and preserve overall system safety. While executing their plans, D-CIRCAagents will respond to ongoing events in real-time, invoking safety-preserving reactionsand/or triggering dynamic replanning tailored to the current context.This dual capability is distinctly di�erent from typical distributed AI systems. Most DAIresearch evaluates collaboration and coordination methods based primarily on logicalcorrectness and solution e�ciency, ignoring the issues of behavioral synchronization andreaction timing required for guaranteed performance by a multiagent system. Systemsbased on the D-CIRCA architecture can be applied to mission-critical distributed domainswith con�dence, and will provide plan-time feedback when the available multiagent7

Figure 6. Multiple D-CIRCA agents control a team of autonomous rotorcraft undersupervisory control.resources are insu�cient to deal with the anticipated behavior of the domain.Extending the single-agent CIRCA model to multiagent applications raises manychallenging issues, some common to all distributed AI applications and some uniquely theresult of CIRCA's commitment to predictable, guaranteed real-time performance. Forexample, the problems associated with cooperating concurrent planners have beeninvestigated in other work (e.g., Partial Global Planning [3]), but issues of predictableasynchronous plan execution and performance guarantees across team behaviors have not.This section discusses important issues involving the D-CIRCA concept. Some of the morechallenging aspects of these issues include the following:� Scalability: State space explosion problems are exacerbated in distributed systems.� Action reection: When multiple agents collaborate, mechanisms are required tosupport group knowledge and action reection (e.g., one agent may have to considerthe possible rami�cations of another's actions).� Guarantees with distributed scope: Plans made up of the actions of multipleagents are di�cult to guarantee as safe, particularly if the guarantor cannot know allof the actions of other agents, even those on the same team.� Runtime communication: Agents must communicate about actions to keep planexecution synchronized. 8

We began exploring the D-CIRCA concept and the associated problems by considering anew domain, derived from the original Puma domain, in which two robot arms cooperate.While investigating this domain and the D-CIRCA concept, we considered several keyquestions, including:� What domain characteristics make distributed planning with performance guaranteeshard?� What types of interagent communication can increase functionality within a domainwithout overwhelming the agents with constant (mostly irrelevant) message-passing?� What types of assumptions can an agent make about other cooperating agents'behavior, without unduly constraining its own behavior?� How useful is the concept of the pre-assignment of \roles" between agents.� To what extent is it necessary or desirable to model world features of other agents?� What is the tradeo� between world modeling, sensing, and communication?To make our consideration of these questions less abstract, we performed some fairlysmall-scale but rigorous \thought" experiments. These experiments consisted of positingthe agents with certain capabilities and the domain with certain constraints, and thenmanually performing the state-space planning to discover what further assumptions wereinvolved, and what hidden problems might exist, in this form of distributed collaborativeplanning.3.1. Thought Experiment 1Imagine a Puma domain in which two CIRCA-controlled robots have the original domain'sgoals: they must attempt to keep objects from falling o� the conveyor (safety goal), turno� the emergency light in time (another safety goal), and, if possible, pack the parts in abox (optional goal). There is a table near the conveyor where parts can be placed safely,but they can no longer be retrieved for packing once placed there. There are only threelocations for the agents: conveyor, box, and light. Either agent can perform any task, withthe constraint that it takes both of them to pack a part in the box (i.e., they mustco-locate and cooperate to achieve the optional goal). Finally, they both share all worldinformation (including each other's locations), except that they do not know if the otheragent is holding something.This experiment revealed that a very limited form of partial information (not knowing ifthe other agent is holding something) came at a great cost. In hand-simulating theplanning process, we found that the agents had to either 1) assume the worst and make alot of ultra-conservative moves, or 2) \get inside the other agent's head" in verydomain-speci�c ways. An example of the �rst is to assume the other agent has a part whenyou don't want him to (e.g., when you want him to help you pack a part), and doesn't haveone when you're in an advantageous location to help (e.g., at the box without a part). Thisassumption that the other, supposedly cooperating agent will always be doing things that9

place the most severe constraints on your own behavior leads to extremely ine�cient plans,and, in some cases, e�ectively negates any advantage gained by having multiple agents.An example of the second, more insidious problem is an instance of the well-known,extremely di�cult problem of intent inference. For example, based on some domainassumptions or prior agreements, Agent-A might reason that Agent-B would never be overthe box if Agent-B hadn't just picked up a part, and Agent-B couldn't have just droppedone o� without Agent-A's help, so Agent-A can infer that Agent-B must be holding a part.Therefore, when Agent-A sees Agent-B at the box, Agent-A should move there as soon aspossible to help. All of this introspection is a means of inferring the world features that wedon't want to bother representing, or, more likely, can't know by observation orcommunication, but nonetheless need in order to do an e�cient job of planning. Theobvious disadvantage is that to do the inference, potentially a great deal more informationabout the other agent's capabilities, tendencies, and agreements, in addition to furtherdomain dynamics, must be available and represented to derive the missing information.Furthermore, unless this relevant information can be e�ectively represented declaratively,the assumptions will be implicit, and must be re-implemented for each new domainvariation.Our investigation of the issues involved in the multiagent Puma domain led us to considerseveral design alternatives, discussed in the following subsections.3.2. Thought Experiment 2In this experiment, we attempted to cut down the complexity of the state space byassigning loose \roles" to each agent (e.g., Agent-A mainly handles the alert light andAgent-B mainly handles the conveyor, unless they get in a jam). Unfortunately, when weconsider this domain and try to make performance guarantees (as CIRCA always does), itquickly becomes obvious that this domain degenerates into the original domain withoutroles. Worst-case assumptions are the great equalizer: it's hard in the �rst place to �nd adomain where the decisions are di�cult enough to be interesting and constrained enoughto be computable, without having to worry about the worst-case assumptions beingvariable enough between agents/actions/domain dynamics that they don't completelyatten out that precarious balance.3.3. Thought Experiment 3We constrained the third experiment even further. Again, it takes both agents to pack apart (so there's some notion of synchronization, although no communication at present),and neither agent knows the other's holding status (so there's some partial worldinformation to contend with). The new element is a set of �xed roles: one agent will onlyhandle conveyor parts, and the other will only handle the emergency light. These strongerroles make planning considerably easier and more analyzable. For example, even thougheach agent is still physically capable of being in one of three locations, each will actuallyonly choose to go to the two locations that are consistent with their roles. This type of10

restriction can dramatically decrease the domain's state-space size. The challenge, however,is �nding a way of deriving the restriction without examining the portions of thestate-space that would be pruned out. Section 4 discusses how this type of observationmotivates our work on Dynamic Abstraction Planning (DAP). The remainder of thissection will concentrate on some general results, good ideas, and lessons learned from ourthought experiments.3.4. Local Planning with Simple Heuristics plus PlanComparisonTo build plans for the multiagent Puma domains, we assumed that each agent performedits own local planning in isolation. Then these plans were compared, state by state, todetermine if there were harmful interactions (clobberers) between what one agent wasplanning to do and what another was planning. A manual conict resolution strategy wasapplied to modify the plans when necessary. None of the plan comparison or modi�cationsteps have been automated; these experiments were designed, in part, to see how e�ectiveand e�cient this \local planning with comparison" approach would be.When performing the planning manually for each agent, we found it necessary to makesome simple heuristic assumptions about what the other agent would do in certain states.For example, when planning for Agent-A in the state where both Agent-A and Agent-Bwere at the box and Agent-A was holding a part, we assumed that Agent-B would take theaction of helping Agent-A pack the part. To be truly justi�ed in making this assumption,Agent-A would have to know how soon the emergency light might go on (immediately, inthe worst case), how long the synchronized packing takes (known), and how long thesequence of actions for Agent-B to turn o� the light would take (which might be very hardto derive, since a sequence of Agent-B's states is involved). Using the \local planning withcomparison" approach, Agent-A adopts some simple assumptions about Agent-B'sbehavior, rather than attempting to perform this very di�cult prediction of the otheragent's precise behaviors. Then, if those assumptions turn out to be wrong atplan-comparison time, the agents must deal with them at that point.Similarly, when Agent-A is waiting at the box with a part, and a part shows up at theconveyor, Agent-A assumes that Agent-B cannot, in general, be trusted to come over andhelp Agent-A pack its part before Agent-A has to move back to the conveyor for thenewly-arrived part. Ideally, Agent-A should wait as long as possible for Agent-B, onlygiving up and heading back to the conveyor when there is barely enough time to guaranteepicking up the new part before a failure occurs. This is probably possible just with localknowledge, since Agent-A knows how long each of its actions should take in the worst case,and can simply add them up to �gure out how long to wait. However, there is currently noway to express this in the CIRCA plan semantics without introducing an arbitrary,intermediate feature. 11

3.5. Alternative Distributed Planning OptionsThere are many alternatives to the \local planning with assumptions plus compare"approach to distributed planning. One alternative is to constantly trade partial plans,queries, constraints, and negotiations throughout the distributed planning process. Thisappears to have the disadvantage that it will deteriorate into a lock-step process, in whichparallel planners must reason at the same time (synchronously) about each shared state,thus negating many of the advantages of multiagent planning. A second alternative is tohave one agent construct its plan, then send it down the line to the next agent as a set ofconstraints on the second agent's planning process. This, of course, is less e�cient, becausethe distributed planning is not in parallel, and also forces an ordering on which agents \gettheir way" �rst. Perhaps worst of all, this approach introduces the possibility of having tobacktrack over multiple agents' plans.3.6. Planning in \Don't Care" SituationsThe thought experiments made clear that D-CIRCA's planner should select actions thatsatisfy the following criteria, in order of priority:1. Preempt failure (strictly necessary).2. Help achieve a goal (desirable but not strictly necessary).3. Remain independent of what other agents plan.Classic single-agent CIRCA already incorporates the �rst two criteria; the third is a simple,if incompletely de�ned, way to avoid the expense of multiagent conict resolution. Criteria2 and 3 are related in an interesting way: if an agent's choice of action does not depend onwhat others are doing, he can choose the action that is heuristically best for him, namelythe one that is most goal-achieving. However, in cases where another agent might dosomething that a�ects the choice of action, the �rst agent must choose his own actionbased on a worst-case assumption, which is usually too conservative to be goal-achieving.This is similar to how single-agent CIRCA makes worst-case assumptions aboutnonvolitional transitions like events. However unlikely they are, they must be consideredand safety must be guaranteed, but this can lead to highly sub-optimal,minimally-goal-achieving plans. In many ways, other agent's actions are just likenonvolitional transitions at the state-space modeling level. Our intuition tells us that weshould have more powerful ways of reasoning about them via cooperative interagentnegotiation. One challenge of the D-CIRCA concept, then, is to �nd ways of recognizingpatterns in the state-space representation of multiagent interactions that can be resolved orimproved by negotiation with the source of some of the transitions: other agents.Again, in some cases this reduces to �nding domains in which there is enough interactionbetween agents for some intelligence to be required, but not so much that the agents arechecking with each other on every single decision. By removing one di�cult aspect inExperiment 3 (overlap of capabilities), planning with fairly weak assumptions was possible,12

but plan comparison and conict resolution have yet to be tackled, and can certainly beexpected to provide another raft of insights and problems as yet undiscovered.4. Linking Distribution and AbstractionConsider the following aspects of a multiagent system, when viewed from the perspective ofa single agent within that system:Partial Information | The agent cannot know everything about its environment orabout the internal state of other active agents.Incomplete Control | The agent cannot perfectly control all aspects of the domain orthe actions of other agents.Limited Time | The agent has a limited amount of time to reason about and react tovarious situations to maintain safety and achieve its goals.The original CIRCA system was designed to address the latter two issues explicitly, butmade strong assumptions about the world being \fully observable." To make guaranteesthat CIRCA would detect and react to all environmental hazards, it was assumed that thesystem could sense and deliberate about all modeled world features. In a distributedenvironment, there are several reasons to use a partially-observable model, including:Local Views| Distributed systems are often motivated by the need for di�erent agentsto have heterogeneous sensors, locations (and hence �elds of view), and otherdistinguishing capabilities.Limited Communication| Agents cannot share all of their knowledge.Bounded Rationality | Even if they could share all of their knowledge, agents cannota�ord the state-space explosion associated with reasoning about the complete domainmodel.An important observation motivating our research on Dynamic Abstraction Planning isthat a single agent capable of making performance guarantees based on an abstracted worldmodel can successfully address each of the above distribution issues.By \abstraction," we mean the deliberate omission of certain pieces of detailed informationfrom an agent's world model, and hence from its consideration. An abstracted world modelis essentially indistinguishable from an incomplete world model, a local view, apartially-shared model, or a \partially considered" model. Distributed observabilityreduces to partial observability for a single agent, so our �rst challenge is to build a newCIRCA that retains its unique guaranteed performance characteristics while using abstractworld models.5. Dynamic Abstraction PlanningIn a state-space model like CIRCA's, one of the most straightforward ways of usingabstraction is to simply remove a feature from the description of the world. This13

corresponds closely to the methods used in early work on abstraction planning systems togenerate abstract operators by omitting less-critical elements of operator precondition lists(cf. ABSTRIPS [14]). ABSTRIPS planned at an abstract level that then restricted theextent of the detailed planning required to build a �nal plan. The Dynamic AbstractionPlanning (DAP) technique is signi�cantly di�erent in that:� The selection of which features to \abstract away" is performed automatically duringplanning.� The abstractions are local, in the sense that di�erent parts of the state space may beabstracted to di�erent degrees.� The abstractions preserve guarantees of system safety.� The planning system need not plan to the level of fully-elaborated states to constructa feasible, executable plan.The DAP concept is simple: rather than always using all of the available features todescribe world states, we let the planner dynamically decide, for each new world state, thelevel of description that is necessary and desirable. By ignoring certain features, theplanner can reason about abstract states that correspond to sets of \base-level" states, andthus can avoid enumerating the individual base-level states.Of course, during the planning process the system might realize that an abstract state thathas already been reasoned about is not su�ciently detailed. For example, the plannerknows that an action can only be executed if all of its preconditions are known to hold inthe state. Thus a state description may not be su�ciently re�ned to indicate whether adesirable action can, in fact, be executed. If an abstract state is insu�ciently re�nedbecause its state description does not specify values for all of the features in a desiredaction's preconditions, the planner can dynamically increase the precision of that abstractstate description by including one or more of the omitted features. We call this process ofadding detail a \split" or \re�nement."In the language of �nite automata, DAP starts with a very crude nondeterministic �niteautomaton (NFA) and dynamically adds more detail. DAP re�nes the NFA when it isunable to generate a satisfactory plan1 at the current level of detail. DAP re�nes the NFAby taking an existing state and splitting it into a number of more speci�c states, one foreach possible value of a particular feature, Fi.For example, consider the partially-completed plan in Figure 7, which is based on thedomain model given in Figure 3. Here there are three states: the failure state and twonon-failure states, one for each value of emergency, a boolean proposition. We assume thatemergency is nil when the system begins operation.The NFA in Figure 7 is not safe, because there is a reachable state, S1, from which there isa transition to the failure state (emergency-failure) that has not been preempted. Oneway to �x this problem would be to choose an action for S1 that will preempt1We will be more clear about what is \satisfactory" below.14

FAILUREEmergency NIL Emergency T

S1
emergency-alert

F

emergency-failure

(event) (temporal)

S0 Figure 7. A partially-completed CIRCA plan.
FAILUREEmergency NIL

S0

S1,1

emergency-alert emergency-failure

emergency-failure

F

push-emergency-button

(action)

Emergency T
Part-in-gripper NIL

Part-in-gripper T
Emergency T

S1,2

preemptedFigure 8. A re�nement of the NFA in Figure 7.emergency-failure. The domain description contains such an action,push-emergency-button. Unfortunately, one of push-emergency-button's preconditionsis part-in-gripper= nil and S1 is too abstract to specify a value for part-in-gripper.We can only consider applying push-emergency-button by splitting S1 into a set of states,one for each value of part-in-gripper. The resulting NFA is given in Figure 8. We cannow assign push-emergency-button to solve the problem posed by state S1;1. Furtherplanning is required to resolve the problem posed by S1;2, either by �nding a preemptingaction that does not require part-in-gripper = nil or by making S1;2 unreachable.Note that DAP adds detail to the NFA only locally. In our example above, we only addedthe feature part-in-gripper to the state where the emergency feature took on the valuetrue, rather than re�ning all of the states of the NFA symmetrically. This introduces newnondeterminism: because we do not have a complete model of the initial state, we cannotsay whether the emergency-alert transition will send the system to state S1;1 or S1;2.5.1. DAP in TheoryDuring its operation, DAP manipulates NFAs of a particular type. An NFA,N = hv(N); e(N)i, will have a number of states (or vertices), Si 2 v(N), each of whichcorresponds to a set of feature-value pairs; we will refer to these as f(Si). A state Sinecessarily satis�es a proposition, P (Si j= 2P) if P 2 f(Si); it possibly satis�es P(Si j= 3P) if :P 62 f(Si) (these boolean de�nitions may be straightforwardly extended tonon-boolean features).The transitions in the NFA are generated by the transition descriptions, which arenondeterministic STRIPS operators. A transition t is possibly (respectively, necessarily)15

executable in a state when the transition's preconditions are all possibly (necessarily)satis�ed by that state: Si j= 3pre(t)(2pre(t)). With some abuse of notation, for eachtransition t we de�ne a function t(S) from a state to a formula (in the general case, adisjunction), describing the state(s) that result from executing t in S. DAP manipulatesNFAs that contain edges for all possibly executable non-preempted event and temporaltransitions (we refer to these collectively as \non-volitional transitions") and for allcurrently-assigned actions.The re�nement (or splitting) operation r on an NFA N with respect to a state Si and afeature Fj, notated as r(N ; Si; Fj) = N 0, is de�ned as follows:S 0 = fSjf(S) = f(Si)[f(Fj ; z)g for z 2 val(Fj)gv(N 0) = (v(N)� Si)[S 0where S 0 is the set of newly-added states. New transitions must be added into and out ofthe replacement states:e(N 0) = (e(N)� fv1 ! v2jv1 = Si or v2 = Sig)[fv t! Sjv j= 3pre(t); S 2 S 0; S j= 3t(v)g[fS t! vjS 2 S 0; S j= 3pre(t); v j= 3t(S)gTo build safe plans for CIRCA, DAP must construct NFAs in which there are no chains ofnon-preempted, possibly-executable transitions that lead to a failure state. To preempt atemporal transition in a state, DAP assigns to that state a necessarily executable actionthat can be executed before the preempted transition.5.2. DAP in PracticeThe prototype DAP planner takes as input a domain model in the form of transitiondescriptions, a description of a set of initial states, and a conjunctive goal expression. Theplanner returns an NFA containing only reachable states. Each state of the NFA will belabeled with either an action or no-op, indicating to CIRCA how the RTS should react inthat situation. Failure states will not be reachable in this NFA and the system will movetowards states satisfying the goal expression whenever possible.The planning problem may be very concisely described as a nondeterministic algorithm,given in Figure 9. In this presentation, choose and oneof are nondeterministic choiceoperators. An action is applicable if the state necessarily satis�es its preconditions and ifthe action preempts all transitions to failure from the state. Note that it is not su�cient topreempt transitions directly to the distinguished failure state. For example, if there is astate s with an event transition (i.e., a transition with a zero delay) to the failure state,then any edges into s must also be considered as transitions to failure.In practice, we implement this algorithm through search, with choice points correspondingto the nondeterministic choice operators. The search engine backjumps when it encounters16

abstract-plan (isd);isd is initial state descriptionlet N = ;; The graphopenlist = ;;is = make-initial-state(isd);N := N [fisg;push(is, openlist);loopif there are no more reachable states in the openlist thenwe are donebreak;elselet s = choose a reachable state from openlist;openlist := openlist� fsg;oneofsplit-state :choose a proposition p and split s into jval(p)j states;remove s from N and insert the new states;add the new states to the open list;assign-action :choose an action (or no-op) that is applicable for s;failFigure 9. The DAP planning algorithm.
17

Enabling an action Causation preconditions

s

b

Preservation preconditions

s

bs’’ s’Figure 10. The three reasons to re�ne an abstract state. Ovals represent abstractstates that are re�ned into two component states (circles). Dotted arrowsare edges out of the abstract states, while solid arrows are edges out of there�ned, less-abstract states.a state for which there is no acceptable action and for which there is no proposition onwhich to split. We may not be able to split the state productively even if the state is onlypartially speci�ed. No further splitting will be productive if we can determine that somebad transition must occur in the state, that the state is reachable, and that there are noavailable actions with which to preempt the bad transition.5.2.1. Limiting the Set of Split ChoicesWe do not need to consider all possible propositions when deciding how (and whether to)split a state. Figure 10 illustrates the three reasons to add a proposition to a statedescription:1. To enable an action;2. To avoid a state by means of causation preconditions;3. To avoid a state by means of preservation preconditions.Enabling an Action We may add a proposition to a state in order to enable us to usean action. In this case, we may re�ne the state by a proposition, P , when P is theprecondition of an action that is possibly, but not necessarily enabled: that is, an actionnone of whose preconditions is negated by the current state description. Note that whilewe have said that we do this to \enable us to use an action," in fact, what we are doing isapplying a divide and conquer strategy: we have divided the previously abstract state intotwo new states, in one of which the action is possibly enabled and in one of which it is not,as Figure 10 shows. Also note that we still say \possibly" enabled, because it may takemultiple splits before we have a state in which an action is necessarily enabled. Forexample, Figure 11 illustrates the case where we would like to use an action whosepreconditions are P;Q;R in a state whose features are only P , and we have to split twice,once on Q and once on R (not necessarily in that order).18

P,not(Q)P,Q,not(R)P,Q,R

P

P,Q P,not(Q)Figure 11. Two successive splits, in order to enable an action with preconditions P;Q;R.We need not consider all possibly-enabled actions in this process: some actions can beidenti�ed as futile a priori . For example, if any temporal transitions must be preempted inthe state, the distinguished no-op action is futile.2 Likewise, if we have a temporaltransition that must be preempted, then any action that is slower than that transition canbe discarded.Avoiding a State via Preconditions We may also re�ne a state in order to avoidanother, undesirable state. Consider the case of a state s that has an outgoing edge to abad state, b. This \out" edge is the result of a transition that is not under the planner'scontrol: a temporal transition that it has decided not to preempt,3 or an event. Thesuccessor state is known to be bad, either because it can be identi�ed a priori as one thatcannot be solved or because we have backtracked from that state (see Section 5.2.4). Sothe planner would like to make state b unreachable.There are two ways the planner can use re�nement of state s to make b unreachable. The�rst is to split on one of the causation preconditions for reaching b. The causationpreconditions for b from s are the preconditions for the transition t that carries the NFAfrom state s to state b. If any of these preconditions are not necessarily satis�ed by state s,then these are candidates for splitting. For example, if transition t's preconditions are P;Q;and R, and state s's description is fPg, then the remaining causation preconditions are Qand R, either of which is a candidate for use in re�ning s.The second way to make b unreachable is to re�ne state s by including preservation2Although it is possible that we could split the state into a set of more speci�c states, in some of whichthe no-op action would be useful.3Of course, preemption decisions can be changed via backtracking.19

preconditions for b. Preservation preconditions for b are those features of b that are notestablished by the transition t. For example, consider a state b, whose features arefP; S; Tg. The transition t establishes S. The preservation preconditions for b with respectto t are P and T . Suppose P is among the set of features of state s, but we could re�nestate s by feature T . Assuming T is a boolean feature, that would re�ne state s into twostates, s0 and s00. The features of state s0 would be fP; Tg and from it b would still bereachable. But s00 would have the features fP;:Tg, and b would not be reachable from s00by means of t. Note that in this case of re�nement, unlike the previous case, transition t isstill enabled in both successor states; however in one of the two successor states, thetransition is now benign instead of malignant (cf. bottom of Figure 10).Note that our use of the expression \re�ne state s to make state b unreachable" is actuallya shorthand.4 We re�ne state s into a set of states, from some of which b is not reachableand from some of which b is reachable. The states from which b is not reachable nowpresent the planner with an easier problem to solve. Those states from which b is stillreachable are solved by recursively applying these techniques, or are themselves madeunreachable.These methods for selecting which splits are useful may still leave a large number of choices.Our current implementation of DAP uses several heuristics to choose among actions andpropositions for re�nement. We discuss these in greater detail below (see Section 5.2.5).5.2.2. Limiting the Set of Action ChoicesThe algorithm described in Figure 9 speci�es that we must choose an \applicable" action.There are three considerations that go into determining whether an action is applicable:1. The action's preconditions must be necessarily satis�ed by the state;2. The action must not lead to a failure state; and3. The action must be fast enough to make all the required preemptions.Case 1: Because actions will be planned to preempt failures, CIRCA insists that they becompletely reliable and guaranteed. Therefore, DAP will not consider selecting an actionat a state where it is not certain that the action can actually be executed.Case 2: Actions may be found to lead to failure states during the planning process. Forexample, an action a executed in a state s might (possibly) lead to a state t, from whichthere is an event to failure. Events cannot be preempted, so state t is a failure state, and awill not be applicable in s.5Case 3: We use local information to estimate whether or not an action will be fast enoughto make all the required preemptions (we discuss below how this set of preemptions iscomputed). We can only estimate whether an action will be fast enough, because the speedof the action is a property of the plan as a whole, not a local property. The speed of the4As with \re�ne state s to enable action a."5In cases when a possibly leads to t, but does not necessarily lead to t, further planning may make itpossible to use a after all. 20

action is a global property because the plan will be compiled into a schedule of test-actionpairs. The maximum delay before an action will occur is a function of this schedule as awhole, rather than any individual action assignment.5.2.3. Interaction with Temporal ReasoningThe algorithm given in Figure 9 is actually a simpli�cation of the search performed by ourimplemented planner. In order to construct a correct and safe plan, the DAP planner musttake temporal information into account, as noted in Case 3 above. The temporal modelunderlying CIRCA's plans is described in detail in Appendix A. Essentially, the modelallows the planner to determine whether a planned action can be executed quickly enoughto preempt an undesirable temporal transition.To give the planner exibility in deciding which temporals it wants to try to preempt, weadd a new set of explicit search decisions that specify the set of temporals to bepreempted. See Figure 12 for a revised version of the algorithm. Some of these temporalsare easy to identify | the ones we call \TTFs" (temporal transitions to failure), thatexplicitly mention FAILURE as a postcondition. However, there are other temporals wemight choose to preempt. For example, if we have a state S for which we cannot identifyan applicable action, it may be necessary to render S unreachable. In that case, we willprefer to preempt any temporal that leads from a reachable state to S, even when thesetransitions are not explicitly TTFs.Accordingly, before we resolve a state by splitting or assigning an action, we choosewhether or not to preempt the temporals that are possibly applicable in that state. Whencomputing whether an action is fast enough, the set of required preemptions is the set ofTTFs applicable in the state together with the set of transitions T such that preempt(s,t)= true.As discussed in Appendix A, we have developed a recursive algorithm, based on depth-�rstsearch, to determine how fast an action must be executed in order to make all requiredpreemptions. Using the set of temporal transitions that must be preempted, we search theNFA to determine bounds on how much time there will be before those transitions areenabled in the current state. These bounds are computed based on worst-case estimates ofhow long the agent will remain in the predecessor states. These computations are e�cient,but unfortunately, not sound, so that there are pathological cases when the plannerbelieves an action is not fast enough when, in fact, it is. Appendix B discusses one type ofplan illustrating this problem.5.2.4. Intelligent BacktrackingThe DAP search algorithm uses a version of backjumping that takes into account bothtemporal information and the topology of the NFA. Backtracking is also used to provide ananytime plan re�nement capability.Recall that, for each state, we have two kinds of choice points: there is a choice point for21

abstract-plan (isd);isd is initial state descriptionlet N = ;; The graphopenlist = ;;is = make-initial-state(isd);N := N [fisg;push(is, openlist);loopif there are no more reachable states in the openlist thenwe are donebreak;elsey let s = choose a reachable state from openlist;openlist := openlist� fsg;foreach t in the possibly applicable temporals for sz oneofpreempt(s, t) = true; orpreempt(s, t) = false;yy oneofsplit-state :choose a proposition p and split s into jval(p)j states;remove s from N and insert the new states;add the new states to the open list;assign-action :choose an action (or no-op) that is applicable for s;failFigure 12. A more complete version of the DAP planning algorithm.
22

each temporal that may optionally be preempted6 and there is a choice point for resolvingthe state (re�ning it or assigning an action to the state). For each of these decisions, wekeep a list of eliminations (we use Ginsberg's terminology [5]). These eliminations are setsof values that are not consistent with earlier decisions, together with a set of decisions thatis su�cient to rule the value out.For example, it may be impossible to make a preemption because a set of prior decisionscreates a dependent chain such that the lower bound on the latency for the temporal iszero. In that case, the eliminating explanation will be the set of decisions (actionassignments and preemption decisions) that make up the dependent chain.Similarly, when attempting to assign an action to a state, we accumulate eliminatingexplanations for the action choices. These are generally in the form of preemptions thatcannot be made. In this case, we �nd the sets of decisions that assembled a dependentchain the action cannot preempt. Sometimes, however, a state is simply unsolvable (noaction choices are available, there is an event leading to failure, etc.). In this case, webackjump to the earliest solved state that has an edge into the failed state. Because thestate is reachable, there must be a state with an edge into it, unless the state is thestarting state. If we fail on the starting state, the search as a whole has failed.When all possible values for a given decision have been eliminated, we backjump to themost recent decision that is contained in an elimination for the current decision. We alsoresolve together the eliminations for the failed decision to derive a new elimination for thestate to which we are backjumping.The backjumping search strategy is essential to the solution of CIRCA planning problems.When the preemption decisions are taken into account, even modestly-sized CIRCAplanning problems become too large for solution using simple chronological backtracking.However, backjumping is not su�cient for satisfactory search performance. Withbackjumping alone, the DAP planner often gets lost, repeatedly straying into states thatcannot be solved (or are very di�cult to solve). Accordingly, when we backtrack from astate, we tag it to indicate that it should be avoided. The other search heuristics, discussedbelow, are then biased to prefer actions and preemptions that avoid such states.Note that we do not backtrack over state re�nements. Backtracking over these re�nementsis never necessary: for every plan that can be found at a low level of detail, there is acorresponding plan at every higher level. Our experience suggests that the cost of\coarsening" an NFA (and the additional bookkeeping necessary to provide this option) isnot worth the small savings in graph size.Through additional backtracking, we provide a simple anytime behavior. CIRCA's AISystem (AIS) caches plans as they are produced (recall that all plans aresafety-preserving). Through backtracking, the AIS can generate plans that satisfy more ofthe goal propositions. Thus, once a �rst safety-producing plan is generated, the AIS mayinvest more time in generating better plans, or it may allocate its e�ort to other problems.6TTFs must be preempted, so there is no choice point for TTFs.23

5.2.5. Heuristic ControlThere are three points in the DAP search where heuristic guidance is required: when wechoose a state on which to operate, when we choose whether or not to preempt a temporaltransition, and when we choose how to resolve the state. These three decisions are markedy, z and yy, respectively, in Figure 12.Choosing the Next State The choice of the next state to operate on (y in Figure 12),is dictated by a simple heuristic. First, we prefer to examine an initial state, should anysuch state be available in the openlist. Second, we try to �nd a state that is \threatened"| i.e., the state is either known to be a failure state, or is a state at which we failed earlierand from which we have backtracked (cf. Section 5.2.4). Finally, we prefer a state that hasan edge in from the most recently closed state. If all of these fail, then we just take the�rst state o� the openlist.What is the intent behind this heuristic choice? First, we prefer to expand initial statesbecause, in the case that the initial state cannot be solved, the whole problem isunsolvable, and we would prefer to determine this as soon as possible. Furthermore, weprefer to search the NFA in a quasi-depth �rst way (we have more to say about this below).The reason we prefer to choose the predecessor to a threatened state is a kind of \�rst-fail"or \most-constrained �rst" heuristic. When we are attempting to solve a state that has aknown failure state as a successor, we must either make the failure state unreachable bythe actions we take at the predecessor state, or fail and backtrack; hence this statepreference acts as a surrogate for \�rst-fail." When we are using the heuristic for a statethat has as a successor a state from which we have backtracked, the fact that there is asuccessor state that is threatened provides more guidance to the heuristic choices of actionsand preemption decisions. Hence we can think of this as a kind of \most-constrained �rst"(or perhaps \most informed �rst") heuristic.When the other heuristics fail, we prefer to choose a state that has an edge into it from thepreviously solved state. There are two reasons we prefer this:1. we avoid squandering e�ort on irrelevant states; and2. we fail sooner.Preferring states that have edges into them from previously-solved states has the advantageof avoiding unnecessary computation. If we did not have this preference, we could examinestates that appear reachable only because there is a chain of temporal transitions from aninitial state, through unexamined states, to the state in question. Later search actionscould render this state unreachable: the chain of intermediate transitions could be brokenby preemption decisions. We also fail sooner with this heuristic choice, and backtrack moredirectly from unsolvable states (see Section 5.2.4).24

Preemption Decisions Once a state is popped o� the openlist, the �rst thing DAPdoes is make the preemption decisions (see the line marked z in Figure 12). Here we usetwo heuristics: �rst, if a successor state is threatened (we have backtracked from itpreviously), then we prefer to preempt a temporal to that state. Second, all else beingequal, we prefer not to preempt temporal transitions, because preemptions make actionselection (and eventually, scheduling) more di�cult.Re�nement and Action Decisions Finally, we use heuristic guidance in choosing the\resolution" of the state, either the decision to split on a particular proposition, or thedecision to resolve the state by choosing a particular action. This is the choice pointmarked by yy in Figure 12. We treat this as a single choice point, rather than two, becausethat makes it easier for us to, for example, prefer an action when one is available.The heuristic we use for directing the choice of actions and re�nements is a modi�ed versionof McDermott's heuristic estimator for state-based ADL7 planning [9]. To construct theheuristic, we construct a set of paths (an \operator-proposition graph") from the currentstate to the goal state, ignoring the interactions between individual actions. The heuristicfunction prefers those actions (or splits) that appear as �rst steps on one of these paths.When choosing how to handle a state, the planner constructs an operator-propositiongraph connecting the current state description to the goal state description. This is alayered graph, with alternating layers containing nodes that represent propositions to beachieved and operators that can establish those propositions. Despite using full lookahead,this approach is heuristic and e�cient because it ignores details such as interactionsbetween operators.A sample heuristic graph is shown in Figure 13. In this example, the current state isf:P;:Q;T;Ug and the goal description is fP;Qg. The node marked top designates thegoal state and has two descendents, for the two literals in the goal state proposition. Inthis domain, the planner has at its disposal three operators. The operator establish-Phas as its preconditions R;S and its sole postcondition is P . establish-Q's preconditionsare fS; Tg and its postcondition is Q. In the operator-proposition graph we draw edgesfrom unachieved propositions (here P and Q) labeled with actions that can achieve thosepropositions (establish-P and establish-Q). The base of the edge is labeled with a nodewith the conjunction of unrealized preconditions, here fR;Sg and fSg (because T holds inthe current state). Finally, we repeat the process, adding a new layer with nodes forindividual literals (R and S). The S is marked specially: because the current state gives novalue to the feature S, it is possible that S is true in the current state. R can beestablished by an operator whose sole precondition is U , a literal that is (necessarily) truein the current state. Once the graph-building is complete, we examine the graph forsuggested search actions. In this case, the two actions suggested by the graph would be:1. execute action establish-R, or7ADL is an action notation that is related to STRIPS, but has slightly greater expressive power [13].25

P

R, S

()

R

top

Q

S(,T)

S*

establish P establish Q

establish RFigure 13. A sample operator-proposition graph.2. split the state on proposition S.This graph also illustrates what we mean when we say that the graph ignores interactions.The graph would look exactly the same even if the operator establish-Q had f:P;Qg asits postconditions. The heuristic is meant as a simple, e�cient �lter on action selection,not a foolproof oracle. In this case, it would be up to the search engine to determine thatestablish-Q should be done before establish-P, rather than vice versa.Our version of the operator-proposition graph di�ers from McDermott's because ouractions are simple STRIPS operators; his approach covers schemas as well and mustconsider variable binding. Another di�erence is that McDermott's is a more traditionalstate-space planner, so state descriptions are complete and the only way to establish aproposition is to apply an operator with the appropriate postconditions. Our statedescriptions are partial, and one way for the DAP planner to establish a proposition is tore�ne a partial state description to include that proposition. We showed this in ourexample, where S may be \achieved" by state re�nement. There is no search operation likethis in McDermott's planner.Note that the operator-proposition graph may propose several choices: di�erent actionsand propositions on which to split. McDermott's heuristic evaluation function scores thesealternatives according to the cost (roughly speaking, the length) of the path to the goal.Currently, we do not do this, but are actively investigating appropriate metrics for the wayDAP uses the heuristic graph. In the prototype, we prefer action assignments over statesplits, because state splits cause the problem size to grow. The choice of actions is �lteredby feasibility, since we do not take into account temporal factors when composing the26

operator-proposition graph, nor do we take into account which actions have already beenattempted.If the heuristic graph does not dictate what we should do, we attempt to choose an actionor split in order to avoid a successor state from which we have previously backtracked (orthat are known to be failure states). Here we use the kind of splits discussed earlier (seeSection 5.2.1): splitting on the causation or preservation preconditions of transitions thatlead us to the bad state. We also attempt to enable actions that can help us avoid badstates.There is one additional step taken before we consult the operator-proposition graph. Ifthere are any events that lead from the current state to a failure state, we attempt to splitthe state so that the events will be isolated, in the hopes of making them unreachable.Because events cannot be preempted, it is not worth considering action assignments orother splits in this special case.To sum up, here is a table of heuristic choices:� Choosing next state (y):1. Initial state.2. Predecessor to failure state.3. Predecessor to state from which we have previously backtracked.4. Successor of most recently closed state.5. First in openlist.� Choosing whether to preempt a temporal (z):1. If successor state is one from which we have previously backtracked, choose topreempt.2. Prefer not to preempt.� Choosing action or split proposition (yy):1. Check fail events, split (or fail) if any are applicable.2. Construct operator-proposition graph, suggesting actions and splits. Preferactions if they are available.3. Attempt to re�ne state to avoid successors that are failures or from which wehave backtracked.4. Attempt any remaining actions.We have done no formal experimentation to determine which of these heuristics are helpful,nor how helpful they might be. Certainly the operator-proposition graph is very helpful.Without it, the DAP planner simply ailed about, only achieving goals when it blunderedinto them. We have tested it on the original CIRCA planner and found that it improvedthe performance of that planner as well. The original CIRCA planner simply tried allpossible actions and used lookahead to choose between them. If the lookahead horizon wasset too low, the original planner wouldn't �nd goal-achieving plans; if set too high, theplanner would take a very long time to run. 27

FAIL

START 1 2

A

Figure 14. A case where poor choice of next state causes failure to �nd a plan.5.2.6. Search IncompletenessThe current DAP search algorithm is incomplete. Incompleteness arises from limitations inthe order in which search actions are performed. One possible source of incompleteness isthe order in which states are chosen from the openlist; because we do not consider allpossible states, some plans could be missed. A second source of incompleteness is the factthat we consider all preemption decisions before deciding on state re�nements. Neither ofthese sources of incompleteness appears, at present, to be signi�cant enough to be worththe cost of repairing it. More signi�cantly, there are substantial sources of incompletenessin the temporal reasoning that is done by CIRCA. For more details on this source ofincompleteness, see Appendix B.One source of incompleteness is the way DAP pops states o� the openlist. We do notsystematically explore di�erent orders in choosing a next possible state. It is theoreticallypossible that a bad choice of next state could make a search problem unsolvable. Figure 14illustrates a domain in which state choice order could make the search fail. In this example,if we were to pop �rst the start state and then state 2, we would fail to �nd a solution. Wewould be unable to solve state 2 because it has an event to failure, and we would not beable to backtrack from state 2, because we would not have state 1 on the stack. On theother hand, were we to remove state 1 from the stack �rst, we could choose action A,preempt the transition to state 2 and �nd a successful plan. This problem does not arise inpractice in the domains we have worked with; our state choice heuristic avoids it. Sinceexploring states in di�erent orders would signi�cantly increase the search space and sincethis problem has not come up in practice, we have accepted the incompleteness.A second source of incompleteness is the order in which we make preemption decisions. Itis possible that search to a state could fail in the phase of making preemption decisions. Atthis point we might fail to �nd an action because the preemption decisions are made beforedeciding on state re�nements. So it is possible that a state that looked unsolvable to ourimplementation would be solvable if it could be re�ned. We could repair thisincompleteness by permitting state re�nements earlier in the search process. However, wehave not done this yet because we are not certain that this incompleteness actually arises28

in the examples of interest to us.6. EvaluationDynamic abstraction provides the greatest bene�ts in domains where uncertainty is presentand can be reasoned about or managed in abstract ways, rather than requiringfully-detailed reasoning at all points in the state-space. In the CIRCA planning paradigm,there are several possible sources of uncertainty that can be advantageous for DAP:Events and Temporals | These nonvolitional transitions are outside of the system'scontrol, and therefore lead to uncertainty in the planned trajectory through thestate-space, as they can move the system o� the direct planned path. The originalplanner must consider each state that results from an event or temporal and theresulting sequences, possibly not overlapping with the direct plan, that are requiredto move towards the goal.Initial conditions | The system can be told it may begin in one of several possibleinitial conditions. This uncertainty requires the original planner to consider explicitpaths leading from each initial state, while DAP may be able to ignore the di�erencesbetween initial states and �nd a single plan.Nondeterministic actions | Because actions can have nondeterministic outcomes,they can cause branching in the original planner that DAP may be able to avoid.There are also some factors that can partially negate the advantages of DAP. In particular:Goal propositions | Our heuristic DAP planner begins by splitting itsmaximally-abstract state space on all of the goal propositions. So if there a largenumber of goal propositions, or if features mentioned in goal propositions have largefeature spaces, DAP may split out the space into a large number of distinguishedstates that are, in fact, unnecessary. In such domains, the original planner canactually outperform DAP because it enumerates only reachable states, rather than allof the possible values for all features currently included in the state description (asdoes DAP).Dynamic Abstraction Planning is not simply applicable to CIRCA planning. The DAPtechnique could bring automated abstraction to other planners with di�erent staterepresentation, transition semantics, and temporal models. Therefore, we have evaluatedthe bene�ts of DAP independent of many of the CIRCA-speci�c details of the planningmodel. In particular, to evaluate DAP independent of the complex CIRCA temporalmodel, we avoid using temporal transitions. In turn, this means that the issue ofpreemption does not arise in the evaluation problems discussed here.Our evaluation consisted of running both the DAP and Classic CIRCA state-spaceplanners on numerous domains that were automatically generated to meet several sets ofde�ning characteristics. Each of these sets of domains (or \domain classes") highlights29

particular ways in which DAP di�ers from, and usually improves upon, Classic CIRCA andother state-space planners.Note: for the sake of simplicity, we have restricted ourselves to boolean features in the testproblems. In a slight abuse of terminology, but for the sake of conciseness, we will refer tothe proposition (P T) as \the proposition P" and a transition with (P T) in itspostconditions as \establishing P ." A transition with (P F) in its postconditions will besaid to \delete P ."6.1. Eval-1 Domain: Benign EventsThe �rst evaluation domain, Eval-1, shows DAP's ability to ignore irrelevant nonvolitionaltransitions. By ignoring these irrelevant transitions, and the features they a�ect, DAPavoids an exponential state-space explosion that plagued the original state-space planner.One type of irrelevant transition we will focus on is a benign event: an event establishing aproposition that does not appear in any preconditions or postconditions of actions on the\causal chain" to the goal (we de�ne this term below). The Eval-1 domains show how DAPcan build small, abstract plans that accurately characterize much larger state spacesconnected by benign events. On the other hand, the original planner must enumerate theentire exponential state spaces.Throughout our experiments, we consider domains in which there is a causal chain fromthe initial state(s) to the goal. To automatically generate one of these domains, we build aset of simple actions that must be chained together to achieve the �nal goal. We onlydeclare the �nal proposition in the chain as a *goal* proposition to CIRCA, so that DAPonly splits on that single goal proposition initially. Using a notation derived from that usedby Barrett and Weld [1], we can describe these actions by the template:(make-instance 'action :name Achieve-Goal-i:preconds ((Gi F) (Gi�1 T)):postconds ((Gi T)))In other words, the set of actions implicitly creates a sequence of goal features,G1; G2; : : : Gn. The action achieving Gk has, as its precondition, that the prior goal in thesequence (Gk�1) has already been achieved. For our purposes, this has the desired e�ect ofrequiring a �nal plan with several actions, but only one input goal for CIRCA (the lastgoal, Gn).To introduce benign events, we create an additional set of \external" or non-goal features(fP1; P2; : : : Pmg) which are irrelevant to the causal chain. The values of these externalfeatures may change over time due to events. We de�ne a number of events that establishthese propositions. Note that these events do not interact with the causal chain, for goodor ill: (make-instance 'event :name Add-i:preconds ((Pi F)):postconds ((Pi T)))30

(make-instance 'action :name "Achieve-G1":preconds '((G1 F)):postconds '((G1 T)))(make-instance 'action :name "Achieve-G2":preconds '((G2 F) (G1 T)):postconds '((G2 T)))(make-instance 'action :name "Achieve-G3":preconds '((G3 F) (G2 T)):postconds '((G3 T)))(make-instance 'event :name "Add-P1":preconds '((P1 F)):postconds '((P1 T)))(make-instance 'event :name "Add-P2":preconds '((P2 F)):postconds '((P2 T)))(make-instance 'event :name "Add-P3":preconds '((P3 F)):postconds '((P3 T)))(setf *goals* '((G3 T)))(setf *initial-states*(list (make-instance 'state:features '((P1 F) (P2 F) (P3 F) (G1 F) (G2 F) (G3 F)))))Figure 15. The 3-goal, 3-event Eval-1 domain.Figure 16 and Figure 17 illustrate the results for the Rand1 domain listed in Figure 15, inwhich n = 3 (the causal chain is of length three) and m = 3 (there are three externalfeatures and, hence, three establisher events).Note that DAP has even managed to omit seemingly important information about theinitial state (namely, (G2 F)). The planner was given this information initially but choosesto ignore it. This leads to apparent nondeterminism in the outcome of a planned action,the one chosen for the initial state. In fact, that action is deterministic (see Figure 15), butignoring that fact does not keep DAP from achieving the goal.As might be expected, the performance of the planners on this highly-structured domaincan be predicted analytically. As the number of benign events increases, the DAPplanner's �nal plan size does not change at all. All the events are su�ciently modeled bythe simple self-loops shown in Figure 16. On the other hand, the original CIRCA planner'sstate space grows exponentially. Each benign (and independent) event in the domain forcesthe original planner to replicate the entire path from initial state to goal (which is n+ 1states long). For each of the 2m combinations of values of the external features, there is one31

3*

3*

3*

State 7

(G3 T)

State 47

(G1 T)

(G2 T)

(G3 F)

3*

State 48

(G1 T)

(G2 F)

(G3 F)

State 27

(G1 F)

(G3 F)Figure 16. DAP plan for the Eval-1 domain with 3 goals and 3 benign events: nostate-space explosion. The 3� notation indicates that the self-loops aretriply-replicated, corresponding to the events a�ecting the three externalevents not included in each abstract state. In all diagrams, initial statesare lightly shaded, goal states are darker.such path. So the size of the original planner's state space is (n+ 1) � 2m. We havecon�rmed this relationship experimentally.Figure 18 illustrates how the DAP planner's state-space is constant over benign events andscales linearly as the number of goals increase. In contrast, the original CIRCA planner isexponential in the number of benign events, and linear in the number of goals (with a slopedetermined by the exponential benign event factor).Figure 19 shows that the runtime for the old planner grows exponentially as the number ofbenign events (and hence states) grows. As expected, DAP remains linear in runtime. It isuseful to note that DAP's runtime is not constant as the number of benign events grows(unlike the DAP state space). By plotting DAP's runtime alone we can zoom the scale inand see, in Figure 20, that the DAP runtime is linear in both the number of goals andbenign events. This occurs because, although additional benign events do not lead to newstates, they must each be considered and understood to be self-loops in every state of theplan.86.2. Eval-2 Domain: Uncertainty in Initial ConditionsThis domain class shows the advantages of DAP when there is uncertainty in the initialconditions of the planning problem. The domain examples are generated using the samegoal structure as in Eval-1, where a chain of intermediate goal-achieving actions leads to asingle �nal goal predicate. Unlike Eval-1, there are no external events at all; instead, the8Minor runtime variations away from linearity are simply due to the unpredictable Unix timesharingenvironment, and appear here because we are plotting individual runs, not averaged performance over manyruns. 32

State 19

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 T)

State 23

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 27

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 31

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 20

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 T)

State 24

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 28

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 32

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 17

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 T)

State 21

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 25

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 29

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 14

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 T)

State 10

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 6

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 2

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 18

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 F)

State 22

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 26

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 30

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 15

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 F)

State 11

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 7

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 3

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 16

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 F)

State 12

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 8

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 4

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 13

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 F)

State 9

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 5

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

Figure 17. Classic CIRCA plan for the Eval-1 domain: all combinations of events.33

Classic CIRCA Planner

1
2

3
4

5
6 1

2
3

4
5

6
7

8
9

10

0
1000
2000
3000
4000
5000
6000
7000
8000

Goals

Benign Events

Reachable Plan States

DAP Planner

Figure 18. DAP avoids state-space explosion on Eval-1 domains.
Classic CIRCA Planner

0
1

2
3

4
5

6 1
2

3
4

5
6

7
8

9
10

10

100

1000

10000

100000

1e+06

1e+07

1e+08

Goals

Benign Events

Runtime (ms)

DAP Planner

Figure 19. Classic CIRCA's runtime is exponential in the number of benign events.Note the logarithmic runtime scale.34

1
2

3
4

5
6 1

2
3

4
5

6
7

8
9

10

50
100
150
200
250
300
350
400
450

Goals

Benign Events

Runtime (ms)

Figure 20. DAP's runtime on Eval-1 domains is linear in the number of goals andbenign events.only uncertainty arises in the initial conditions. Multiple initial states are created byadding external features and randomly choosing value assignments to them. Therandomness serves only to build di�erent initial conditions. It is not important that theybe smoothly distributed throughout the space, since the names of the features involved,and their values, have no e�ect on goal achievement.On Eval-2 domains, DAP completely ignores the di�erences between the declared initialconditions, building only a single abstract start state. This yields substantial savings in thenumber of states enumerated and in the planner's runtime. For example, Figure 21a showsthe DAP plan for a Eval-2 domain declared with three goal predicates and three initialstates. The graph shows only one initial state because DAP never splits the state space onany of the predicates that di�erentiate the declared initial states. In contrast, Figure 21bshows the Classic planner's output, in which each of the initial states leads to a di�erentpath through the state-space.As this example implies, for Eval-2 domains DAP's plan size is constant with respect to thenumber of initial conditions, while the Classic plans grow linearly (see Figure 22).6.3. Eval-3 Domain: Required EventsThe Eval-3 domain class investigates planner performance when the planner must considerevents as critical elements of the path to the goal. To force the planner to rely on events in35

State 6

(G3 T)

State 10

(G1 T)

(G2 T)

(G3 F)

State 11

(G1 T)

(G2 F)

(G3 F)

State 8

(G1 F)

(G3 F)

State 6

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 T)

State 5

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 4

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 9

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 F)

State 8

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 7

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 2

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 12

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 F)

State 11

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 10

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 3

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)(a) DAP. (b) Classic.Figure 21. Plans for Eval-2 domain with 3 goals and 3 initial states.
Classic CIRCA Planner

1 2 3 4 5 6 7 8 9 10 1
2

3
4

5
6

7
8

9
10

0

50

100

150

Goals

Initial States

Reachable Plan States

DAP Planner

Figure 22. Plan size for Eval-2 domains with uncertainty in initial conditions.36

the planned path, we made each goal-achieving action include a single external predicate asa precondition. These external propositions could only be established by events; there areno suitable actions.The state of these external features determines the planner's choice of action. Wereplicated the actions so that, for each goal in the causal chain, there was one establishingaction enabled by each external proposition:8i;8j (make-instance 'action :name Achieve-Goal-i:preconds ((Gi F) (Gi�1 T) (Pj T)):postconds ((Gi T)))These actions are as before (cf. p. 30), but with the additional precondition (Pj T).Complicating matters further, we speci�ed new events that can make the externalpredicates false, or \delete" them, in addition to the original \adding" events from theEval-1 domain. (make-instance 'event :name Delete-i:preconds ((Pi T)):postconds ((Pi F)))We expect DAP to outperform Classic in this domain because it can avoid thinking aboutall the combinations of external predicate values. Still, the domain class is more complexthan Eval-1 because at least one external predicate (and event) must be relevant andconsidered to solve the problem. In fact, at any point in the state space, the planner needsto have exactly one external predicate true to be able to achieve the entire sequence ofgoals. Ideally, DAP would perform a single split on one external predicate and then rely onthat predicate and the correspondingly-enabled actions for the rest of the plan. This wouldmake DAP's plans only slightly larger than for the Eval-1 domains.Unfortunately, the current heuristic that chooses which splits to perform is not quite smartenough to take advantage of this structuring, and it occasionally chooses to split on adi�erent external predicate. Figure 23 shows that, for a three-goal Eval-3 domain, DAPhas chosen to �rst split on the external predicate P3. Since actions exist to take states with(P3 T) all the way to the goal, that should have been enough detail, but the heuristic doesnot realize this and splits on P2 later on.Even with this sub-optimal heuristic, DAP signi�cantly outperforms the Classic planner.Unlike the Classic planner, DAP does not enumerate the e�ects of all of the irrelevantevents. Figure 24 shows that the Classic plans blow up exponentially, as with Eval-1, whileDAP's grow at a much smaller, but apparently still exponential, rate. The runtime forboth planners is exponential, as shown in Figure 25.Note that the current heuristic code, which arbitrarily orders the propositions chosen forsplits, often does as poorly as possible for DAP. So the exponential runtime here is verymuch a worst case. We are now working to improve the heuristic behavior, as discussed inSection 7. 37

4*

2*

6*
State 10

(G3 T)

State 179

(G1 T)

(G2 T)

(G3 F)

(P2 T)

(P3 T)

2*

State 204

(G1 T)

(G2 T)

(G3 F)

(P2 F)

(P3 T)

2*

State 259

(G1 T)

(G2 T)

(G3 F)

(P2 F)

(P3 F)

2*

State 180

(G1 T)

(G2 F)

(G3 F)

(P2 T)

(P3 T)

2*

State 205

(G1 T)

(G2 F)

(G3 F)

(P2 F)

(P3 T)

2*

State 260

(G1 T)

(G2 F)

(G3 F)

(P2 F)

(P3 F)

2*

State 284

(G1 T)

(G2 T)

(G3 F)

(P2 T)

(P3 F)

2*

State 285

(G1 T)

(G2 F)

(G3 F)

(P2 T)

(P3 F)

State 86

(G1 F)

(G3 F)

(P3 F)

4*

State 85

(G1 F)

(G3 F)

(P3 T)

Figure 23. DAP solves a 3-goal Eval-3 domain with sub-optimal split choices.38

Classic CIRCA Planner

1
2

3
4

5
6

7 1
2

3
4

5
6

7

0

500

1000

1500

Goals

Ext Preds

Reachable Plan States

DAP Planner

Figure 24. Plan size for Eval-3 domains with required events.
Classic CIRCA Planner

1
2

3
4

5
6

7 1
2

3
4

5
6

710

100

1000

10000

100000

1e+06

Goals

Ext Preds

Runtime (ms)

DAP Planner

Figure 25. Runtime for Eval-3 domains with required events.39

0

50

100

150

200

250

300

350

1 2 3 4 5 6

S
ta

te
s

External Predicates

Classic - Reachable
DAP - Reachable

DAP - Enumerated

Figure 26. Detailed state space performance for a 4-goal Eval-3 domain.Taking a slice of Figure 24 at four goals, Figure 26 shows more clearly how DAP's statespace is growing exponentially, but more slowly than Classic's. We have also included anew metric of DAP performance, the total number of enumerated states, to show theexponential work DAP is doing. The enumerated states metric includes those states thatare split and discarded during the DAP search process. For Classic, the number ofenumerated states is the same as the number of reachable states for all domains withoutpreemption or backtracking (which includes all of the domains discussed here).There is an interesting crossover point in Figure 26 showing that, for less than 3 externalpredicates, DAP can actually enumerate more states than Classic. This case occurs whenDAP's splitting process, which builds new more-detailed states and discards oldoverly-abstract ones, actually builds more states than are reachable in the fully detaileddomain (which is enumerated by the Classic planner). Section 6.6 investigates this type ofanomaly in more detail. Note, however, that the number of reachable states in the �nalDAP plan is always smaller than the Classic plan, for these domains.6.4. Eval-4 Domain: Complex Event InterleavingBy modifying the Eval-3 domain class slightly, we produced a new class designed tohighlight DAP's ability to abstract the state space in a non-homogeneous fashion. That is,DAP can include a feature in some parts of the space, and ignore it in others. Eval-4domains consist of a set of goal-achieving actions that each require a di�erent externalpredicate: 40

8i (make-instance 'action :name Achieve-Goal-i:preconds ((Gi F) (Gi�1 T) (Pi T)):postconds ((Gi T)))Thus an n-goal Eval-4 domain also has n events in the success path, and at some pointeven the DAP planner will have to consider all n external predicates. As illustrated by theexample in Figure 27a, however, DAP can limit the propagation of those externalpredicates so that it still does not consider the exponential set of their combinations. TheClassic CIRCA planner must enumerate all combinations, and builds plans like that shownin Figure 27b. The overall performance results are shown in Figure 28.An interesting feature of the plans built by Classic points out another characteristic of thecurrent search heuristic: the heuristic does not consider events in its projection of possiblepaths. As a result, the Classic planner will not choose any action until all of the externalpredicates have been made true by events. This is reected in Figure 27b by the verticalbanding structure highlighted with bold separating lines. Each of the fourtightly-connected bands of states corresponds to the full set of external predicatecombination for each of the possible states of the three goals. For example, the upper rightband corresponds to all the values of P1, P2, and P3 with none of the goals true. Only onceState 7 is reached, and all the external predicates are true, does the heuristic recognize apath of actions to the goal. We will see this behavior reected even more clearly in thenext domain, and discuss more implications below in Section 6.5.2.6.5. Eval-5 Domain: Eval-4 with No Deleter EventsThe Eval-5 class of domains was formed by simply removing the \deleter" events fromEval-4. These events, which complicate matters by deleting the external predicates thatare required for action preconditions, forced Classic to consider all combinations of theexternal predicates. By eliminating the deleters for those predicates, Classic can justreason about the states that result as they are made true by events, and they will neverthence become false. This, combined with the aforementioned heuristic preference, leadsClassic to build plans with the distinctive structure illustrated in Figure 29b. Here, in thefour-goal Eval-5 domain, the Classic planner only chooses to act once all of the externalpredicates have been made true by events. DAP, on the other hand, has built a morecomplex plan interleaving selected actions with expected events, as shown in Figure 29a.Because DAP can end up splitting on several predicates in these domains, it can enumeratemany of the combinations of those predicate values (albeit in a \local" fashion, since splitsare not global across the state space, as the abstract representation is heterogeneous).Since all of the external predicates must be speci�ed at some point to �nd thegoal-achieving path, DAP is forced to split on each one in at least some areas of the searchspace. In this challenging environment, the DAP overhead (that results from starting withabstract states and progressively re�ning them) overwhelms the advantages it has over theClassic planner. Figure 30 shows the state-space and runtime performance metricsindicating that Classic is signi�cantly better in these Eval-5 domains.41

2*

State 415

(G1 F)

(G2 T)

(G3 F)

(P1 F)

(P3 F)

2*

4*

4*

State 110

(G1 F)

(G2 F)

(G3 F)

(P1 F)

2*

6*
State 10

(G3 T)

State 269

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 345

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 389

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 223

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 224

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 200

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

2*

2*

2*

State 390

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 364

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

State 322

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

State 244

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

State 346

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 270

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 141

(G1 F)

(G3 F)

(P1 T)

State 414

(G1 F)

(G2 T)

(G3 F)

(P1 F)

(P3 T)

State 3

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 6

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 4

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 1

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 2

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 5

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 11

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 30

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 14

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 25

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 27

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 28

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

State 18

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 F)

State 21

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 F)

State 23

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 F)

State 24

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 F)

State 19

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 F)

(P3 T)

State 15

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 F)

(P3 T)

State 22

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 F)

(P3 T)

State 26

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 F)

(P3 T)

State 20

(G1 T)

(G2 T)

(G3 T)

(P1 F)

(P2 T)

(P3 T)

State 16

(G1 T)

(G2 T)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 12

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 17

(G1 T)

(G2 T)

(G3 T)

(P1 T)

(P2 T)

(P3 T)

State 13

(G1 T)

(G2 T)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 9

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 7

(G1 F)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 T)

State 8

(G1 F)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 T)

State 10

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 T)

(P3 F)

State 29

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 T)

(P3 F)

State 31

(G1 T)

(G2 F)

(G3 F)

(P1 F)

(P2 F)

(P3 F)

State 32

(G1 T)

(G2 F)

(G3 F)

(P1 T)

(P2 F)

(P3 F)

(a) DAP. (b) Classic.Figure 27. Plans for Eval-4 domain with 3 goals.42

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7

R
un

tim
e

Goals

Classic CIRCA Planner
DAP Planner

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

R
ea

ch
ab

le
 P

la
n

S
ta

te
s

Goals

Classic CIRCA Planner
DAP Planner

(a) Runtime (ms). (b) Reachable States.Figure 28. Eval-4 domain shows DAP using non-homogeneous abstraction to advantage.6.5.1. Implications of Heuristic Behavior on the DAP PlannerThe DAP planner actually plans less e�ciently for this set of scenarios. This ine�ciencyarises because DAP considers state re�nement on a feature-by-feature basis. In turn, thiscauses it to add states to its NFA that are not, in fact, reachable. This can be seen inFigure 29a. Consider State 207 in this illustration. The feature set for this state is ((G1T)(G2 T)(G3 F)(G4 F)(P1 T)(P2 F)(P3 F)). The DAP planning algorithm considersthis state to be (possibly) reachable from the initial state by means of an event thatestablishes P1 and an action that establishes G1. However, if one considers the underlyingdomain description, one can see that this state is not, in fact, reachable. First, in this stateG2 is true. But G2 is false in the initial state and there is no transition on a path from theinitial state (101) to State 207 that establishes G2. So if we actually consider executionpaths, we see that State 207 is unreachable.However, the DAP planner never simulates the execution of plans from the initial state,instead operating in an abstract space alone. In the abstracted representation of this plan,State 207 appears reachable. Further, the DAP planner has no reason to look more closely:it has successfully determined what to do in the event that CIRCA is in a state consistentwith State 207. In that event, it should simply wait for an event to carry it to somewherefrom which it can reach the goal state, a state in which either P3 is true or P2 is true(State 258 or 350).DAP CIRCA would behave di�erently if it were unable to identify a course of action totake in this state. In that case, it would further re�ne the plan in order to determine thatthe state was unreachable.In most of the cases we have examined, the DAP algorithm behaves acceptably. As wehave pointed out, all that happens is that the planner considers contingencies that do notarise. In our experience, there are not enough of these contingencies to make the planner43

3*

3*

4*
State 8

(G4 T)

State 332

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 331

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 F)

State 315

(G1 T)

(G2 T)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

State 255

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P3 T)

(P4 T)

State 254

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P3 T)

(P4 F)

State 238

(G1 T)

(G2 T)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 T)

State 350

(G1 T)

(G2 T)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 F)

State 207

(G1 T)

(G2 T)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 F)

State 368

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 T)

(P3 F)

(P4 T)

State 223

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P3 F)

(P4 T)

State 367

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 T)

(P3 F)

(P4 F)

State 222

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P3 F)

(P4 F)

2*

State 269

(G1 T)

(G2 F)

(G4 F)

(P1 T)

(P2 T)

2*

State 394

(G1 T)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

State 414

(G1 T)

(G2 F)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P4 T)

State 413

(G1 T)

(G2 F)

(G3 T)

(G4 F)

(P1 T)

(P2 F)

(P4 F)

State 124

(G1 F)

(G4 F)

(P1 T)

State 101

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

State 15

(G1 T)

(G2 T)

(G3 T)

(G4 T)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 14

(G1 T)

(G2 T)

(G3 T)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 13

(G1 T)

(G2 T)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 12

(G1 T)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 11

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 T)

State 19

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 T)

(P3 T)

(P4 T)

State 16

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 T)

(P4 T)

State 20

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 F)

(P3 T)

(P4 T)

State 9

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 F)

(P4 T)

State 17

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 T)

(P3 F)

(P4 T)

State 6

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 F)

(P4 T)

State 2

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 F)

(P3 F)

(P4 T)

State 10

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 T)

(P4 F)

State 18

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 T)

(P3 T)

(P4 F)

State 7

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 T)

(P4 F)

State 3

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 F)

(P3 T)

(P4 F)

State 8

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 T)

(P3 F)

(P4 F)

State 4

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 T)

(P3 F)

(P4 F)

State 5

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 T)

(P2 F)

(P3 F)

(P4 F)

State 1

(G1 F)

(G2 F)

(G3 F)

(G4 F)

(P1 F)

(P2 F)

(P3 F)

(P4 F)

(a) DAP. (b) Classic.Figure 29. Plans for Eval-5 domain with 4 goals and no external predicate deleter events.44

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8

R
un

tim
e

(m
s)

Goals

Classic CIRCA Planner
DAP Planner

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

S
ta

te
s

Goals

Classic - Reachable
DAP - Reachable

DAP - Enumerated

(a) Runtime (ms). (b) State-space size.Figure 30. Eval-5 domains with no deleter events shows Classic CIRCA outperformingDAP planner.behave badly in general. However, in this domain the planner creates a large set ofunreachable states, leading to bad performance.6.5.2. Implications of Heuristic Behavior on the Classic PlannerThe distinction between the plans of the two CIRCA planners on Eval-4 and Eval-5domains is actually an artifact of the di�erent ways they interact with the heuristic graphalgorithm. In the case of the Classic CIRCA planning algorithm, the heuristic graph \tells"CIRCA that it is pointless to plan any actions until a sequence of events have carried theautomaton to a favorable state from which to begin acting. On the other hand, the DAPplanner, because it abstracts and re�nes on a feature-by-feature basis, can introduceunnecessary states into its NFA.As we saw in the Eval-4 and Eval-5 domains, the current search heuristic does not takeinto account the possibility of using temporals or events to achieve goals. So, in the initialstate of a Eval-4 domain, when it tries to �nd a path from the current state to the goalstate, it fails. In the Classic planner, where splits are not an option, the heuristic is saying\it's hopeless here; you might as well just do nothing." Fortunately, the appropriate eventsare then applied and the planner, in a depth-�rst fashion, �nds the later states in whichactions are applicable and can lead directly to the goal.Note that this says something interesting about prepositioning problems | it introducesan asymmetry into how Classic CIRCA treats such problems. On the one hand, ClassicCIRCA is quite smart about prepositioning assets in order to avoid bad outcomes (i.e.,making failure unreachable). However, with the present heuristic, Classic CIRCA is notsmart about prepositioning itself to achieve goals by fortuitous events or temporaltransitions. Since the heuristic graph doesn't include nonvolitional transitions, it is unable45

(make-instance 'action :name "Achieve-P1":preconds '((P1 F)):postconds '((P1 T)))(make-instance 'event :name "Achieve-G1":preconds '((G1 F) (P1 T)):postconds '((G1 T)))(setf *goals* '((G1 T)))(setf *initial-states*(list (make-instance 'state:features '((P1 F) (G1 F)))))Figure 31. A simple domain illustrating the di�culties of prepositioning for fortuitousevents.to see that there is a point to doing something so that a later event will take it to the goalstate.For example, consider the domain shown in Figure 31. Here, the planner must decide totake the Achieve-P1 action before the Achieve-G1 event in order to reach the goal (G1T). On �rst encountering the initial state, Classic CIRCA will not notice that it isworthwhile to do the Achieve-P1 action. In fact, it builds a safe but sub-optimal plan thatsimply loops in the initial state, thinking that the goal is not reachable. Then, becauseboth the DAP and Classic planners run within an outer loop that attempts to �nd a safeplan that achieves all of the goals, the Classic planner will backtrack to search for another,more goal-achieving plan. Once the planner backtracks, it chooses action Achieve-P1 asthe only remaining alternative for the initial state, and then successfully realizes that thegoal is now reachable via the Achieve-G1 event. Essentially, the heuristic was not useful in�nding this goal-achieving plan, and the planner \stumbles" onto the goal using brute-forcebacktracking search.6.6. Eval-6 Domain: Expensive Splitting on GoalsAs noted earlier, the DAP algorithm begins by splitting the state space on all the declared*goals*. In situations where this splitting is unnecessary because some goal predicatevalues are never reachable, the Classic planner can outperform DAP because it will onlyconsider reachable states. To demonstrate this behavior, the Eval-6 domain class is formedusing only the goal-achieving actions from Eval-1 and then declaring all the goal predicatesin *goals*. For an n-goal Eval-6 domain, DAP splits on the goals to form at least 2nstates. In contrast, the Classic planner's state space is not directly a�ected by the *goals*declaration, and it creates only reachable states. If, for example, all the goals just happento be true in the initial state, DAP will still generate 2n states while Classic will generate46

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(m
s)

Goals

Classic CIRCA Planner
DAP Planner

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

P
la

n
S

ta
te

s

Initially True Goals

DAP & Classic - Reachable
DAP - Enumerated

(a) Runtime with 1 initially-true goal. (b) State space with 10 goals.Figure 32. Eval-6 domains with many *goals* shows Classic outperforming DAP.exactly one state. Eval-6 is the most extreme case where DAP's initial splitting on goalpropositions is harmful: all the goals are declared in *goals* and they are all true in theinitial state, so that they could actually be ignored in domains in which goals cannot beundone.This distinction may help clarify the di�erence between the total number of statesenumerated by the planner and the number of reachable states in the �nal plan. When ngoals are declared, DAP will enumerate at least 2n states, but only a few of them may turnout to be reachable. In simple domains without failures and backtracking, the Classicplanner enumerates only reachable states.7. Future DirectionsWe have identi�ed a number of interesting directions for future work on the CIRCAarchitecture. On the theoretical level, we are interested in improving the expressiveness ofCIRCA problem descriptions, in order to expand the set of problems CIRCA can tackle.We have also considered allowing more exible state re�nement in the DAP planningalgorithm; this may be useful in distributed planning problems and in problems wherethere are features with very large state spaces. In the experimental evaluation work, wehave identi�ed cases that mislead the current heuristic function, causing the DAP plannerto perform badly. We have identi�ed solutions to this problem and plan to improve theheuristic accordingly. At the same time we are exploring applications of the CIRCAarchitecture for mission-critical planning: autonomous spacecraft for NASA deep spacemissions [12]; Unmanned Air Vehicles (UAVs) for both ground attack and reconnaissanceapplications; and mobile robots for military Small Unit Operations.47

7.1. Extending CIRCA's ExpressivenessAt the same time that we have been working to increase the e�ciency of CIRCA'splanning, we are working to relax limits on its expressiveness. In doing this we have beendriven by consideration of the scenario outlined by Gat in his paper \News From theTrenches: An Overview of Unmanned Spacecraft for AI" [4].In this paper, Gat presented a planning scenario from the Cassini mission that he arguedno current AI planning system could tackle. The problem concerns the Saturn orbitalinsertion of the Cassini spacecraft. In order to successfully navigate, the Cassini spacecraftmust have an inertial reference unit (IRU) powered up and functioning. The spacecraft hasa primary and a secondary IRU. The problem is to foresee the possibility of a primary IRUfailure and warm up both IRUs early enough that they will be available for navigation atthe time of orbital insertion.CIRCA is quite capable of planning to warm up both IRUs, provided that it is informedthat doing orbital insertion without guidance is a failure and that the primary IRU canfail. CIRCA can do this because, unlike most other planners, 9 CIRCA considers and plansagainst, external events. CIRCA can warm up the IRUs early enough, because of itstemporal reasoning.However, this scenario has led us to consider two shortcomings of the current CIRCAapproach. First, CIRCA considers exogenous processes only as threats, rather than asopportunities. CIRCA's planner only chooses either to preempt exogenous processes orallow them to happen. Accordingly, the current CIRCA world model provides only lowerbounds on the delay of temporal transitions. This makes it impossible for CIRCA to relyon external processes (like the warming of an IRU), because doing so requires CIRCA toreason about the upper bound on the duration of the warming process.A second shortcoming has to do with the lack of a systemwide clock. Currently, CIRCAcan reason only about duration relative to the time it enters a particular state. In order toproperly meet deadlines, as in this example, where the IRUs must be warmed prior toorbital insertion, the RTS must be able to act at an appropriate time relative to a plannedfuture event.We have developed preliminary solutions to the above two problems. The existingtemporal model already takes into account some upper bounds | those on the duration ofactions. We plan to expand the model to include reliable temporals, with upper bounds ontheir time of completion, together with state-encoding of the progress of those processes.We are also addressing the problem of CIRCA not having a systemwide clock. We do notwant to abandon the unclocked executive, because inclusion of global time into the statespace can cause it to explode (see comparison to Kabanza's execution model earlier). Whatwe would like to do is to provide chosen clock signals for particular times to the RTS. It iscertainly possible to provide such signals | for most applications like autonomous9With the exception of Blythe's [2] and Kabanza's [8].48

spacecraft, there will be a system or mission clock. What we need to be able to do is toidentify important times and set up signals to the RTS accordingly. The RTS will thendetect these signals like any other state feature. Our preliminary investigations suggestthat we can detect the need for such features through search failures in the AIS.Overcoming these expressive limitations is an important area of ongoing theoreticalinvestigation at HTC. We hope to begin experimenting with solutions to these problemssometime this year.7.2. More Flexible State Re�nementIn Section 3, we described experiments involving manually planning in a hypotheticaldistributed planning domain. Although these \thought experiments" were done assumingCIRCA's base level planning algorithm (rather than DAP), we observed that DAP couldbe improved if it were allowed to split states based not only into all the possible values of adomain of a feature, but to split into \F has value V" and \F has any other value."Consider the following example, based on the multi-arm Puma domain of Section 3: AsAgent-A is planning (abstractly), it realizes at some point that it needs to split todetermine whether the feature Location-of-A has the value at-box. This value isimportant because, if it holds, Agent-A realizes that an important precondition for thesynchronized packing action is satis�ed. If the agent is anywhere else, its location has noe�ect on its choice of action. So, essentially treating an n-ary feature as a binary feature issu�cient for Agent-A to complete its planning. If the DAP planning algorithm could treatall locations other than at-box as equivalent, it could substantially reduce its overall statespace.It appears to be impossible for Agent-A to know that a given binary state re�nement issu�cient the �rst time it comes up, since other paths may be discovered later that requiremore re�nement of the \anything else" abstract value. Still, there should be no harm intrying to avoid extra state enumeration by starting with a binary split and adding detailonly when necessary. New heuristics would certainly be needed to guide the additionalsplitting functionality.7.3. Improving the Heuristic FunctionThe current heuristic function, based on the operator-proposition graph, is a clearimprovement over the original depth-bounded lookahead heuristic of CIRCA. However, asour experiments have shown, there are cases that mislead the heuristic, leading the plannerto waste a great deal of computational e�ort (cf. Section 6.3). In future work we intend toimprove the heuristic function to avoid some of these pitfalls.The heuristic in its current form does not actually rank action assignment and statere�nement operations on degree of desirability. Instead it simply partitions the set ofpossibly applicable actions and splits into those that might take the agent towards its goaland those that will not. In most of the engineered domains, this was su�cient.49

When we started to work on the arti�cial domains for evaluation, however, we encounteredcases where this crude pruning of actions and splits was not su�cient. In particular, weencountered domains where:1. There were multiple possibly-applicable actions and2. Each such action required multiple state re�nements in order to be applied.In this situation what went wrong was simple: the heuristic would choose to re�ne thestate on one feature that would enable an action, a1. Then the re�ned state would bereconsidered and a second feature would be chosen for further re�nement. Unfortunatelythe heuristic would not bias the choice of feature towards a second feature that would alsomake a1 applicable. Instead, the heuristic would make an arbitrary choice and often wouldchoose a feature that was not one of a1's preconditions, but rather a precondition for somedi�erent action a2. Indeed, because of arbitrary features of the code (the order in whichfeatures were de�ned in the domain descriptions), the heuristic would almost always makesuch a bad choice.We intend to improve the choice of state re�nements by using cost information inside theoperator-precedence graph. When choosing a feature for state re�nement, we will traversethe graph top-down, choosing a min-cost branch at each node. This should signi�cantlyimprove the behavior of the DAP planner on examples like those in Section 6.3. We havealready designed this improved heuristic function and are in the process of implementing it.8. ConclusionsThe DAP technique provides major advantages, including:� The selection of which features to \abstract away" is performed automatically duringplanning.� The abstractions are local, in the sense that di�erent parts of the state space may beabstracted to di�erent degrees.� The abstractions preserve guarantees of system safety.� The planning system need not plan to the level of fully-elaborated states to constructa feasible, executable plan.In all but the most contrived domains, DAP dramatically outperforms the Classic CIRCAplanner, generating much smaller state spaces and �nal plans using much less computationtime. DAP represents a signi�cant new contribution to the planning �eld, bringingpractical automated abstraction to bear on the complexity problems that have longprevented successful application of this technology. We anticipate that further developmentand re�nement of the DAP concept will lead to major improvements in our ability to applyplanning technology to practical, large-scale domains.50

References[1] A. Barrett and D. Weld, \Partial Order Planning: Evaluating Possible E�ciencyGains," Arti�cial Intelligence, vol. 67, no. 1, pp. 71{112, 1994.[2] J. Blythe, \A Representation for E�cient Planning in Dynamic Domains withExternal Events," in the AAAI workshop on \Theories of Action, Planning andControl: Bridging the gap", July 1996.[3] E. H. Durfee, Coordination of Distributed Problem Solvers, Kluwer Academic, 1988.[4] E. Gat, \News From the Trenches: An Overview of Unmanned Spacecraft for AI," inAAAI Technical Report SSS-96-04: Planning with Incomplete Information for RobotProblems, I. Nourbakhsh, editor. American Association for Arti�cial Intelligence,March 1996. Available at http://www-aig.jpl.nasa.gov/home/gat/gp.html.[5] M. L. Ginsberg, \Dynamic Backtracking," Journal of Arti�cial Intelligence Research,vol. 1, pp. 25{46, 1993.[6] R. P. Goldman, D. J. Musliner, M. S. Boddy, and K. D. Krebsbach, \The CIRCAModel of Planning and Execution," in Working Notes of the AAAI Workshop onRobots, Softbots, Immobots: Theories of Action, Planning and Control, 1997.[7] R. P. Goldman, D. J. Musliner, K. D. Krebsbach, and M. S. Boddy, \DynamicAbstraction Planning," in Proc. Nat'l Conf. on Arti�cial Intelligence, pp. 680{686,1997.[8] F. Kabanza, M. Barbeau, and R. St-Denis, \Planning Control Rules for ReactiveAgents," Technical Report 197, Computer Science Dept., University of Sherbrooke,1997.[9] D. McDermott, \A Heuristic Estimator for Means-Ends Analysis in Planning," inProc. Third Int'l Conf. on Arti�cial Intelligence Planning Systems, pp. 142{149, 1996.[10] D. J. Musliner, M. S. Boddy, R. P. Goldman, and K. D. Krebsbach, \The LinkBetween Distributed Planning and Abstraction," in Working Notes of the AAAI FallSymposium on Model-Directed Autonomous Systems, 1997.[11] D. J. Musliner, E. H. Durfee, and K. G. Shin, \World Modeling for the DynamicConstruction of Real-Time Control Plans," Arti�cial Intelligence, vol. 74, no. 1, pp.83{127, March 1995.[12] D. J. Musliner and R. P. Goldman, \CIRCA and the Cassini Saturn Orbit Insertion:Solving a Prepositioning Problem," in Working Notes of the NASA Workshop onPlanning and Scheduling for Space, October 1997.[13] E. Pednault, \Adl: Exploring the middle ground between Strips and the situationcalculus," in First International Conference on Principles of KnowledgeRepresentation and Reasoning. Morgan Kaufmann Publishers, Inc., 1989.51

[14] E. D. Sacerdoti, \Planning in a Hierarchy of Abstraction Spaces," Arti�cialIntelligence, vol. 5, no. 2, pp. 115{135, 1974.

52

Appendix A.The CIRCA Temporal Model

53

This section presents the temporal model used by the CIRCA state-space planner to reasonabout transition timing information and form guarantees that plans will avoid certaintypes of failures. Timing information for a CIRCA plan is derived from bounds on thedelay associated with arcs out of a node in the NFA, which are taken directly from thedelay bounds for the corresponding transitions. The latency of a transition arc with respectto a node in the plan is the time before that transition will occur, if no other transitionoccurs �rst, once some state in the set corresponding to that node has been reached.Latency bounds are path-dependent, which breaks the Markov assumption for nodes. Werestore this property by calculating and employing path-independent bounds on latency inproviding timing guarantees (most signi�cantly, in determining preemption of transitionsby actions).A.1. Notation� States: s 2 S.The set of states associated with a node in the plan graph we denote by S 2 2S .There being a 1 : 1 relationship between sets S and nodes, we will use the set S torefer to the node.� Transitions: t 2 T{ pre(t) { preconditions of transition t{ S j= 3t � 9s 2 S; s j= pre(t) { t is possibly enabled at node S{ dmax(t) { maximum delay for t{ dmin(t) { minimum delay for tThe fact that latency bounds are calculated based on paths means that we mustdistinguish between arcs and the associated transitions.� Arcs: a 2 A.{ transition(a) 2 T { the transition label on a{ origin(a) 2 2S { the node from which a leads{ result(a) 2 2S { the resulting node.We will employ two syntactic substitutions:{ dmin(a), for dmin(transition(a)) (also dmax(a), mutatis mutandis){ a 2 (S; S 0), for origin(a) = S ^ result(a) = S 0� Action assignments:{ action(S) { the action assigned to state S54

A.2. Transition TimingWe assume that the \clock" for transition delay starts as soon as an enabling node (one inwhich pre(t) is possibly satis�ed) is entered, and stops only when either the transitionoccurs, or a node is entered in which pre(t) is not possibly satis�ed. In particular, the clockkeeps running across other transitions between enabling nodes. This assumption applies toall transitions, volitional and nonvolitional.A.2.1. Events and TemporalsFor nonvolitional transitions (temporals and events), the bounds [dmin; dmax] are speci�edas part of the domain description. In the current implementations, those bounds are:� temporals: [d;1]� events: [0;1]A.2.2. ActionsActions are more complicated. The bounds on delay until an action happens aredetermined by the current TAP schedule, and by the delay associated with the actionitself. One corollary of this statement is that the transition bounds for a given action are toa considerable extent determinable by the AIS.Let's take a more detailed look at action timing. Under the control of a TAP schedule, theRTS takes a \snapshot" of the current state. It then evaluates that snapshot according tosome test or sequence of tests, and decides whether or not to perform a given action. Weassume complete and correct knowledge of the current state, so determination of whataction to perform will be correct. The question is, how long will it take? There is aphysical minimum time before the action could have an e�ect, consisting of the minimumtime required for a test and the time required for the action itself. This is a \minimumupper bound" on the action (a lower bound on any speci�able dmax).The precise execution of the TAP schedule is something we don't need to deal with at thispoint. For example, we neither need nor want to think about whether a single snapshot istested for several actions, or whether each action takes its own snapshot. We assume thattaking the snapshot, as opposed to testing, takes no time to accomplish. If this assumptionis relaxed, there's another scheduling optimization involved about when snapshots gettaken and which tests are done on which snapshot. The characteristic that must bepreserved is that the test for a given action is performed on a succession of snapshots,taken with no more than a speci�ed maximum separation. The maximum delay before theaction takes e�ect is then the sum of that maximum separation, the test delay, and thetime required for the action itself.dmax for actions is not an intrinsic feature, it's a parameter set by the planner in theplanning process. Faced with a temporal transition to preempt, the planner can� Choose an old action with a (previously speci�ed) su�ciently small dmax for thatnode.� Choose an old action with an insu�ciently small dmax and specify a new, tighterbound. 55

� Choose a new action for the node and specify a su�ciently small dmax.� Split the state, etc...Note that any or all of these plan modi�cations may require a new TAP schedule to begenerated. This suggests that the planner and scheduler should operate in fairly closesynchronization. The current TAP schedule limits the allowable values for dmax for a givenaction (which speci�cation in turn constrains the space of feasible schedules), while thesuitability or otherwise of an action to preempt a given transition (what was previouslycalled \applicability") is determined by that same speci�cation.Ghosting and Inappropriate Actions A further complication with actions is that thetest and action are not atomic. It is entirely possible for some nonvolitional transition tooccur between the time that the current state is evaluated and the time the action takese�ect. It is therefore possible for an action to be attempted in a state in which it is nottechnically \enabled."The classical planning community calls these plans \ill-formed." For CIRCA, we adopt asimilar convention, by de�ning the outcome of any such inappropriate action to be a failurestate. Some inappropriate actions can be avoided by ensuring that the relevant (temporal)transitions are preempted. Events leading to unsuitable states cannot be preempted. Thissituation can be planned around, e.g. by splitting the node (separating the action and theevent), splitting the event's destination (making the action be enabled in the result),choosing a di�erent action, or declaring the current state a failure state as well.A.3. De�nitionsPreemption of one transition by another at a node is de�ned in terms of the latencybounds Lmin and Lmax: preempts(t; t0; S) � Lmax(t; S) < Lmin(t0; S)In words: t preempts t0 in S i� t is guaranteed to occur before t0 once S is reached, nomatter how you got there.The maximum dwell of a node S is relevant because we can guarantee that no transitionout of that node will take place with a longer delay.Dmax(S) = mina2(S;X)Lmax(transition(a); S)The lower bound on latency for a transition t at a node S is the lower bound on delay for t,unless there are \enabling predecessors" (de�ned below), in which case the lower bound onlatency is the minimum value derivable from those predecessors.Lmin(t; S) = (dmin(t) if enabling-preds(t; S) = ;minS02enabling-preds(t;S)L�min(t; S; S 0) otherwise56

The lower bound on latency for S derivable from an enabling predecessor S 0 is recursivelyde�ned as Lmin(t; S 0), minus the maximum possible transition time from S 0 to S that doesnot follow transition of type t: T �max(S0; S; t).L�min(t; S; S 0) = Lmin(t; S 0)�min(Dmax(S 0); maxa2(S0;S)^transition(a)6=tLmax(transition(a); S 0))An enabling predecessor (enabling-preds) for t at S is any node S 0 at which t is enabled,from which S is reachable by an arc with some label other than t (otherwise the clockresets). enabling-preds(t; S) = fS 0jS 6= S 0; S 0 j= 3t ^ 9a 2 (S 0; S); transition(a) 6= tgThe upper bound on latency for t at S is the maximum delay dmax(t), unless there areenabling predecessors, et cetera.Lmax(t; S) = (maxS02enabling-preds(t;S)L�max(t; S; S 0) if8a; result(a) = S) origin(a) 2 enabling-preds(S)dmax(t) otherwiseThe upper bound on latency for S derivable from an enabling predecessor S 0 is recursivelyde�ned as Lmax(S 0) minus the minimum possible transition time from S to S 0.L�max(t; S; S 0) = Lmax(t; S 0)� mina2(S0;S)^transition(a)6=tLmin(transition(a); S 0)One of the interesting results of this timing model is that one can achieve \better thanreal-time" performance. Given a node with a troublesome temporal, say one where Lmin isless than any achievable dmax for the desired action(s), preemption can be guaranteed byensuring that the node is only reachable from nodes at which the action is enabled, andonly via temporal transitions with a su�ciently large Lmin. The current planner does notexploit this opportunity, and we have no immediate plans to do so.There are several simpli�cations we can make. We start by assuming thatLmax(t; S) = dmax(t) in all cases. This assumption preserves the correctness of the latencybounds and preemption calculations, by virtue of the fact that Lmax(t; S) � dmax(t). Thebound is weaker only in the somewhat peculiar \better-than-real-time" case describedabove.This leads to additional simpli�cations. Here is the complete set of revised de�nitions. Byassumption: Lmax(t; S) = dmax(t)For the maximum dwell, we use the assumption above, plus the fact that there is exactlyone action speci�ed for an node in the plan graph (dmax(no-op) =1):57

Dmax(S) = dmax(action(S))Lmin does not change. However, L�min does:L�min(t; S; S 0) = Lmin(t; S 0)� dmax(action(S 0))It doesn't matter whether result(action(S 0)) = S or not. Also note that the de�nition ofenabling-preds has not changed.A.4. AlgorithmCalculating Lmax and Dmax is reduced to lookup operations. The simpli�ed de�nition ofL�min above suggests a simple depth-�rst graph search, from nodes to their enablingpredecessors. The algorithm has an additional termination condition: terminate with abound of zero any time the summed \path cost" (dmax values for the appropriate actions)is greater than dmin(t). This termination condition allows this algorithm to complete evenin plans (graphs) with cycles: once the computed Lmin along any path drops to (or below)0, we're done.

58

Appendix B.Limitations of CIRCA

59

(1) (2)

(3) (4)

FAIL

FAIL

A = T
B = F

A = F

A = F
B = T

A = T
B = T

B = F

B-Fail

A-Fail

B-Fail

A-Fail

A-Falsify

B-FalsifyB-Falsify

A-Falsify

A-Establisher

No-op

B-Establisher

B-Establisher

Figure B.1. A simple problem unsolvable by the CIRCA planner.There are classes of real-time plans that CIRCA is unable to �nd because of the temporalreasoning it does. The problem arises because, instead of individually considering thepossible ways that the CIRCA NFA could reach a particular state, CIRCA simplycomputes worst-case bounds on how much time it has to preempt a particular transition.In this section we give a simple example of such a problem.Figure B.1 shows a simple, valid plan that CIRCA is unable to generate.10 In thissituation, there are two bad processes active, A-Fail and B-Fail. These temporaltransitions to failure are active when the corresponding feature has the value false. Thereare temporal transitions that falsify the corresponding propositions, A-Falsify andB-Falsify. The CIRCA agent has at its disposal the two actions A-Establisher andB-Establisher, which make the corresponding propositions true.The job of this simple controller is to react to the negation of A or B in a su�cientlytimely way to preempt the corresponding transitions to failure. The CIRCA agent starts inthe safe state, with the heavy outline, in the upper left corner of the diagram. Withsu�ciently fast actions, this is a valid CIRCA plan. Figure B.2 shows a trace of executionof this plan, illustrating that the plan is, in fact, safe.10This example is an abstraction of a problem in the Puma robot arm domain.60

2: 0 − 100, nil, nil, 0

4: 0, 0 − 100, nil, nil

3: nil, 0, 20000 − inf, nil

3: nil, 0, 9900 − inf, nil

1: nil, nil, 0, 0 − 100

2: 0 − 200, nil, nil, 0

4: 0 − 100, 0, nil, nil1: nil, nil, 0, 0 − inf

2: 0, nil, nil, 0 − inf

1: nil, nil, 10000 − inf, 0

3: nil, 0, 10000 − inf, nil

1: nil, nil, 0 − inf, 0

3: nil, 0, 0 − inf, nil2: 0, nil, nil, 20000 − inf

1: nil, nil, 0, 10000 − inf

2: 0, nil, nil, 10000 − inf

1: nil, nil, 0, 0

Figure B.2. A trace of the execution of the plan given in Figure B.1.61

The nodes in the graph are labeled by state number, followed by upper and lower boundson the amount of time subject to the various transitions (the entries are, in order, fora-fail, b-fail, a-falsify and b-falsify). For example, the root state of the trace indicates thatwe start execution in state 1. In state 1, a-fail and b-fail are not enabled (thecorresponding entries are nil), and 0 time has been spent subject to a-falsify and b-falsify.One of the nodes immediately following this one is the result of following the a-falsifytransition: CIRCA is now in state 2: a-fail is enabled; b-fail is not, nor is a-falsify. b-falsifyis enabled and at least 10,000 time units have run on its \clock"; no upper bound on thetime spent subject to this transition can be determined (so it will not be preemptible). Thetrace terminates when it reaches a state that is subsumed by one that has already beenconsidered.Why can't CIRCA �nd this simple, sound plan? The reason lies in the way the CIRCAplanners (both original and DAP) compute temporal bounds in order to determine whethertransitions will be preempted. When CIRCA considers whether a state is safe, it computesbounds on the latency of all temporals, based on all the possible ways of reaching thatstate. These bounds consider the best and worst cases for each transition independently.However, in order to determine that some plans, like the one in this example, are safe, onehas to consider the interaction between temporals.To see this, examine the trace in Figure B.2. In this trace, there are six nodes thatcorrespond to being in state (1). In each such node, either a-falsify or b-falsify ispreemptible. However, if we consider all possible ways of being in state 1, neither of thetwo temporals looks preemptible, because there is some way to reach state 1 that renderseach unpreemptible.Note that this is a problem of the CIRCA planner, not of the CIRCA execution model.The plan given in Figure B.1 is executable by the RTS. It is not necessary to consider howCIRCA reaches a state in order for it to execute the plan | only in order to determinethat it can be executed correctly.
62

