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Proc. 1998 Conf on Foundations of Computer-Aided Process Operations [FOCAPO]Applying a Procedural and Reactive Approach toAbnormal Situations in Re�nery ControlKurt D. Krebsbach and David J. MuslinerAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fkrebsbac,muslinerg@htc.honeywell.comAbstractOil re�neries literally provide the lifeblood for globaleconomic health, and disruptions to their operationshave major worldwide impact. We are developing alarge-scale intelligent re�nery control system to assisthuman operators in controlling re�neries during abnor-mal situations. Based primarily on reactive and pro-cedural approaches to intelligent behavior, the Abnor-mal Event Guidance and Information System (aegis)will interact with multiple users and thousands of re-�nery components to diagnose and compensate forunanticipated plant disruptions. Through intelligentautonomous behavior and improved human situationawareness, the aegis project is expected to have amulti-billion dollar annual impact on re�nery produc-tivity. This paper discusses lessons learned during theinitial prototyping e�orts of the goal-setting, planning,and plan execution components of aegis.IntroductionOne of the largest industrial disasters in U.S. historywas a $1.6 billion explosion at a petrochemical plant in1989. This accident represents an extreme case withinthe spectrum of major process disruptions, collectivelyreferred to as abnormal situations. While most abnor-mal situations do not result in explosions, they canbe extremely costly, resulting in poor product quality,schedule delays, equipment damage, reduced occupa-tional safety, and environmental hazards. The inabilityof automated control systems and plant operations per-sonnel to control abnormal situations has an economicimpact of at least $20 billion annually in the petrochem-ical industry alone.At the Honeywell Technology Center, we are buildingan intelligent, mixed-initiative re�nery control systemdesigned to dramatically reduce the frequency, severity,duration, and cost of abnormal situations. The Abnor-mal Event Guidance and Information System (aegis) isa large-scale distributed intelligent system speci�callydesigned both to assist operations personnel (e.g., bydisplaying the most useful information) and to take di-agnostic and compensatory actions autonomously.This paper describes a portion of the goal-setting,planning, and execution (gpe) components of aegis.Although a detailed description of the entire aegis sys-tem is beyond the scope of this paper, we consider

the requirements and constraints that guided our ap-proach, and evaluate the current prototype with respectto them. In particular, we report on the bene�ts andthe challenges raised in our attempt to satisfy the of-ten con
icting requirements inherent in the enormouslycomplex domain of oil re�ning.In the next section, we brie
y describe the currentstate of re�nery control and the associated problems.We then overview the aegis architecture, focus on thegoal-setting, planning, and execution components, anddiscuss the lessons learned in prototyping those func-tions.Background: Re�neries and ControlPetrochemical re�ning is one of the largest industrialenterprises worldwide. The functional heart of a re�n-ery, and the most economically critical component, isthe Fluidized Catalytic Cracking Unit (FCCU). As il-lustrated in Figure 1, the FCCU is primarily responsiblefor converting crude oil (feed) into more useful productssuch as gasoline, kerosene, and butane (Le�er 1985).The FCCU cracks the crude's long hydrocarbon molec-ular chains into shorter chains by combining the feedwith a catalyst at carefully controlled temperatures andpressures in the riser and reactor vessels. The resultingshorter chains are then sent downstream for separationinto products in the fractionator (not shown). The cat-alyst is sent through the stripper and regenerator toburn o� excess coke, and is used over again.Figure 2 illustrates how a typical state-of-the-art re-�nery is controlled. The Distributed Control System(DCS) is a large-scale programmable controller tied toplant sensors (e.g., 
ow sensors, temperature sensors),plant actuators (e.g., valves), and a graphical user inter-face. The DCS implements thousands of simple controlloops (e.g., PID loops) to make control moves based ondiscrepancies between setpoints (SPs) and present val-ues (PVs). For example, as depicted in Figure 1, thedotted line connecting the temperature sensor and theriser slide valve denotes that the position of the slidevalve is dependent on the temperature being sensed inthe riser. As the temperature drops, the slide valve willbe opened to increase the 
ow of hot catalyst. A typicalFCCU will have on the order of one thousand readable\points," and a few hundred writable \points." In addi-tion to PID control loops, the DCS can be programmed
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Figure 1: A Fluidized Catalytic Cracking Unit.with numerous \alarms" that alert the human operatorwhen certain constraints are violated (e.g., min/maxvalues, rate limits). \Advanced control" is the indus-try term for more powerful mathematical control tech-niques (e.g., multivariate linear models) used to opti-mize control parameters during normal operations.The human operators supervise the operation of thehighly-automated plant. This supervisory activity in-cludes monitoring plant status, adjusting control pa-rameters, executing pre-planned operations activities(e.g., shutting down a compressor for maintenance),and detecting, diagnosing, compensating for, and cor-recting abnormal situations. The operator has a viewof the values of all control points, plus any alarms thathave been generated. The actions the operator is al-lowed to take include changing SPs, manually assertingoutput values for control points, and turning on or o�advanced control modules.Abnormal SituationsDuring abnormal situations, all hell breaks loose. Mi-nor incidents may cause dozens of alarms to trigger, re-quiring the operator to perform anywhere from a singleaction to dozens, or even hundreds, of compensatory ac-tions over an extended period of time. Major incidentsmay precipitate an alarm 
ood, in which hundreds ofalarms trigger in a few seconds, leading to scrolling listsof alarm messages, panels full of red lights, and insis-tent klaxons. In these situations, the operator is facedwith severe information overload, which often leads toincorrect diagnoses, inappropriate actions, and majordisruptions to plant operations. If left uncontrolled,abnormal situations can be extremely costly, result-ing in poor product quality, schedule delays, equipmentdamage, reduced occupational safety, and environmen-tal hazards.
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MovesFigure 2: Re�nery Control without aegis.Because abnormal situations are so serious, manyregulatory and administrative structures are alreadyin place to help manage them. Primarily, operatorsare trained to respond to abnormal situations basedon extensive Standard Operating Procedures (SOPs)that are written down, checked, and updated regularly.The procedures can be quite long (dozens of pages),with lots of logical control structure and contingencies,since the exact state of the plant is almost never knownwith certainty. Many procedures involve sampling data,con�rming other readings, performing diagnostic tests,conferring with other plant personnel, and adjustingDCS control parameters. Some procedures apply to ex-tremely general contexts (e.g., we're losing air pressurefrom somewhere), while some are less general (air com-pressor AC-3 has shut down), and some are very speci�c(the lube oil pump for AC-3 has a broken driveshaft).AegisThe Abnormal Event Guidance and Information Sys-tem (aegis) is a large-scale distributed intelligent sys-tem designed primarily to improve responses to abnor-mal situations, both by automating some activities cur-rently performed by operations personnel and by im-proving human situation awareness. Illustrated in Fig-ure 3, aegis is a distributed software architecture basedon blackboard-style communications and several dis-tinguished application roles. Multiple application pro-grams, with varying levels of intelligence and abilities,may �ll roles including:State Estimator | Determines the state of theplant, at varying levels of abstraction, by fusing di-verse sensor data and other available information(e.g., prior control moves, known malfunctions, hu-man observations).Goal Setter | Decides which of the currently-threatened operational goals should be addressed.
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Figure 4: Re�nery Control with aegis.Planner | Develops plans to address threatenedgoals selected by Goal Setter.Executor | Executes plans, monitoring action out-comes and updating other aegis components onprogress towards goals.Communicator | Communicates e�ciently and ef-fectively with multiple plant personnel including DCSoperators and �eld personnel located outside the con-trol room.Monitor | Observes the performance of the aegiscomponents and may adjust or adapt the system'sbehavior in response to observed performance.These functions interact by exchanging information onshared blackboard data structures. The Plant Refer-ence Model blackboard captures descriptions of the re-�nery at varying levels of abstraction and from variousperspectives, including the plant's physical layout, thelogical processing unit layout, the operational goals ofeach component, and the current state and suspectedmalfunctions, with associated con�dence levels. Fig-ure 3 shows how aegis interacts with the existing sys-tem.

Advantages of aegisAegis emphasizes two main design concepts that formthe basis of many of its advantages over the state-of-the-art:Goal-centric (not Alarm-centric) Information |Raw data interpretation and alarm 
ood manage-ment are enormous tasks currently left to the boardoperator. In the midst of a plant upset, the operatorhas neither the time nor the information to prop-erly evaluate what is going on. A hallmark of theaegis approach is an abstraction of data and alarmsinto more useful information such as threatened op-erational goals, likely malfunctions and their con�-dence values, relevant symptoms, grouped processdata, and trends.Mixed-Initiative Plan Execution |Currently, besides being responsible for evaluatingthe plant state, board operators must choose appro-priate courses of action, perform each task or del-egate tasks to others, and monitor the progress ofthese tasks, while simultaneously reevaluating thenext context. Many of these tasks are easier for aegisto perform. For instance, aegis can perform anynumber of tasks as parallel threads, removing theserialization often imposed when the human opera-tor himself becomes a limited resource. Monitoringfor the expected e�ects of actions is also a tediousand error-prone task for an operator, but it is a sim-ple matter to make aegis procedures self-monitoring,with little or no loss of attention to concurrent activ-ities.GPE RequirementsIn this paper we focus speci�cally on the goal-setting,planning, and execution components of the larger aegissystem. We refer to this aggregate functionality as gpe.The major requirements placed on the gpe functionsinclude:Semi-autonomy | gpe is semi-autonomous andmixed-initiative: many of the actions it is designedto take can be performed either by aegis or by thehuman operator.Procedural Orientation | As discussed above, re-sponses to abnormal situations are dictated by for-mal procedures, many of which are already recordedin plant documentation.Reactivity | While not hard real-time, the re�nerydomain requires rapid responses (no more than a fewseconds) to rapidly changing environmental condi-tions; gpe must be able to quickly change its focusof attention and its plans at any time.Lack of Models | While some partial analyticaland simulationmodels exist for elements of re�neries,these models are not tremendously useful for gpe'stask for several reasons, including:� Abnormal situations, the focus of aegis, are pre-cisely the times when the plant is behaving outsideof its normal, modeled modes.



Figure 5: The Procedural Reasoning System Archi-tecture.� Existing models are not su�ciently detailed for�rst-principles generation of actions spanning largeupsets.GPE: A Procedural ApproachWe have chosen to prototype the core reasoning en-gine of aegis in C-PRS, the C-based version of theProcedural Reasoning System (Ingrand 1994; Ingrand,George�, & Rao 1992; George� & Lansky 1986). Asshown in Figure 5, knowledge in PRS is representedas a declarative set of facts about the world, togetherwith a library of user-de�ned knowledge areas (KAs)that represent procedural knowledge about how to ac-complish goals in various situations. Goals representpersistent desires that trigger KAs until they are sat-is�ed or removed. The intention structure representscurrently-selected KAs that are in the process of exe-cuting or awaiting execution, in pursuit of current goals.The PRS interpreter chooses KAs appropriate for cur-rent goals, selects one or more to put onto the intentionstructure, and executes one step from the current in-tention.We chose to use an integrated approach to goal set-ting, planning, and execution based on the AI commu-nity's past experiences with autonomous systems ap-plied to real-world domains (e.g., robotics). That expe-rience has shown that choosing a goal to pursue, plan-ning a course of action, and executing the steps of theplan are inevitably intertwined by the unpredictableand dynamic nature of real-world domains. Execu-tion failures, changing goals, di�cult planning prob-lems, and environmental changes all disrupt the ideal ofsimple forward information 
ow. If the gpe functionswere separated into distinct programs, the amount ofinformation constantly passing back and forth due tothe changing domain, plans, and goals would be over-whelming. In our integrated gpe approach, in contrast,those changes are kept largely local to gpe, so the C-PRS interpreter can be e�cient about managing thatinformation.Other features of PRS which have proven to be ex-tremely useful for this domain include the following:� The hierarchical, subgoaling nature of the proceduralrepresentation allows PRS to combine pieces of plansin novel ways, which is important for 
exible planexecution and goal re�nement.� Its ability to pursue multiple, goal-directed taskswhile at the same time being responsive to changingpatterns of events in bounded time.� Its ability to construct and act on partial (ratherthan complete) plans.� Its meta-level (or re
ective) reasoning capabilities,

an important feature for controlling the allocation ofprocessing resources, planning attention, and alter-native goal achievement strategies.� Its knowledge representation assumptions, which en-courage incremental re�nement of the plan (pro-cedure) library, an enormous advantage for large-scale applications.PRS and AEGISThe gpe world model consists of a database of facts andbeliefs. The database is populated with fairly static in-formation about the plant's physical layout and logicalconnections between plant components, as well as datadynamically requested regarding attributes and valuesof DCS points. The gpe can subscribe and unsubscribeto this data on an as-needed basis, but subscribes tosome types of information, such as the status of oper-ational goals and malfunction con�dence values, on apermanent basis.As this data changes at run-time, procedures fromthe plan library are triggered, and new procedural goalsare established. As procedures are selected to achieveprocedural goals, they are represented on PRS' inten-tion structure. A user-viewable representation is alsogenerated, and is available to the user through an inter-face called GPEView. From GPEView, an operatorcan view skeletal plans, authorize or cancel those plansprior to execution, assume responsibility for pieces ofthem, and so on. These plan modi�cations are then re-
ected in the PRS database, and are incorporated intothe procedure's runtime behavior.Many actions on the intention structure can be di-rectly executed by the gpe, given authorization fromthe user. These actions include actual DCS controlmoves, communication messages with �eld personnel,and requests for more data.Bene�tsOur PRS-based approach naturally provides severalbene�ts especially pertinent to handling abnormal sit-uations, which we brie
y outline in this section.Standard Operating ProceduresAn obvious bene�t to our approach is that much ofthe knowledge we wish to encode is already available inre�neries as paper SOPs. While it is clear that trans-lation from SOPs into PRS procedures is not trivial,they have provided us with a great deal of insight intothe role of the operator, the culture of the re�nery, andthe current state-of-the-art. We will discuss our obser-vations and suggested extensions to this basic model inthe next section.Parallel Goal AchievementDuring an abnormal situation, a human operator mustbe focused to properly respond, despite an avalancheof data, cascading e�ects, and a plethora of pending



tasks. This di�cult situation can tax even the mostexperienced operator's time, memory, and communica-tion constraints. The result: a wide variety of errorsand ine�ciencies in procedure execution.Because operators represent a scarce resource them-selves, SOPs are almost always expressed sequentially,to aid the operator in focusing on one thing at a time.gpe e�ectively has no such constraint, and can react tomultiple goals in parallel, while allowing the operator tofocus on the highest priority tasks requiring his atten-tion. An interesting corollary is that task prioritizationis only relevant for gpe tasks in cases of resource con-tention. In fact, in our analysis of plant procedures, in-stances of tasks requiring serial execution are relativelyrare once the operator is no longer the constraining re-source, often making gpe procedures of much shorterduration than their manually-executed counterparts.Context-Sensitive BehaviorPRS provides numerous ways to specify context-sensitive triggering of procedures. This is much more
exible than plant SOPs, in which one procedure is of-ten recommended to achieve a goal regardless of themany other factors comprising the current context. Forexample, one can specify multiple procedures to accom-plish the same goal of replacing lost combustion air: oneif the secondary pump is available, one if the air loss isbelow an important threshold, several if the root causeof the malfunction is not yet known, and so on. Whileseveral or all of these procedures might be relevant tothe goal, the context we describe can distinguish thosethat truly apply. Further, using (natively available) pri-orities, or user-de�ned metalevel reasoning, the inter-preter can intelligently select the most preferred amongthe resulting set of applicable procedures. Finally, tocombine the last two bene�ts, one can describe in themetalevel that the preferred behavior involves attempt-ing several of the applicable goal-achievement methodsin parallel.Action E�ect MonitoringMany of the hardest tasks for humans to perform re-liably involve monitoring the e�ects of earlier actions.Currently, operators must simply remember to checkprocess data at an appropriate later time to con�rmthat earlier actions are having their desired e�ects. Be-cause the delays between actions and their observablee�ects can vary widely, this presents a di�cult, andoften ignored, tracking problem.Fortunately, because PRS is not memory, time, orcommunication-constrained to any signi�cant degree,gpe procedures can quite easily be set up to be self-monitoring, as long as methods exist for con�rminggoal achievement. In our domain, these methods in-volve querying the DCS to con�rm temperature trends,pressure di�erentials, and the like, all of which are triv-ially available. Other more complex con�rmatory infor-mation can be obtained directly from the operator orother aegis components (e.g., state estimators), and

at least provide a safeguard against forgetting the con-�rmation altogether. Feedback from plant personnelpreliminarily indicates that this automatic monitoringfunctionality is among the most immediately and widelyuseful aspects of the PRS approach.In the following sections we discuss speci�c challengeswith our gpe approach, and some preliminary solu-tions.Mixed-Initiative Procedure ExecutionAs with most systems, gpe has competing require-ments. During an upset, it is important for gpe tobe constantly sensitive to the rapidly-changing plantstate, and to respond quickly. On the other hand, akey aegis design goal is maintaining user awareness.Unfettered, the lightning fast responsiveness of aegiscomputers could leave users bewildered about what ac-tions the system intends to perform or has already per-formed. We have spent signi�cant e�ort addressing thischallenge of e�ectively supporting mixed-initiative, re-active procedure execution. In the following subsec-tions we elaborate on the di�culties in using PRS for amixed-initiative system, and describe our current solu-tion.Lack of ProjectionBecause PRS is reactive, it does not look ahead to de-termine which procedure it will select to achieve a givengoal until that goal has been reached in the procedure.We believe this is \correct" from an engineering per-spective, because the precise method of achieving a goalshould not be determined until the full environmentalcontext is available for evaluating the alternatives. Thiscontext can only be known when the goal is posted, notbefore. However, this is insu�cient from the operator'sperspective, because it provides little insight into whatthe system is planning globally.There are three aspects to this problem, within thecontext of executing a single PRS procedure:� Future goal-achieving procedures are not yetselected. PRS procedures are, in the simplest se-rial case, executed like a normal computer program1.When PRS selects a procedure, it instantiates it, andsets the \program counter" at the �rst goal. Appli-cable procedures are determined to achieve that goal,and one is chosen. While this newly-chosen procedureis being executed however, selection of procedures forgoals beyond the program counter is deferred.� Future goals and actions are known but notavailable to the interpreter. Although the namesof goals and primitive actions beyond the programcounter are available in the procedure source codeby inspection, they are not available to the C-PRSinterpreter until the program counter arrives.1C-PRS also supports parallel goal achievement, but thatcapability does not a�ect this discussion.



� Future goals and actions are not necessarilymeaningful to the user. Even if future goals andactions could be accessed by the interpreter, someare at the wrong level to be relevant to the user (e.g.,binding a local variable), while others are not in aform useful to an operator (code), or easily translat-able into such a form. In general, it is not reasonableto expect the PRS procedure author to use namesand constructs that correspond to an operator's un-derstanding, and vice versa.Pseudo-ProjectionTo work around this problem, we have developed a\pseudo-projection" method that allows gpe to appearpartially projective without making any changes to thereactive PRS interpreter. Pseudo-projection allows theoperator to see as far into the future, and with asmuch detail, as is possible given the reactive proceduralparadigm.We implement pseudo-projection using a procedureannotation syntax that allows the author to annotateeach procedure with a series of comments that theaegis user will see at runtime when the procedure ischosen by PRS. These annotations, called metacom-ments, allow PRS to appear partially projective to theuser. As soon as a procedure is selected, the user cansee the entire structure and status of the procedure.This metacomment technique is a temporary ap-proach to the problem of user awareness in a reac-tive system, and su�ers from several serious de�cien-cies. First, it adds complexity to the process of writingprocedures, although the metacomment syntax itself isquite simple. In part, this added complexity is unavoid-able if we wish the user to see a representation of theprocedure that is somehow simpli�ed, abstracted, or indi�erent terms than the raw procedure code itself.Other Forms of ProjectionWhile pseudo-projection techniques provide a form oflookahead for the user, other limited forms of model-based projection can be exploited which allow more in-telligent control by the reactive system itself. Considerthe following simpli�ed procedure segment for respond-ing to a loss of combustion air:Procedure Novice-Air-Loss-Response1. Cut riser temperature to 930 degrees F.2. Eliminate all residual feed.3. Eliminate all slurry pumparound feed.4. Cut main feed to 20,000 barrels/day.5. Add pure oxygen up to 30% enrichment.This procedure fragment is a typical SOP example.They are characterized by simple instructions, under-standable by even the most novice operator by design.They are straightforward, safe, static, and suboptimal.In this example, for instance, all residual and slurryfeeds are eliminated to allow the operator to concen-trate on cutting and monitoring only the main feed.

While these procedures provide a starting point forencoding executable procedures, they do not accuratelyre
ect the complexity of most operators' response to anabnormal situation. As operators gain experience, theirknowledge of the underlying plant process and DCS re-sponse grows, and their response becomes more model-based. For instance, the operators we interviewed notedthat they would generally leave in some residual feedto keep the coke component higher, keeping the risertemperature higher. This is an optimization step that,while still safe, maintains a higher level of production,and thus reduces the cost of the disruption.Mini-ModelsIn general, the more experienced the operator, the morecontext-sensitive is his response to an abnormal situa-tion. We view our gpe procedures as evolving in thesame way, incorporating more of what we have calledmini-models directly within PRS procedures. As theauthors of the procedures gain a better understand-ing of the process and control system, we expect theprocedures to rely less on static responses, and moreon computing over a simpli�ed model to generate acontext-sensitive response. For instance, the followingis a more model-based version of the same procedure,emulating the expert-operator approach:Procedure Expert-Air-Loss-Response1. Compute amount of O2 in lost air.2. Add pure O2 to replace lost O2,up to 30% enrichment max.3. Compute O2 left to replace.4. Compute amt of carbon this corresponds to.5. For each feed source:5a. Cut source accding to carbon factor.6. Set riser temperature setpointbased on remaining carbon.This procedure concentrates on balancing carboncontent of the current feed sources with the amount ofoxygen available, while staying within safety limits of30% enrichment. It is based on a simpli�ed mini-modelinvolving a handful of important factors in the process,and is thus much more tailored to the actual circum-stances at the process at the time of its invocation. Inthis example, gpe can greatly assist the operator byeasily and automatically computing parameters to thesituation response (e.g., correct riser temperature), aswell as providing the option for gpe to take the actionsautonomously, and monitor the e�ects of these actionsover time.Existing Predictive ModelsIn addition to mini-models directly implemented withPRS procedures, small predictive models exist as black-box applications for very limited pieces of the re�n-ery. While these models are quite small (e.g., ten in-puts, four outputs), in certain contexts they can be in-voked from within a PRS procedure to provide several



valuable types of information. First, in many circum-stances, gpe has several possible courses of action. Byprojecting these models forward in time for each op-tion, gpe can more accurately assess the e�ectivenessof each alternative and choose the best one. Secondly,the speci�c results of the projections can often be valu-able information to the operator and to gpe. In caseswhere the results are close, for instance, the operatormight prefer one method over another for less tangi-ble reasons than gpe is able to consider. From gpe�sperspective, the results form a rank ordering of the op-tions, which can be cached and used in case the �rstgoal-achievement method fails. Finally, the speci�c ex-pected results can inform gpe in establishing its ownmonitoring parameters.ConclusionsThis paper reports on the current status of an ambitiousproject to build an intelligent, mixed-initiative re�nerycontrol system. The current gpe prototype includesprocedures that are successfully able to handle a vari-ety of failures and disruptions to the air feed systemof a simulated FCCU. The simulator is a high-�delityindustrial re�nery simulator used to train plant per-sonnel. The level of knowledge in the prototype gpeis not yet equivalent to even a rookie DCS operator,but the approach shows promise and has been suc-cessfully demonstrated to enthusiastic industry partici-pants. Current gpe-related e�orts are centered aroundlimited �eld tests of the technology in actual oil re�ner-ies, as well as research into user interaction semanticsand methods for automating user involvement with thesystem. ReferencesGeorge�, M., and Lansky, A. 1986. Procedural knowl-edge. IEEE Special Issue on Knowledge Representa-tion 74:1383{1398.Ingrand, F.; George�, M.; and Rao, A. 1992. An ar-chitecture for real-time reasoning and system control.IEEE Expert 7:6:34{44.Ingrand, F. F. 1994. C-PRS Development Environ-ment (Version 1.4.0). Labege Cedex, France: ACSTechnologies.Le�er, W. L. 1985. Petroleum Re�ning for the Non-Technical Person. Tulsa, OK: PennWell PublishingCompany.


