Appearsin Working Notes of the AAAI Fall Symposium on Distributed Continual Planning
Orlando, FL, October 1998

Issues in Distributed Planning for Real-Time Control
(Extended Abstract)

David J. Musliner and Kurt D. Krebsbach and Michael Pelican and
Robert P. Goldman and Mark S. Boddy
Automated Reasoning Group
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418
{musliner krebsbac,pelican,goldman,boddy }@htc.honeywell.com

Introduction

We are interested in extending the existing Cooperative
Intelligent Real-Time Control Architecture (CTRCA)
for real-time planning and control (Musliner, Durfee,
& Shin 1993; 1995) into distributed applications such
as the control of multiple unmanned aerial vehicles
(UAVs). In such coarse-grain distributed applications,
we envision multiple autonomous agents, each con-
trolled by a CIRCA system, cooperating to achieve
team goals in mission-critical domains. The DARPA-
funded Distributed CIRCA project! began investigat-
ing many of the issues involved in distributed planning
for real-time control. In this paper, we survey several
of these issues and describe the current status of our

continuing efforts to enhance CIRCA.

Background: CIRCA Review

Early work on CIRCA (Musliner, Durfee, & Shin 1993;
1995) focused on building an intelligent control sys-
tem for a single agent, allowing that agent to provide
real-time response guarantees while also using complex
planning algorithms. The resulting architecture, illus-
trated in Figure 1, combines planning and scheduling
modules that build guaranteed, executable plans with
a real-time execution subsystem for predictably exe-
cuting and enforcing the planned behavior.

CIRCA’s original planning system builds reaction
plans based on a world model and a set of formally-
defined safety conditions that must be satisfied by fea-
sible plans (Musliner, Durfee, & Shin 1995). CIRCA

plans by generating a nondeterministic finite automa-

'DARPA contract DA AK60-94-C-0040-P0006.

ton (NFA) from user-supplied transition descriptions
that implicitly define the set of reachable states. Begin-
ning from a set of designated start states, the planner
enumerates the reachable states and assigns to each
state either an action transition or no-op. Actions
are selected to preempt transitions that lead to failure
states and to move towards states that satisfy as many
goals as possible. System safety is guaranteed by plan-
ning action transitions that preempt all transitions to
failure, making the failure state unreachable (Musliner,
Durfee, & Shin 1995). CIRCA’s plans are essentially
state-space contingency plans that drive the system to-
wards its goals and safely handle anticipated contingen-

cies that cannot be avoided entirely.

Distributed CIRCA Goals

The Distributed CIRCA (D-CIRCA) project extends
the concepts of guaranteed safety and predictable per-
formance into multiagent domains such as cooperat-
ing teams of autonomous UAVs. D-CIRCA agents will
communicate to allocate tasks and build executable
real-time plans that achieve overall team goals. While
executing their plans; D-CIRCA agents will respond to
ongoing events in real-time, invoking safety-preserving
reactions and/or triggering dynamic replanning tai-
lored to the current context. D-CIRCA will enforce
both the logical correctness of coordinated multiagent
behaviors and the timeliness of those behaviors, en-
suring that coordinated actions achieve their goals and
preserve overall system safety.

This dual capability is distinctly different from typ-
ical distributed Al systems. Most DAI research eval-

control

| sensor data
signals

reaction schedules

| Scheduler |

selected reaction
reactions schedules
Al Subsystem

Real-Time Subsystem

feedback data

World Model

Figure 1: CIRCA combines concurrent planning, scheduling, and real-time execution.

uates collaboration and coordination methods based
primarily on logical correctness and solution efficiency,
ignoring the issues of behavioral synchronization and
reaction timing required for guaranteed real-time per-
formance by a multiagent system. Systems based on
the D-CIRCA architecture can be applied to mission-
critical distributed domains with confidence, and will
provide plan-time feedback when the available multia-
gent resources are insufficient to deal with the antici-

pated behavior of the domain.

Distributed CIRCA Issues
Extending the single-agent CIRCA model to multia-

gent applications raises many challenging issues, some
common to all distributed AI applications and some
uniquely the result of CIRCA’s commitment to pre-
dictable, guaranteed real-time performance. For ex-
ample, the problems associated with cooperating con-
current planners have been investigated in other work
(e.g., Partial Global Planning (Durfee 1988)), but is-
sues of predictable asynchronous plan execution and
performance guarantees across team behaviors have
not. Some of the more challenging aspects of these

1ssues are outlined below.

Scalability and Incomplete Knowledge

State space explosion problems are exacerbated in dis-
tributed systems, because the distribution adds ad-
ditional, potentially-significant information to the do-
main (e.g., which agent knows which facts). Of course,
the distributed agents cannot share complete informa-
tion, or they may as well not be distributed. Hence dis-
tribution implies incomplete knowledge, which is prob-
lematic for a system trying to make performance guar-
antees.

Recently, the original CIRCA state-space planning

algorithm was enhanced with the addition of Dynamic

Abstraction Planning (DAP) (Goldman et al. 1997b),
a technique for automatically deriving a nonhomoge-
neous abstract state space representation that helps
reduce the state-space explosion inherent in CIRCA’s
contingency planning. DAP works by starting with
a completely abstracted state space representation in
which none of the available state features are included,
and then 1t incrementally and nonhomogeneously adds
state features (details) back into parts of the state
space representation when required. Adding detail (or
“splitting” an abstract state) can be required, for ex-
ample, when the state description is not sufficiently
refined to indicate whether a desirable action can, in
fact, be executed (e.g., because the abstract state de-
scription does not specify values for all of the features

in the action’s preconditions).

The DAP technique was originally motivated by the
need to build guaranteed control plans with incom-
plete information (due to distribution), as described
in (Musliner et al. 1997). DAP can be seen as a way for
individual planning agents to build interacting plans
and decide, automatically, what information they need
to share with each other (cf. (Wolverton & desJardins
1998)). The DAP planner may be presented with
state features that represent both local and remotely-
available information, and the abstraction planning al-
gorithm will dynamically decide which of those features
must be considered by the plan. Only those remote fea-
tures that have been selected by DAP must be actually
communicated between agents. Furthermore, because
DAP supports nonhomogeneous abstraction, the com-
munication about shared features can be started and
stopped at various times during the plan, correspond-
ing to those areas of the state space in which DAP has
determined different features are important. DAP de-

rives these information needs in a flexible and adaptive

manner that does not sacrifice any of the performance
guarantees that the original CIRCA planner could en-
force. Temporal latency requirements on planned ac-
tions that involve shared features also determine the

frequency with which communications must occur.

Action Reflection

When multiple agents collaborate, mechanisms are re-
quired to support group knowledge and action reflec-
tion (e.g., one agent may have to consider the possi-
ble ramifications of another’s actions). This reflection
becomes particularly important when the agents must
cooperate (or at least not interfere) to achieve mission-
critical safety goals. Real-time constraints on action
synchronization and the delays associated with inter-
agent communication come into play as well, making
the problem of having two CTRCA agents behave in a
tightly-synchronized manner problematic. Note, how-
ever, that it is important to consider the types of do-
mains for which CIRCA is appropriate: it is useful in
discrete event control and decision-making, but not for
continuous fine-motion control. Tightly-coupled agent
activities such as carrying both ends of a long I-beam
are better addressed using classical continuous control
theory, rather than discrete event synthesis methods
such as CIRCA. D-CIRCA should support performance
guarantees about coarser-grained discrete synchronized
behaviors such as coordinated target attack and mode
switches. Reasoning about and planning with action

reflection 1s an ongoing area of D-CIRCA research.

Runtime Communication

D-CIRCA agents must communicate predictably about
their ongoing actions, to keep plan execution synchro-
nized. We have modified the CIRCA RTS to allow mul-
tiple CIRCA agents to communicate with each other.
The next step will be to use the DAP technique to de-
rive what information must be shared between agents
and what timing constraints must be imposed on that
sharing. Given that information, we will enhance the
planner to automatically build appropriate reactions
that pass necessary information between agents during
plan execution, with the required real-time communi-

cation guarantees.

Distributed Planning Paradigms

Multiple concurrent CIRCA planners must communi-
cate, at planning time, to build coordinated plans.
There are many ways to design this communication,
corresponding to different levels of planner cooperation
and synchrony. Currently, we are considering three

simple alternatives:

Local Planning then Compare — In this simple
approach, each CIRCA agent builds its plan with-
out communicating to others, but perhaps using as-
sumptions or agreements about how the other agents
will plan (e.g., assigned roles could be agreed upon
before plan generation, allowing an agent to ignore
a contingency that is not relevant to its role). After
the plans are built, they are combined together (see
Section below) to determine if there are harmful
interactions. This approach, while relatively simple
to implement, has obvious disadvantages if the co-
ordinated multi-agent plan is difficult to find (and
requires a lot of backtracking).

Serial Planning — In this alternative, one agent
constructs its plan and then sends it down the line to
the next agent as a set of constraints on the second
agent’s planning process. This, of course, 1s less effi-
cient, because the distributed planning is not in par-
allel, and also forces an ordering on which agents “get
their way” first. On the positive side, this approach
may recognize infeasibilities and induce backtracking
without expending all of the group effort necessary
to produce a complete set of candidate plans for all
agents.

Asynchronous Coordinated Planning —

The most complex alternative is to constantly trade
partial plans, queries, constraints, and negotiations
throughout the distributed planning process. Ac-
cording to our current thought experiments and
manual planning simulations, in the D-CIRCA con-
text this approach appears to have the disadvan-
tage that it deteriorates into a lock-step process, in
which parallel planners must reason at the same time
(synchronously) about each shared state, thus negat-
ing many of the advantages of multiagent planning.
Without lock-step synchronization, a CIRCA plan-
ner is unable to actually make performance guar-

antees or reason about the temporal aspects of a

particular state it wishes to consider, because the
other planning agents may not have made their de-
cisions about that state, and their decisions can alter
the world model. However, we are continuing to in-
vestigate this approach (as the Holy Grail) in the
hope that introspective methods such as DAP and
the formal methods described below in Section may
address the complex action reflection issues enough

to allow asynchronous multiagent planning.

Breaking News on CIRCA: Model
Checking for Time

The CIRCA temporal propagation model, discussed
in detail in (Musliner, Durfee, & Shin 1995; Gold-
man et al. 1997a), has proven to be quite challeng-
ing to implement effectively. The current implemen-
tation in the DAP version of CIRCA’s state space
planner is notably incomplete, in that it eliminates
from consideration a fairly large class of plans that
are, in fact, safe and sound. Fortunately, we re-
cently found that the CTRCA state/time model cor-
responds quite closely to models used in the field of
formal methods concerned with “timed automata” and
“model checking” (Alur, Courcoubetis, & Dill 1993;
Alur 1998).

Model checkers are given a high-level automata de-
scription of a system, and are able to compare that
model against various logical correctness requirements
(e.g., unreachability of failure states). Timed automata
models are state transition graphs annotated with tem-
poral transitions and constraints associated with a fi-
nite set of clocks. All of the clocks increment syn-
chronously, but can be independently reset to zero by
selected transitions. Transitions themselves are instan-
taneous, just like event transitions in CIRCA models.
Mapping a CIRCA state space model into a timed
automata is a fairly simple matter of assigning dif-
ferent clocks to different CIRCA temporal transitions
and translating the temporal transition timing con-
straints into timed automata clock constraints. Once
this translation is complete, the timed automata model
can be passed to existing, available model-checking
code to determine whether failure is reachable and, if
so, what path of transitions leads to failure (to guide
CIRCA’s intelligent backjumping).

We have just completed an automatic interface ty-

ing the DAP planner with the KrRoNOs (Yovine 1997)
model-checking tool. Preliminary tests indicate that
this hybrid planner is now able to build and verify plans
in the general class that the old DAP temporal model
implementation incorrectly rejected. Considerable ad-
ditional work will be required to validate the hybrid
planner’s results, but we are optimistic that this ap-
proach is successfully leveraging existing formal ver-
ification methods. Future work will probably involve
integrating the efficient temporal model reasoning back
into the DAP planner for efficiency and flexibility.

An additional advantage of the model-checking
methodology is that 1t includes efficient techniques for
reasoning about the composition of multiple concurrent
timed automata. In other words, the model checkers
know how to find the (minimal) cross-product state
space of multiple CIRCA state-space plans that will
be executed on distributed agents. We are investigat-
ing whether this functionality can be used to reason,
as efficiently as possible, about multi-agent interacting

CIRCA plans generated in parallel.

References
Alur, R.; Courcoubetis, C.; and Dill, D. 1993. Model-

checking in dense real-time. Information and Compu-
tation 104(1):2-34.

Alur, R. 1998. Timed automata. In Working Notes
of the NATO-ASI Summer School on Verification of
Digital and Hybrid Systems.

Durfee, E. H. 1988. Coordination of Distributed Prob-
lem Solvers. Kluwer Academic.

Goldman, R. P.; Musliner, D. J.; Boddy, M. S.; and
Krebsbach, K. D. 1997a. The CIRCA model of plan-
ning and execution. In Working Notes of the AAAI
Workshop on Robots, Softbots, Immobots: Theories of
Action, Planning and Control.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;
and Boddy, M. S. 1997b. Dynamic abstraction plan-
ning. In Proc. National Conf. on Artificial Intelli-
gence, 680-686.

Musliner, D. J.; Boddy, M. S.; Goldman, R. P.;
and Krebsbach, K. D. 1997. The link between dis-
tributed planning and abstraction. In Working Notes
of the AAAT Fall Symposium on Model-Directed Au-
tonomous Systems.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.

CIRCA: a cooperative intelligent real-time control ar-

chitecture. IEEFE Trans. Systems, Man, and Cyber-
netics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-
127.

Wolverton, M., and desJardins, M. 1998. Controlling
communication in distributed planning using irrele-
vance reasoning. In Proc. National Conf. on Artificial

Intelligence, 868-874.

Yovine, S. 1997. KRONOS: A verification tool for
real-time systems. Springer International Journal of
Software Tools for Technology Transfer 1(1/2).

