Creative Problem Solving Through Automated Planning and Analogy

Paper type: Technical Paper

Richard G. Freedman, Scott E. Friedman, David J. Musliner, and Michael J.S. Pelican
SIFT, LLC
Minneapolis, MN USA
{rfreedman,sfriedman,musliner,mpelican} @sift.net

Abstract

As a creative problem solving strategy, analogical reason-
ing helps generalize and transfer solutions to new domains.
Automated planners have been used for problem solving,
but they reach impasses when their representation of the
problem space lacks operators or resources to generate a
plan from an initial condition to a set of goal conditions.
This paper presents Creative Problem Solver (CPS), a novel
integration of automated planning and analogical reason-
ing that recognizes when analogical reasoning and gener-
alization may resolve such impasses. CPS uses heuristics to
identify missing critical resources and then uses analogical
reasoning to identify suitable replacements that are readily
available in the environment. We implement CPS using the
CIRCA planning architecture, which supports domain-level
and meta-level planning, and the structure-mapping model
of analogical reasoning. This paper demonstrates CPS re-
solving impasses in domains where traditional automated
planning would otherwise fail.

1 Introduction

Planners often fail to find solutions because they lack op-
erations or resources required to solve a problem. One way
to overcome these challenges is for the planner to general-
ize from an ideal tool, resource, or prototype to a similar,
available tool or resource. Generalizing via analogy, which
facilitates comparative analysis via structure-mapping (Gen-
tner 1983; McLure, Friedman, and Forbus 2015), requires no
rules or operators, so we believe this is a practical, tractable
method for generalization during planning. We have devel-
oped the Creative Problem Solver (CPS) system by integrat-
ing analogical structure-mapping with the CIRCA classi-
cal planning framework (Musliner, Durfee, and Shin 1993).
This paper presents our technical approach and early empir-
ical results with this planning-with-analogy strategy.

CPS integrates classical planning with analogy-based
generalization in the following fashion:

1. CPS’s domain-level planner encounters an impasse during
planning and reports it to the higher-level configuration
planner (CP).

2. CPS has a description of an ideal (but unavailable) re-
source that would resolve the impasse if it were available.
The description includes details of the affordances of the
resource.

3. CPS’s analogical reasoner matches the ideal resource de-
scription against available resources, computing isomor-

phic structure (i.e., matching relations and parameters),
non-isomorphic structure, and similarity scores.

4. CPS attempts to use the results of analogical reasoning to

resolve its impasse by generating new domain operator(s)
that utilize the available resource(s).

These operations ultimately devise solutions to planning
problems when the planner would otherwise be blocked by
a missing operator or resource. For example, consider plan-
ning to protect a solar collector from a potential sandstorm
on Mars. Suppose that traditional planning encounters an
impasse for lack of a solar collector cover to use with a
cover operator. In this case, analogical reasoning could map
the ideal solar collector cover and its affordances against
available resources to identify a sheet of habitat flooring or
a quilt of spacesuit fabric as possible solutions with isomor-
phic structure.

We briefly review some relevant technical challenges in-
volved in this creative problem-solving behavior, as well as
factors that address these in our CPS approach.

Recognizing opportunities for generalization: When
planners reach an impasse (a deadend where no current sub-
goal can be achieved by any operator), they generally back-
track to change a prior decision, potentially using depen-
dency reasoning to determine the most recent decision that
affects the impasse (Goldman, Pelican, and Musliner 2004).
As CPS performs conventional planning, it stores potential
analogical impasse points (e.g., due to missing resources)
and will only investigate them if conventional planning fails.
Missing resource impasses are identified by preconditions
of actions that would achieve a subgoal, if the resource was
available. Storing these impasses for later investigation al-
lows the standard planning search to continue, only invok-
ing more complex and uncertain analogical reasoning if the
planning fails entirely.

Recognizing resources that generalize: Given a missing
resource in a plan, how do we assess the suitability of var-
ious available substitutes? In the absence of more intricate
background knowledge and common sense, CPS uses se-
mantic similarity to approximate generalizability. CPS uses
a structure-mapping model of analogical reasoning to com-
pute isomorphisms over semantic relations, attributes, and
numerical parameters to rank available resources’ ability to
generalize against the missing, desired resource. We demon-
strate in our results that structure-mapping is a suitable

heuristic for approximating generalizability, and we also
outline possible improvements as future work.

Resolving an impasse with a generalization: Identifying
generalizable resources does not, in itself, solve an impasse;
CPS must revise its planner’s configuration to accommodate
the generalization. CPS generates a new operator that uses
the proposed resource instead of the ideal resource. This
leads to a new planning domain model, and a re-start of the
domain-level planner.

Following a brief background on CIRCA, in Section 2 we
introduce a domain that benefits from a planner that exhibits
creative problem solving. Section 3 describes extensions to
CIRCA to identify missing resources and find alternatives
via analogy. We then illustrate how CPS addresses related
problems from the example domain in Section 4, and we
evaluate CPS’s present scalability across multiple dimen-
sions in Section 5. We describe related work in Section 6,
and directions for future work in Section 7.

2 Background

As a proof of concept for our approach to plan generaliza-
tion through analogical reasoning about resources in classi-
cal planning domains, we have adapted our CIRCA planning
system to use analogical reasoning to find better plans for a
river-crossing domain.

CIRCA Planning

We have extended the CIRCA planning and execution sys-
tem (Musliner, Durfee, and Shin 1995; Musliner et al. 2008)
to include a novel creative problem solving component that
uses analogical reasoning to synthesize new plan operators
by reasoning about resource affordances.

CIRCA has a higher-level “Adaptive Mission Planner”
(AMP) that manages planning across an extended mission,
selecting which goals are planned for during different mis-
sion phases and adapting the planning problems as needed to
balance goal achievement against robustness (e.g., against
uncontrollable adversaries like weather) and mission time.
The AMP repeatedly tasks a lower-level planner, the Con-
troller Synthesis Module (CSM), with planning problems
that are tailored to each mission phase. Like other sym-
bolic Artificial Intelligence (AI) planners in the STRIPS tra-
dition (Fikes and Nilsson 1971), CIRCA represents each
world state as a finite set of features with discrete values
drawn from finite domains (Goldman et al. 1997). Unlike
most symbolic Al planners, CIRCA reasons about uncon-
trolled transitions (adversaries), temporal deadlines, possi-
ble failures, formally-verified safety-preserving plans, and
real-time execution, but these concerns are not central to
our approach to creative problem solving. We started with
CIRCA because it already includes the meta-reasoning ca-
pability to reformulate problems for its domain-level plan-
ner, the CSM.

A CIRCA planning problem, configured by the AMP
and posed to the CSM, includes initial conditions, con-
trolled actions, uncontrolled transitions, goals (partial state

Figure 1: In the Dukes of Hazzard domain, an au-
tonomous car must travel across a river canyon
from East to West.

descriptions), and a distinguished failure feature that must be
avoided. It can also include numeric rewards for goal condi-
tions. The CSM builds reactive control plans by anticipating
possible future world states and selecting action choices for
each state, including responding to unexpected or adversar-
ial events and outcomes.

The CSM can operate in several different planning modes,
depending on what kind of domain models are available and
what level of reasoning about plan guarantees and perfor-
mance is desired. “Classic” CIRCA uses models with un-
quantified nondeterminism (e.g., actions may have diverse
outcomes and the planner must reason about each of them,
since it cannot control which outcome will occur). The CSM
uses a formal verifier to prove that its plans achieve the goals
and avoid catastrophic failures. In other modes, the model
can include probabilistic transitions that have outcomes with
known probability distributions, and goals can have asso-
ciated rewards that allow tradeoff reasoning. We are using
those models for this project, and running the CSM in its
Maximize Expected Utility (MEU) mode.

In MEU mode, the CSM uses its usual heuristics to build
reactive plans and then assesses their expected utility (EU—
roughly, the sum of goal rewards times their probability of
being achieved'). The CSM then keeps revising its plan,
building new controller versions and checking to see if their
EU is greater than the best plan so far. This cycle contin-
ues until a desired EU is reached, a timeout is reached, a
desired number of controllers have been generated and eval-
uated, or every possible controller has been evaluated. Ex-
haustive search is only possible for small problems, due to
combinatorial explosion. In practice, for larger problems, the
CSM samples the space of possible controllers using heuris-
tic search.

Illustrative Domain

As an example of the types of domains that can be solved us-
ing the CPS approach to analogical generalization, we have
developed several variations of a “Dukes of Hazzard” (DoH)
domain where an autonomous vehicle is trying to travel from
East to West across a river canyon (see Figure 1). There are
two possible routes across the river: a bridge which may or
may not be destroyed, and a narrow spot in the canyon which
may be jumped by the vehicle using a ramp. MEU mode al-
lows the CSM to reason about both risk and reward, seeking
the best balance. In the simplest DoH scenario, the balance
is deliberately made obvious—the bridge is certain to achieve
the goal of getting across the river, as long as it doesn’t col-
lapse (or get destroyed by an uncontrollable event, such as
a flood) before the crossing is complete. The ramp jump is
only somewhat likely to succeed, and its alternate outcome is
catastrophic failure, so the planner will always prefer to use
the bridge if possible. If the bridge is destroyed before the
vehicle arrives, there’s no choice but to try the ramp jump.
However, in other domain variations, the bridge route may
be less attractive. In some, there may be a high likelihood
that the bridge will be destroyed while the car travels to-
wards it, and in others the bridge may be defined as impass-
able before the scenario begins. In these cases, CPS will find
the expected payoff of jumping the river more attractive.

To jump the river, CPS must apply the jump_ramp oper-
ator (see Figure 3). jump_ramp has two preconditions that
must satisfied: a precondition on the value of location,
which can be satisfied by a sequence of movement actions,
anda (have_ramp t) precondition representing the pres-
ence of a “ramp” resource necessary to perform the ac-
tion. As described below, CPS includes a notion of action-
enabling resources, of which the ramp is an example. If there
is no ramp available in the scenario, CPS must plan some
way to obtain one or reason about substituting an available
resource. That is where analogical reasoning for plan gener-
alization comes in.

3 Creative CIRCA

Our Creative CIRCA architecture adds three broad new ca-
pabilities to the established CIRCA planning system (illus-
trated in Figure 2).

e First, we have introduced a simple, abstract notion of
a “resource” to CIRCA planning. By distinguishing re-
sources from other symbolic domain features, we enable
new methods of reasoning that are specific to resources.

e Second, we have developed a method for resource im-
passe detection, using the planner’s heuristic function to
identify situations in which the lack of a resource defeats
a potential problem solution.

'The actual EU calculation is more complicated because we
allow different kinds of goals that get reward in different ways.
Achievement goals get reward only once, repeated-achievement
goals get reward every time they are re-achieved, and maintenance
goals accumulate more reward the longer the system is expected to
stay in a satisfying state.

Configuration
Planner

Analogical
Reasoner

Adaptive
Mission
Planner

Controller Resource
Synthesis Impasse
Module Detector

Figure 2: CPS enhances the existing CIRCA architecture
with an analogical reasoning component and a
resource impasse detector.

e Third, we have integrated an analogical reasoning sys-
tem (AR) that uses semantic graph representations of re-
source affordances to propose possible resource substitu-
tions, enabling the CP to generate new plan operators and
creatively transform the problem considered by the CSM.

Resource Features

To support creative problem solving to overcome the ab-
sence of critical resources, we have enhanced the CIRCA
world model with a representation of a resource feature. In
our initial implementation, a resource can be any physical
object or substance that is required to initiate a controlled
action by the agent. Thus resources are closely related to the
general notion of tools. Resources appear in the planning
system’s world model as special boolean resource features
of the form have_<resource_name>. They also appear
in a special database in the CP as named records with cor-
responding descriptions in the form of graph structures. For
example, if the DoH car decides to jump over a river, it must
meet the precondition (have_ramp t) (see Figure 3) and
there will be a graph structure in the CP’s data set that in-
cludes a description of a ramp (see Figure 5). These new
domain modeling elements support new reasoning methods,
as follows.

Resource Impasse Detection

To identify opportunities to use analogical reasoning to over-
come planning challenges, CPS must recognize planning sit-
uations where a potentially useful action is not enabled. CPS

(def-action Jjump_ramp

:preconds ((location ramp_trail_1) ;; and
(have_ramp t))
:postconds ((.90 (location safely_across_ramp) (canyonside west))

;i or

(.10 (failure t))) ;; catastrophe!

:wcet 10

:delay-distribution (constant-distribution 10))

Figure 3: The jump_ramp action representation includes
a “ramp” resource in its preconditions, and has
probabilistic postconditions.

(def-action cross_bridge

:preconds ((location bridge_trail_2) ;; and
(bridge_condition open)
:postconds ((location safely_across_bridge) ;; and

(canyonside west))

:wcet 10

:delay-distribution (constant-distribution 10))

Figure 4: The cross_bridge action has a single set of
deterministic postconditions.

exploits the structure of its heuristic graph to find such ac-
tions. During action choice, CPS builds a plan-graph style
heuristic graph, building from individual goal propositions
down through the domain transitions that can establish them
(while ignoring the delete effects of transitions). Conjunc-
tive preconditions of transitions are split into their individ-
ual propositions as subgoals, which are then supported in the
same manner. For example, if (canyonside west) isa
goal proposition, the heuristic graph will contain a root node
for (canyonside west) with child nodes for each tran-
sition that establishes it. In turn, the children of those nodes
are nodes for the preconditions of those transitions. When
the heuristic graph has been completed, any leaf proposition
nodes represent the unmet preconditions of possibly use-
ful transitions. At that point, those nodes can be stashed for
analysis, if there is reason to pursue an improvement to the
first plan generated.

In the CPS architecture, it is the job of the CP to assess the
quality of the plan returned by the CSM and decide whether
to invest in the analysis of the collected heuristic leaf nodes.
In the case that the CSM does not find any plan to reach the
goal state, it is trivial to decide to re-plan. In other cases,
the CP must assess some measure of plan quality. CIRCA
supports a variety of different measures of plan quality in-
cluding likelihood of failure, number of possibly reachable
goals, and the estimated utility of the plan. In each case, an
acceptable threshold for plan quality can be supplied as a
parameter to the planner.

For example, in the DoH domain, if the bridge condition
doesn’t permit the cross_bridge operator (see Figure 4)
and have_ramp is not t, the CSM will not be able to find
any plan that achieves the goal of crossing the river. In that
case, the CP will analyze the collected heuristic leaf nodes.
Among the leaf nodes containing unsatisfiable action pre-
conditions will be some for (have_ramp t) and some for
(bridge_condition open). At this point, the CP will
have identified an impasse in planning that can be relieved
by establishing an action precondition, but it has no possible
actions that can directly achieve either condition.

The standardized resource naming allows the system to

kb::length kb::ramp-| kb::orientation-major-axis kb::northwest

kb::inclined-along
kb::ramp-w

kb::width

kb::ramp-proto Kb::rigidity Kb::rigid
kb::height

W» Kb::ramp-h

kb::polyhedron-wedge

kb::greater-than

kb::rover-drive-w

kb::surface-texture

kb::width

kb::smooth

kb::rover
(kb::rover)

Figure 5: The CP’s resource database contains a graph
structure defining the ramp resource.

recognize that the ramp is a resource, and as such it may
be able to generalize the jump_ramp action to use an
alternative resource, whereas it has no way to generalize
cross_bridge (in this particular domain version; one can
easily imagine extended domains where the bridge is also
modeled as a resource).

Analogical Reasoner

When the CPS identifies an opportunity to overcome an im-
passe caused by a missing resource, the AR searches for
the best available substitute. To do so, the AR uses seman-
tic structure-mapping (Friedman et al. 2017; McLure, Fried-
man, and Forbus 2015) to identify a candidate resource that
is available, and synthesizes a new action operator.

CPS’s structure-mapping component computes an ap-
proximate maximal common edge subgraph (MCES) using
a greedy algorithm to avoid the NP-hard time complexity of
identifying the optimal solution. Each MCES result contains
the following information:

1. The correspondences of nodes and edges that map across
the two semantic graphs. This describes the relational
structure and parameters that the two semantic graphs
(i.e., resources in the planning problem) have in common.

2. The graph complement, which is the structure from each

graph that does not correspond to the other.

3. A numerical similarity score derived from the cardinality

of MCES correspondences.

When a missing resource has been identified, the AR gen-
erates a representation of the missing resource and uses
structure-mapping to map this against representations of
available resources. As described above, this describes what
each available resource has in common (and in contrast) to
the desired resource. Given multiple results from structure-
mapping, AR presently ranks them by the size of the MCES
correspondences (i.e., where the desired resource corre-
sponds maximally onto the available resource, with the
smallest unmatched graph-complement).

As shown in Figure 5, the graph representations include
attribute edges directed to associated values. For exam-
ple, the ideal ramp has a width (internally represented

rover Isa » rover

width

rigid-object;

rigidity rigid

height rock2-h;

ramp-h .
rover-drive-w
greater-than
geometry polyhedron-wedge
. rock2-w;
width ramp-w
3 / orientation-major-axis northwest
rock2-inst; length .
" '0__\>rock2-l, - X X
ramp-pro inclined-along ramp-| w, rth
no

surface-material
iron/silicon
surface-texture

rough
surface-texture

smooth

rock

Figure 6: rock-2’s description graph differs from the
ideal ramp in orientation and surface-texture,
but matches most attribute edges.

as ramp-w) that is greater than the width of the rover
(rover—-drive-w).

In the DoH domain, we model the domain as including
a variety of different objects, including several large rocks
that have some properties that resemble a ramp. For exam-
ple, Figure 6 shows that the rock—-2 graph differs from the
ideal ramp graph in two attributes: orientation and surface
texture. It also has superfluous surface-material and
isa attributes.

This close similarity acts as a suggestion that rock-2
might be a good substitute for the hoped-for ramp, particu-
larly if those attributes could be adjusted.

4 Results

CPS’s analogical plan generalization plays out in the follow-
ing way in the DoH domain: suppose the planner has all of
the model components associated with the action of jumping
over the ramp, except that in the initial conditions there is no
ramp present. The CSM can still build a good plan: just use
the bridge. However, while building that plan it recognizes
that there are states where it is not finding a way to achieve
the goal (the states where the bridge has been destroyed).
In those states, the CSM’s heuristic graph can see that the
jump-ramp action has desirable postconditions that would
achieve the goal, but one key precondition is not satisfied:
(have-ramp t). The CSM records this as a “missing-
resource” impasse.

When the CSM finishes with its best plan, the CP observes
the missing-resource impasse annotation and calls out to its
new AR component to see if a substitute can be found for the
ramp. In our proof of concept, the AR uses graph matching
over semantic graphs describing both prototypical desired
objects (e.g., a ramp) and object instances that are in the
scenario (e.g., several rocks, solar panels, the vehicle). The
graph matching identifies ways in which instances do and do
not match the desired prototype (e.g., a specific rock matches

some of the prototypical ramp’s abstract, qualitative physical
attributes such as rigidity, but lacks a smooth surface and is
oriented the wrong way).

Selecting the best matching object (rock2), the AR inter-
face creates a new “hypothesized” action for the CSM to
plan with, via lexical substitution (i.e., jump_rock?2, with
suitably modified pre- and post-conditions). The new action
may also be given some additional uncertainty in its suc-
cessful outcome probability, corresponding to the notion that
this action has not been tried and thus may not be accurately
modeled. The revised operator is given to the CSM, which
replans and decides to try the new operator in the bridge-
destroyed state, since it has no higher-EU options.

One advantage of this approach, using the planner to de-
cide how to use hypothesized actions, is that it can au-
tomatically decide whether to do “trial runs” or “experi-
ments” with a new action, before making commitments. In
the jump_rock2 example, the system risks catastrophic
failure and may also complete the jump in a damaged but
not destroyed state (wherein it would no longer be able to
try again). Taking those risks into account, the planner might
not plan to do a trial run, but commit on its first try. In a dif-
ferent scenario, with less risk of damage or complete failure,
the system might decide to test the operator and examine
its outcome. For example, if the problem is to hammer in a
nail (Musliner 1994) and no hammer is present, but rocks
are, the analogical reasoning could recognize that rocks
share key relevant features with hammers (dense, heavy,
hard surface) and propose a hit_nail with_rock ac-
tion. Since the new action would not threaten the agent it-
self, the planner might decide to try it out, see whether the
nail moved, and only continue using that action if it was suc-
cessful.

5 Evaluation

Using our CIRCA-based CPS implementation as a prototype
and guide, we have designed a suite of scalability metrics for
some aspects of Creative Problem Solving. We have started
to build a scalable domain generator that can create different
domains in order to assess CPS performance across different
dimensions of variability. In the course of implementation,
we have, of course, found opportunities to improve our CPS
prototype and have continued to make it more robust and
capable.

Building on our analogical examples where the system
substitutes a rock for a ramp (or a rock for a hammer), we
identified four important dimensions of scalability for our
initial focus:

e The number of missing resources to overcome (by using
a more-or-less suitable substitute).

e The size of the population of substitute candidates.

e The proportion of good (workable) candidates in the pop-
ulation.

e The richness of candidate descriptions.

To vary the number of missing resources to overcome, we
create a set of domain models of fixed complexity (in terms
of traditional planning metrics, such as number of operators)
and increase the number of critical (required) resources that

are removed, in different versions of the problem. The CPS
system must respond by identifying substitute resources
from candidates in its environment. The characteristics of
that candidate population can also be varied. First, we can
change the absolute size of the overall population of candi-
dates, challenging the system’s efficiency in assessing sub-
stitutes. Second, we can vary the proportion of satisfactory
candidates in the population. We expect that, depending on
the ratio of satisfactory to total candidates, various heuristic
approaches would be better or worse (e.g., if the ratio is very
high and experimenting with candidates is safe and low-cost,
choosing randomly and experimenting might be a better ap-
proach than thinking hard about each individual candidate).
Finally, we can vary the number of attributes used to de-
scribe the candidates to the CPS system, which should chal-
lenge the efficiency of the analogical matching system.

Leveraging our existing tooling for creating scalable do-
mains along traditional AI planning dimensions, we have
created a first version of this scalable domain generator and
used our CPS system to solve many individual instances of
the generated domains. The complexity of the generic do-
main is currently controlled by five parameters, each based
on the dimensions of scalability mentioned above. The first
three are the number of actions in the solution plan, n, the
number of resources (a.k.a. tools) required to perform each
action, r, and the number of missing tools, m. The remain-
ing two parameters are the number of attributes that describe
aresource/tool, a, and the number of possible values that can
be assigned to an attribute, v. So by description alone, there
are up to v® unique tools that can exist. A given domain in-
stance does not include all those tools. We enforce a worst-
case assumption that no two actions use the same tool, so a
generated domain has nr — m tools available.

Domains are currently generated randomly given these
parameters, which means it is unlikely that any of the m
missing tools has a duplicate available under a different la-
bel. Analogical reasoning is thus required to assess which
available tools are similar enough for substitution. We exam-
ined how just the analogical reasoner’s performance scales
with respect to changes in a, v, and nr — m in Figure 7.
Since the current attribute space is “flat” (only one predicate
deep, rather than a more complex semantic graph), the ana-
logical reasoning problem is quite simple and really just a
vector comparison. Future work will extend the abstract tool
representations to include more complex semantic relations.

The full CIRCA-based solver must call the analogical rea-
soner at least m times as it reasons over viable tool substi-
tutions; its runtime changes with respect to changes in r and
m are shown in Figure 8.

These performance results suggest that, even without op-
timization, the domain-independent solving algorithms are
working well; effort scales appropriately with domain size,
and the planner is not performing any backtracking or search
in these simple domains. We have already identified addi-
tional improvements to the domain-independent reasoning
that should allow the system to reason even more quickly
about multiple missing tools.

Analogical Reasoner Runtime with 11 Available Tools and 11 Values Per Attribute

Runtime for Analogical Reasoner (sec)
°
g
S
R
T

8 12 16 20 24 28 32 36 40 44

Attributes Per Tool

Analogical Reasoner Runtime with 11 Attributes Per Tool and 11 Values Per Attribute

Runtime for Analogical Reasoner (sec)
°
S
S
T

Tools Available

Analogical Reasoner Runtime with 11 Available Tools and 11 Attributes Per Tool

Runtime for Analogical Reasoner (sec)

Figure 7:

8 12 16 20 24 28 32 36 40 44

Values Per Attribute

Performance of the Analogical Reasoner on
Generic Domain

Creative Problem Solver Runtime with 11 Steps, 11 Missing Tools, 11 Attributes Per Tool, and 11 Values Per Attribute

n.2r T T T T T

6543 [E
5816 [E
5.089 [E
4.362 |- E
3635 [E
2.908 - E

2181 |- -

Runtime for Solving Problem (sec)

1454 |- E
0727 |- E
I I I I I
2 4 6 8 10

Number of Tools Per Step

Creative Problem Solver Runtime with 11 Steps, 11 Tools Per Step, 11 Attributes Per Tool, and 11 Values Per Attribute

7.27 T T T T T

6.543 |- B

5816 |- B

5.089 |- B

4362 |- B

3635 |- B

2.908 |- B

2181 |- B

Runtime for Solving Problem (sec)

1454 1 E

0.727 |- - B

0 ! ! ! ! !
2 4 6 8 10

Number of Missing Tools

Figure 8: Performance of the CIRCA-based Creative
Problem Solver on a Generic Domain

6 Related Work

Although there is a reasonable body of literature studying
artificial intelligence for creativity with respect to generat-
ing novel content, CPS approaches creativity with respect
to less-obvious decision making strategies for solving prob-
lems. Sarathy and Scheutz (2018) outline the basic elements
of agents that exhibit creative problem solving strategies,
naming the broad class of challenges as MacGyver Prob-
lems. Not to be confused with a focus on finding ways to
attach tools together to generate new ones with alternative
functionality (Nair et al. 2019), MacGyver Problems refer to
problems where the subset of the world’s state space that is
reachable by an agent’s current knowledge and abilities does
not include the goal state(s). Thus the agent must rely on a
set of techniques and strategies that can discover ways to ex-
pand its reachable state space, which should eventually make
it possible to solve the task and reach a goal state. Sarathy
(2018) has also begun to explore possible approaches hu-
mans use based on existing neuroscience literature.

The planning and scheduling community has also investi-
gated replacing elements of a planning problem’s definition
to address tasks. Also investigating cases where problems
are not solvable, Gobelbecker et al. (2010) identified pos-
sible modifications to the initial state that could render the
problem solvable. These modifications provided excuses to
justify the unsolvability, which serves explainable Al plan-
ning (Hoffmann and Magazzeni 2019) more than the actual
problem-solving aspect unless the planning agent is able to
use the excuse to render the problem solvable. In the case
where one observes a planning agent whose model is un-
known to the observer, Aineto et al. (2019) define the model
recognition problem. Their definition assumes that fluents

composing the state space are the same for both the planning
agent and observer, but the observed actions are only identi-
fied by name such that their implementation (preconditions
and effects) needs to be selected from a set of hypothesized
implementations. Their approach for solving model recogni-
tion involves compiling a new planning task whose actions
include editing preconditions and effects of the named ac-
tion definitions as well as executing the modified actions.

Our approach for expanding the set of reachable states
instead involves generating new action groundings by find-
ing viable object substitutions that seem analogically simi-
lar. Analogical reasoning identifies similarities between ob-
jects with respect to their qualities, which has been used to
model consistency between similar-yet-different things. For
example, interfaces for various computer applications (Rie-
man et al. 1994), even though they are tools for different
types of tasks, have common features such as opening and
saving files. These similar functionalities are often repre-
sented using similar buttons and placement so that users can
more easily learn how to use a new application based on their
previous interface experiences. A number of analogical rea-
soning techniques in artificial intelligence have been based
on structure-mapping theory (Gentner 1983), including the
approach we used in our implementation of CPS (Friedman
et al. 2017; McLure, Friedman, and Forbus 2015) as well as
analogy ontologies that use first-principles reasoning (For-
bus, Mostek, and Ferguson 2002).

7 Conclusions and Future Work

When resources and tools are identified by name or label in
a domain, a planning agent may fail to solve a problem when
a specific tool or resource, required in its planning model, is
not available. However, the resource or tool is usually nec-
essary for some functional purpose or property rather than
for its specific name/label alone. Analogical reasoning en-
ables agents to reason about these properties and identify
other tools or resources that are available and may serve as a
substitute to find an alternative solution. This aspect of cre-
ative problem solving allows agents to generalize their abil-
ity to plan, by extending the set of reachable states via re-
purposing of objects in the environment to replace those that
are needed, but not present.

We introduced our integration of an analogical reason-
ing system into the CIRCA planning architecture, illustrated
how it can creatively solve problems with missing resources,
and explored how various factors affect the scalability of
both the analogical reasoner and the planner. Besides contin-
uing to investigate other factors for scaling and their impacts
on the system’s performance, we see some important areas
for future work.

Constraining the analogical reasoning: We have shown
that semantic structural similarity is a heuristic for gener-
alizability, but specific dimensions, features, or capabilities
of a resource, such as the affordances of the desired re-
source with respect to the operator, are paramount consid-
erations. Consequently, one direction for future work is im-
posing constraints on the analogical reasoning to prioritize

and filter its solutions to identify the elements with the de-
sired affordances.

Experimentation and empirical feedback: Enabling ex-
perimentation to identify and/or verify how to use the
analogically-similar resource for the desired purpose is a
valuable direction for future work. Specifically, positive or
negative feedback might be incorporated to broaden the gen-
eralization even further (if successful), or avoid making fu-
ture mistakes (in the case of failure). Furthermore, since ana-
logical generalization changes the planner’s configuration,
incorporating negative feedback could help prevent intro-
ducing error into the configuration.

Expanding metrics: We currently assess CPS’s perfor-
mance with respect to runtime based on scaling factors.
However, alternative plans can have varying degrees of cre-
ativity. For example, replacing a missing ramp resource with
another ramp resource that is available nearby might not
seem as creative as replacing it with a rock that has the
needed ramp affordances Sarathy and Scheutz. (2018) pro-
posed some metrics conceptually, such as the number of
changes to the reachability over the state space, but these
focus on the creativity of the problem solving agent rather
than the creativity of the alternative plan(s). Exploring ways
to measure both creative problem solving agents and their
artifacts could present insights into creative problem solv-
ing as well as identify novel ways to generalize planning
systems and plans when presented with novel domains and
scenarios.

8 Acknowledgments

This material is based upon work supported by DARPA un-
der Contract No. W31P4Q-18-C-0064. Distribution State-
ment ‘A’ (Approved for Public Release, Distribution Un-
limited). DISCLAIMER: The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther express or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

References

Aineto, D.; Jiménez, S.; Onaindia, E.; and Ramirez, M.
2019. Model recognition as planning. In Proceedings of the
Twenty-Ninth International Conference on Automated Plan-
ning and Scheduling, ICAPS’19, 13—-21. Berkeley, CA,
USA: AAAI Press.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189-208.

Forbus, K. D.; Mostek, T.; and Ferguson, R. 2002. An
analogy ontology for integrating analogical processing and
first-principles reasoning. In Proceedings of the Fourteenth
Conference on Innovative Applications of Artificial Intel-
ligence, IAAT02, 878-885. Edmonton, Alberta, Canada:
AAAI Press.

Friedman, S. E.; Burstein, M. H.; Rye, J. M.; and Kuter, U.
2017. Analogical localization: Flexible plan execution in
open worlds. In ICCBR (Workshops), 33-42.

Gentner, D. 1983. Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science 7(2):155-170.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to
do when no plan can be found. In Proceedings of the Tiven-
tieth International Conference on Automated Planning and
Scheduling, ICAPS’ 10, 81—-88. Toronto, Ontario, Canada:
AAATI Press.

Goldman, R. P;; Musliner, D. J.; Boddy, M. S.; and Krebs-
bach, K. D. 1997. The CIRCA model of planning and exe-
cution. In Working Notes of the AAAI Workshop on Robots,
Softbots, Immobots: Theories of Action, Planning and Con-
trol.

Goldman, R. P.;; Pelican, M. J. S.; and Musliner, D. J. 2004.
Guiding planner backjumping using verifier traces. In Proc.
Int’l Conf. on Automated Planning and Scheduling.

Hoffmann, J., and Magazzeni, D. 2019. Explainable Al
Planning (XAIP): Overview and the Case of Contrastive Ex-
planation (Extended Abstract). Bolzano, Italy: Springer In-
ternational Publishing. 277-282.

McLure, M. D.; Friedman, S. E.; and Forbus, K. D. 2015.
Extending analogical generalization with near-misses. In
AAAI 565-571.

Musliner, D. J.; Pelican, M. J. S.; Goldman, R. P.; Krebs-
bach, K. D.; and Durfee, E. H. 2008. The evolution of
circa, a theory-based ai architecture with real-time perfor-
mance guarantees. In AAAI Spring Symposium on Architec-
tures for Intelligent Theory-Based Agents.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control architec-
ture. IEEETSMC 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995. World
modeling for the dynamic construction of real-time control
plans. Artificial Intelligence 74(1):83-127.

Musliner, D. J. 1994. Using abstraction and nondeterminism
to plan reaction loops. In Proc. National Conf. on Artificial
Intelligence, 1036—1041.

Nair, L. V.; Srikanth, N. S.; Erikson, Z.; and Chernova, S.
2019. Autonomous tool construction using part shape and
attachment prediction. In Proceedings of Robotics: Science
and Systems, 1-10.

Rieman, J.; Lewis, C.; Young, R. M.; and Polson, P. G. 1994.
Why is a raven like a writing desk?: Lessons in interface
consistency and analogical reasoning from two cognitive ar-
chitectures. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI *94, 438-444.
Boston, Massachusetts, USA: ACM.

Sarathy, V., and Scheutz, M. 2018. MacGyver problems:
Al challenges for testing resourcefulness and creativity. Ad-
vances in Cognitive Systems 6:1-15.

Sarathy, V. 2018. Real world problem-solving. Frontiers in
Human Neuroscience 12:1-14.

