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Abstract trusion activities within the timescale of the attacks them
selves, GRCADIA is able to defeat scripted attacks and pre-

All Internet-accessible computing systems are currently VNt attackers from compromising protected systems.

faced with incessant threats ranging from simple script- The idea of responding automatically to attacks is not
kiddies to highly sophisticated criminal enterprises. éa r  new; various researchers have developed prototype systems
sponse to these threats, sites must perform extensive intruusing rule-based, case-based, and other related infarenti
sion monitoring. This intrusion monitoring can have signif approaches to select attack respori@és CIRCADIA dif-
icant costs interms of bandwidth, computing power, storagefers from prior efforts in several ways. First|RCADIA
space, and licensing fees. Furthermore, when exploits areuses control-theoretic methodsaatomatically synthesize
detected, the victims must take actions that can consumets reactive strategies, rather than relying on hand-huiits
further resources and compromise their objectives (ey., b or other knowledge. This means that the system can au-
reducing e-commerce server throughput). In this paper, we tomatically adapt its responses when faced with changing
explore techniques for modeling the costs and benefits ofsystem resources, changes in security policy, or an explvin
various security monitoring and response actions. Given computational mission (i.e., the information processing a
these models and stochastic expectations about the typestorage tasks the network is meant to be supporting and de-
of attacks that a site is likely to face, O@RCADIA au- fending). Second, ®RCADIA reasons explicitly about the
tomatic security control system is able to make real-time timeliness of its responses. Using models of the attacks
tradeoffs between the level of safety and security that-is en that may occur and the available responser0@DIA syn-
forced, and the level of system resources/performance thathesizes reactive security control rules that are guagdnte
are applied to the main computational objectives (e.g., e- to respond quickly enough to defeat an intruder, if possi-
commerce transactions). We show hGWRCADIA is able ble. Third, when performance guarantees cannot be com-
to dynamically adjust its security activities to account fo pletely ensured, (RCADIA can automatically make princi-
changing threat profiles and objectives. The result: a pled tradeoffs between the resources devoted to secudty an
continually-optimized balance of security-maintainingg a  the resources devoted to handle mission processes. Finally
tivity that reduces risk while still allowing the system to since GRCADIA reasons explicitly about models of the at-
meet its goals. tacks it faces and assesses the expected performance of the
security controllers (reactions) it designsiRCADIA may
also be used in an offline, system-design methodology to
1. Introducti determine what level of security is achievable with a given

- Introduction set of assets and anticipated attack spectrum.

In this paper, we describeiRcADIA, the Cooperative

Intelligent Real-Time Control Architecture for DynamicIn
formation Assurance. We are developingRCADIA to pro-
vide active real-time response to intrusions as they occur. We begin our discussion by describing a very simpli-
CIRCADIA provides local, low-cost, autonomic defenses for fied model of a security attack on a system, modeled for
computing resources by intelligently adapting threat mon- CIRCADIA in Figure 1. The attack goes through sev-
itoring systems and automatically responding to security eral steps, modeled by “event” and “temporal” transi-
threats in real time. By detecting and responding to in- tions that capture instantaneous or time-consuming pro-

2. An Example Scenario



;; Steps of the ping2root attack, nodeled in CIRCADIA as non-volitional

(def -event ping2rootattenpt-a
:preconds ((is-ping2rootattenpt-a F))
:postconds ((is-ping2rootattenpt-a T))
:delay-distribution (uniformdistribution 10 20))
(def -tenporal ping2rootsuccess-a
:preconds ((is-ping2rootsuccess-a F) (is-ping2rootattenpt-a T))
:postconds ((is-ping2rootsuccess-a T))
:delay-distribution (uniformdistribution 10 20))
(def -t enmporal new user-added- a
:preconds ((is-newuser-added-a F) (is-ping2rootsuccess-a T))
:postconds ((is-new user-added-a T))
:delay-distribution (uniformdistribution 10 20))
(def -tenmporal new user-added-failure-a
:preconds ((is-newuser-added-a T))
:postconds ((failure T))
:delay-distribution (uniformdistribution 10 20))

;; Available actions to respond to the attack.
(def-action turnon-verbose-|ogging
:preconds ((verbose-1ogging off))
:postconds ((verbose-1ogging on))
:delay-distribution (uniformdistribution 1 2))
(def-action kill-attacker-a
:preconds ((is-ping2rootattenpt-a T)(verbose-|ogging on))
:postconds ((is-ping2rootattenpt-a R
(i s-ping2rootsuccess-a F)
(i s-new user-added-a F))
:delay-distribution (uniformdistribution 1 3))
(def -tenmporal recover-a
:preconds ((is-ping2rootattenpt-a R)) ;; cleaning up after

transitions.

:postconds ((is-ping2rootattenpt-a F)) ;; killing the attacker

:delay-distribution (uniformdistribution 1 3))
(def-action turnoff-verbose-| oggi ng

:preconds ((verbose-1ogging on))

:post conds ((verbose-1ogging off))

:delay-distribution (uniformdistribution 1 2))

;7 The initial state, before any attack.
(def-state initial-state
:features ((failure F)
(verbose- | oggi ng of f)
(is-ping2rootattenpt-a F)
(i s-ping2rootsuccess-a F)
(i s-new user-added-a F)))

;; Systenmis goal: keep the logging activities nmininmal to maximze node A throughput

(def-goal verbose-Iogging-is-off
:goal -type :maintenance
:features ((verbose-1ogging off))
creward 1)

Figure 1. CIRCADIA’s model of a simple attack.



cesses that are outside ofiREADIA’S control.  First,

the attacker attempts to execute a particular “ping2root”
exploit on node A i ng2r oot att enpt - a), which
may succeed after some tinai (hg2r oot success- a).

The attack script then creates a new user on node A
(new user - added- a). In this simple example, we have
told CIRCADIA that the system is considered to have failed
if the attacker is able to add a new user that persists for some
amount of timeilew user - added- f ai | ur e- a).

To respond to this attack, the system needs to
turn on a verbose logging function.  Unfortunately,
the verbose logging is so costly that it negatively af-
fects node As system performance, so there is a goal
ver bose-1 oggi ng-i s-of f. Once verbose logging
is on and the system detects the new user, it must de-
stroy the new user accounki(l | - att acker -a) be-
fore the failure transition (described above) can occur. If
theki I | - att acker - a action is taken quickly enough,
then the node will be restored to its prior operation mode
(r ecover - a) and the attack may begin anew.

The model is completed with the specification of an ini-
tial state and a set of goals (which in this case contains a
single goal of minimizing logging activities, thus maximiz
ing node A throughput). Other details such as stochastic
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information (e.g.del ay- di stri buti on) and utilities
(e.g.r ewar d) will be discussed in the next section. Given
this model, the @RcADIA controller synthesis algorithm
projects possible future states and decides, for each state
what control action is appropriate to preserve system secu-
rity and retain the maximum possible quality of service to
mission goals.

For example, Figure 2 depicts the state space that re-
sults from a particular automatically-generated plan. In
essence, this plan is “cavalier”. it reacts to the at-
tack only when the attacker has successfully added a
new account. Any further inaction will result in fail-
ure. This way, the total time the system spends in
goal states (witlver bose- | oggi ng-i s- of f) is max-
imized. At the same time, there may be a chance that
starting to react in state 7 (once the new user is added)
is too late; the attacker may already have enough time
to cause system failure (state 10). We can imagine
a “paranoid” plan that leaveser bose-1 oggi ng on
at all times, and activateki | | - att acker - a when-
ever the system senses @ ng2r oot attenpt-a.
This plan will have higher probability of preventing
new user - added- f ai | ur e- a, but trades off that se-
curity against a low level of node A throughput. How should
we strike the right balance between these two extreme so-
lutions? That is the main question we address in this paper,
using the methodology of decision analysis.

Before continuing with discussion of thelRCADIA
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Figure 2. The “cavalier” plan.




framework, it is worth noting that we do not givaRCA- can be any state € Sp. The world state changes when a
DIA a sequential attack script, we give it each uncontrollable transition is triggered. If the current statesiand transition
“primitive” piece (transition) of the script, and logicatey T is triggered, the next state is given bys). Not all tran-
conditions and postconditions that can be used to chain thesitions are necessarily enabled in all states. For each stat
primitives together. The advantage of this approach is that s € S, E(s) is the subset df’ denoting the set of transitions
as we provide GRCADIA with more and more transitions that can be triggered in state Only one transition can be
describing exploit primitives, the system reasons abdut al triggered in each state at any given time, so transitions in
possible combinations of individual transitions (the vtors  F/(s) compete to trigger a state change.

case, including timing constraints). Thus novel attacks th
combine previously-known elements in new ways are han-
dled without further work by either ®CADIA or the secu-
rity engineer providing the input knowledge.

We can associate a cloek » with each enabled transi-
tion 7 in a states, showing the time remaining unti is
scheduled to occur in (All clock speeds:(s, T) are set to
1.) The clock valuer, . is called theresidual lifetimeof 7
in s [6]. When a transition™* is triggered in state, caus-

3. The Framework: Decision-Theoretic  ing a transition to state’ = 7’(s), then the lifetimes of the
CIRCA transitions enabled isf are initialized as follows:

. . ] 1. Ifre E(s)\{r*}, thenletr,, , = r, ; — 7y +.
CIRCADIA is built on the foundation of the CIRCA

architecture for intelligent real-time control systefi, 2. If 7 ¢ E(s) \ {r*}, thenr, , is set to some value in
13]. CIRCA automatically synthesizes and executes hard- the intervallminA(r), maz A(7)].
real-time discrete event control systems for embedded ap-

plications. We provide a brief discussion of the CIRCA Thg type of a transition determines the general form of the

world model below. interval[minA(r), mazA(r)]. Event transitions can occur
at any time, and thus have a lower limit of zero and an upper

3.1. The Original CIRCA World Model limit of infinity. Temporal transitions are similar to event
but can have a non-zero lower limit. An action transition

The CIRCA planner searches for a plan that is guaran_represents an action taken by the run-time system, and has
a finite upper limit representing the worst-case execution

teed to be safe, by making sure that no failure state is reach-, .
able from initial states. Action transitions are planned to time for that action.
“preempt” temporal transitions to failure states. Traosit

71 preemptsr, in states if it can be proven that; will al- 3.2. Probabilistic Extension
ways be triggered beforg, independent of the history of

state transitions. Safety of a plan is formally verified gsin . .
model checking method45]. Traditionally, CIRCA does not reason explicitly about

o probabilities, but uses time bounds{n A, mazA). More
The formal non-probabilistic world model has seven el- ocently  extensions have been made to include various
ements(S, Sp, So, T, B, minA, maxA). S'is a finite set  nes of probability information(1, 18. Younes and
of states where each state represents a description of rel-y;sliner [18] extended the CIRCA world model by as-

evant features.5p C 5 is a set offailure states which  gqciating a probability distribution functioff (¢; ) with
consists of all states ifi that violate domain constraints or each transitiorr, giving the probability that will be trig-
control-level goalss, C S'is a set of possiblmitial states  yereq time units after it was last enabled. We require that
T'=TpUTsUTrisafinite setofransitionswhereTp is - 1o, 7y = ¢ (j.e. the distribution function corresponds to
?‘Set ofevent trans|t|on$epresgnt|ng Worlq OCCUITences as 5 nositive random variable), because no transition can be
instantaneous state chang#s,is a set ofction ransitions  (1jggered before it has been enabled. A typical choice of
representing actions performed by the run-time system, andyistrihution for an event transition would be an exponentia
Tr is a set otemporal transitionsepresenting the progres- gicribution, and for a temporal transition a shifted expo-
sion of time. Each transition € T |sj§1.mapp|ng. between  antial distribution. For an action transition one coulst, f
statesy : 5 — 5. Function? : S — 2% isafunctionmap-  gyample, use a uniform distribution or a truncated normal
ping a state to a set of transitions enabled 4n Functions  istripution. In addition we can replac with a probabil-
minA, mazA T — R map transitions to minimum and v gistributionp, overs, wherep,(s) is the probability that
maximum trigger times. the world starts in state The set of possible initial states
At any particular point in time, the world is considered is then simplySy; = {s | po(s) > 0}. Finally, we define
to occupy a single state in the model. The initial world state transition probabilitiep(s’; s, 7) expressing the probability



of the next state being given thatr is triggered in state:

. 1 ifr(s) =+
P8 7) = { 0 otherwise
The elements(S,po,p, T, E, F,r) constitute a time-
homogeneous generalized semi-Markov proq€sSMP)

[6].

CIRCADIA adopts this probabilistic extension to the
CIRCA world model. For example, in our current scenario
the time it takes for the attacker to cause system failuez aft
he has successfully added a new user is modeled as a un
form distribution with range of [10, 20] (see Figure 1). In
this example, while all the delay-distributions happenedo b
uniform, they are not required to be so. In fact, since our
approach is simulation-based, as will be seen in the next
section, almost any distribution can be specified to govern
the transition times of events and actions, as long as it is
amenable to sampling.

3.3. Introducing Utilities

In probabilistic terms, the traditional CIRCA planner can
only distinguish between zero and non-zero probability of
reaching a set of states. With probability distributiondun
tions available for the transitions, we can set an arbitrary
threshold representing the highest acceptable failure prob-
ability of a plan. Setting = 0 we revert to the old model.
With ¢ > 0, though, we can accept plans that would have

Toward this end, we need to have a model of utility, in
addition to the probabilistic models of events, transision
and actions. Because of the goal-oriented nature of plan-
ning missions in the information security domain (and sev-
eral other domains such as military planning), we define a
goal-directed utility model8] that has the following char-
acteristics:

1. The utility function assigns a real number tdirste-
horizon plan execution patlwvhere the time horizoh
is domain specific.

|_
2. The utility function is a weighted sum of sub-utility
functions, each of which is scaled to have raffpgd],
and belongs to one of three categoriegintenance-
goal (MG), achievement goal (AG)and repeated

achievement gogdRAG):
w= Y w b Y w o+ Y wf
g 7 k

wherew;, w;, wy are the weights of the corresponding
sub-utility functions, which are scaled to sum to 1.

As an example, a ®CADIA plan for running a web
server may have a maintenance gbahintain high data
throughput for as long as possiblean achievement goal
“complete the Perl interpreter upgradeand a repeated
achievement goalperform crucial data backup every
night”. The utility function may be defined asu =

otherwise been discarded. For example, it now becomes4u} ¢ + 1us® + 5uf49 . In this equationy}’ ¢ may be

possible to have a plan with event transitions to failureesta
provided that the events represented by these transitiens a
sufficiently infrequent, or the probability of entering atst

in which such events are enabled is sufficiently low. The
problem of plan verification now becomes a hypothesis test-
ing problem[18], which can be solved using the sequential
testing algorithm pioneered by Wai7].

While this extension allows for more flexibility (by ac-
cepting plans with positive but small failure probabilitit)

defined proportional to the average data throughpgit:

can simply be a binary function, and’4“ may be defined

as the number of successful backups performed before the
time limit. Finally, the weights4, .1, and.5 reflect the rel-
ative importance of the goals in the overall utility funetio

Several observations are in order regarding the above for-
malization. First, we note that there are at least two other
approaches to modeling utility in decision-theoretic plan
ning. In the first approach (see, e[@]), a plan is modeled

fails to accommodate any tradeoffs between the severity ofas a sequence of actions that leads from an initial state to
failure and the importance of achieving goals, or any trade- some final state, and the utility function is defined as a real-
offs among the goals. In the information security domain valued functioron the set of final statedn this approach,
that we are interested in, these limitations prevent the-pla only what happenst the endof plan execution counts.
ner from constructing defense plans that can flexibly adaptin the second approach, the utility function is defined on
to the uncertain nature of security threats, and the chgngin infinite-horizon plan execution paths via the use of a time-
demands of trading off information services against secu-discounted factol4]. We choose to define the utility func-
rity level. Decision theory10], which models uncertainty  tion onexecution pathéas opposed to final states) because
with probabilities and the costs/benefits of actions with ut  a) CIRCADIA plans are reactive (as opposed to sequen-
ities, provides an attractive answer to this challengehént tial) and b) only an execution path contains necessary in-
decision-theoretic world, failures are not created theesam formation to compute MG-directed and RAG-directed sub-
nor are goals. The best plan is the one thaikimizes the  utilities. We choose to restrict ourselvesftoite-horizon
expected utility execution paths because available methods for computing



expected utility on infinite-horizon execution paths ang-ty In the above inequalitieg,, denotes the mean oftasize
ically analytical (as opposed to sampling-based), based orsample ofs, o2 denotes the variance af(which is at most
much simpler models of time and utiliti€3]. The second  1/4 because is bounded in0, 1]), and in Bernstein’s and
observation is that this formalization is not exclusivee th Hoeffding’s inequalities) is a positive number such that
model of utility can be modified based on the specifics of |u — F[u]| is bounded byl/ almost surely (for example, we
the actual problem. For example, we can add a deadlinecan setl/ = 1). Chebyshev’s inequality is classical. Bern-

to an achievement goal, or a time-discounted factor to thestein’s inequality is discussed, for exampld1]. Hoeffd-

sub-utility functions. Again, because of the samplingduhs
nature of our approach, this modification in general can be
accommodated in the expected utility estimation method,
described in the next section.

In the “ping2root” scenario, there is one maintenance
goalver bose- | oggi ng-i s- of f, which hasr ewar d
of 1. This means that the utility functiom is computed
over an execution path by computing the proportion of time
spent in states satisfyer bose- | oggi ng-i s- of f. Fi-
nally, we need to set the utility of failed execution paths to

the negative value of some large number (e.g. -10,000). The

ing’s inequality[9] is often used in the machine learning
literature.

These inequalities translate into the following upper

bounds on the required humber of samples to engy
approximation:

1
44

1. Chebyshev’s bound > ;=
2

/6)(1/2¢% + 2/3¢).
3. Hoeffding’s boundk > In(2/6)(2/¢€%).

2. Bernstein’s boundk > In(

fact that this number is finite means that the system designer

should make a conscious tradeoff between the achieving

goals versus maintaining system safety.

3.4. Identifying Plans with Highest Expected Utili-
ties

With the introduction of the utility model, the I€cA-
DIA planning problem now becomes the problem of search-
ing for the plan with highest expected utility. The expected
utility of a planw is E[u(X (w, h))], whereX (r, h) is the
random execution path resulting from executing ptam-
til time horizon k. The key issue here is to compute the
EUs. Since our CIRCA model corresponds to a GSMP, for
which there are no known analytic methods to efficiently
compute the expected utility, the only feasible approach is
to use Monte Carlo sampling to approximate the EU.

Note that by definition, the utility function has range
[0,1], and as a consequence, the utility of a plan is a ran-
dom variable with rang€0, 1]. Ideally, we would like our
estimateu of E[u] to be withine of the actual mean with
probability of at leasfi — &, whereec andé are small posi-
tive real numbersPr(|a — E[u]| > €) < 6. Several well-
known results from statistics give upper bounds on the re-
quired number of simulation runs to ensuarprecision with
(1 — §)-confidence. We list these results below.

1. Chebyshev's inequality’r(|a, — Efu]| > ¢€) < %

2. Bernstein’s inequality Pr(|ax — E[u]|] > € <
2exp(%).

3. Hoeffding’s inequality Pr(|u, — Efu]] > €) <

2exp(—%).

Note that Chebyshev’s bound increases linearly with re-
spect tol/4, while Bernstein’s and Hoeffding’s increase
logarithmically. Ase decreases, it is not hard to see that
Bernstein’s bound is smaller than Hoeffding’s. This leads
us to adopt Bernstein’s bound for smalindd, and Cheby-
shev’s bound for larger andé. Algorithm 1 identifies the
plan with highest expected utility.

1. Setcurrent_best_EU = —co.

2. Generate a plad. SimulateA up to time horizork, com-
pute the utility of the resulting path.

. Repeat the above step fértimes, wherek is the small-
est among the Chebyshev’s, Bernstein's, and Hoeffding’s
bounds, compute the average utility,. If @ >
current_best_EU , setcurrent_best_EU = uy.

. Go back to step 2. Continue until some stopping critergon i
true (e.g. there are no more plans, or time limit is reached).

Algorithm 1. Identifying best plan using sta-
tistical guarantees.

3.5. Sequential Methods for Identifying Plans with
Highest Expected Utility

The above sample upper bounds are applicablarfgr
random variable with rangf, 1], which is important for
our analysis becauseis a complex function and will most
likely not observe known parametric forms such as uni-
form or Gaussian. The downside of this generality is that
these upper bounds are rather high: fet .01 error mar-
gin and95% confidence { = .05), Bernstein’s bound is



1. Setcurrent_best_EU = —co.

2. Generate a plad. SimulateA up to time horizork, com-
pute the utility of the resulting path.

3. Repeat 2 until one of the following occurs: (a) The number
of failed execution paths so far is greater than the “repecti
threshold”. In this case, the plan is eliminated as one with
high failure probability. Look at the failed execution psth
identify the culprits, and backjump to generate a new plan
based on the culprit. (b) The number of execution paths re-
sulting in utility less tharcurrent_best_EU is greater than
the “rejection threshold”. In this case, the plan is elimi-
nated as one with high probability of being inferior to the
current best plan. Chronologically backtrack to generate a
new plan. (c) The number of simulations reaches the lowest
among the three (Chebyshev's, Bernstein’s, and Hoeffd)ng’
bounds. Stop the simulation for this plan and compute the
average sample utilityi. If & > currentbest_EU, then
setcurrent_best_EU = u. Otherwise, the current plan is
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Figure 3. Many plans are determined to be
failure-prone or inferior to the best-so-far with
fewer than 100 simulation runs.

eliminated as being inferior to the current best plan.

4. Go back to step 2. Continue until some stopping criterion
is true (e.g. there are no more plans, or plan time limit is

reached). utilities of the samples. We are working on a more rigor-

ous approach to sequentially determine if the current an i

. . o inferior to the current best plan.
Algorithm 2. Identify the plan with highest ex-

pected utility sequentially. Note that “rejection number” is not a constant; instead it

is updated after the completion of each simulation run. The
exact formula to compute this number depends on several
user-adjustable parameters such as “threshold prolyaddilit

4,612 (Hoeffding’s bound is 7,378, and Chebyshev’s bound acce“pting aplan with hi_gh failure p_robability" (type I er}q

is 50,000). One possible way to cut down on the number of and threshp_ld probability of rejecting a plan with low fgn
samples is to appeal to sequential analytic techniques (se re probability (type. Il error). See Younes and Musliner
e.g. [18]). Unfortunately, there is no known effective se- [2002] for more details.

guential method to estimate the mean of a random variable One scenario where this technique does not result in sig-
u unless parametric assumptions are made abfi]t Note nificant savings is when successive plans are of increasing|
that in Step 4 in Algorithm 1, what we really are interested better quality. On the other hand, if the best plan is identi-
in is whether the current planis inferior to the currentbest  fied rather quickly (this crucially depends on the strength
plan,i.e.E[u(m, h)] < current_best_EU, which is clearly of the plan’s heuristic, and the strength of the simulation-
a hypothesis testing problem. (We can not use sequentiabuided backjump routine, to be discussed later in Sectipn 5)
methods to determine if the current plarsigoerior tothe then from that point on we will be able to save a significant
current best plan, since if that is the case, we will need+to es amount of time on estimating utilities, by quickly dismiss-
timate its expected utility anyway.) If we can quickly deter ing plans with high failure probability, or with high prob-
mine, via a sequential sampling procedure thét inferior ability of being inferior to the current best. Figure 3 il-
to the current best plan, then there is no need to continudustrates the savings afforded by the new algorithm in the
estimating the EU ofr; the algorithm can move on to the “ping2root” problem described in Figure 1.

next plan.

Algorithm 2 employs an heuristic, acceptance-based ap-4 Making Tradeoffs in CIRCADIA
proach to this problem. For each sample execution of the

current plan, we compute and compare the utility of the cur-

rent plan to the expected utility of the current best plan. If  In Section 2, we raised the question of how to strike the
the current plan yields lower utility for enough number of right balance between two extreme solutions (“cavalied’ an
times (in a sequential analytic sense), it is deemed to be“paranoid”) to the “ping2root” attack. With the introduc-
inferior and eliminated. This approach is only a heuristic tion of the decision-theoretic modeling described in Sec-
because it does not take into account the magnitude of theion 3, we now have a principled answer to this question.



Instead of randomly deciding on being “cavalier,” “para- 5. Some Details of theCIRCADIA Planner

noid,” or somewhere in between, the system designer can

now make a conscious effort to encode his preferences by ] ] ] )
setting the utilities of achieving goals and enduring fialu The reader up to this point has been given a rather high-
He also needs to carefully consider the probabilistic infor 1evel overview of the GRCADIA planner with emphasis on
mation that characterizes the transition times of events, a its decision-theoretic reasoning capabilities. Sinced3.-
tions, and other non-volitional transitions. Finally, teeds ~ DIA is based on CIRCA, answers to many architectural and
to set the thresholds for the sequential hypothesis tests delmplementation questions can be found on previous CIRCA
scribed in Algorithm 2. While all of these efforts are intel- Publications. In this paper, we focus attention on two issue
lectually demanding, their fruits can not be denied. The thatare of particular importance taRCADIA: the heuris-
system designer can now sit back and leR€aDIA do tic and thebackjumper These two seemingly dlsconnect.eq
the hard work of identifying the plan that best balances be- issues both have paramount importance in how determining
tween achieving the specified goals and avoiding failures. duickly the system arrives at the plan with highest expected
If planning time is unlimited, @GRcAbIA will find that best  Utility, and thus on the (anytime) performance ofRCA-

plan simply by doing an exhaustive search through the planP!A-

space. If this is not the case (which is the more practical  CIRCA's heuristic is responsible for making a decision

case), the system designer can interrultG@ADIA at any  to assign an action to a state, and thus indirectly responsi-

time and obtain the plan that is the current best candidate. ble for theorder of the p|ans being generated_ Presenﬂy,
To illustrate this point, let us go back to the now famil- CIRCADIA uses the original CIRCA heuristid4]. At any

iar “ping2root” problem. We assume here that the utilities 91Ven time in the planning process, there is a set of states

are fixed yer bose- | oggi ng- i s- of f hasr ewar d of thgt have not peen pIanneq f.o'r, callmgen stateslmﬂglly,

1, andf ai | ur e has utility of -10,000). How could ®&- this set contains only th_e initial states. As_ pIannmg_ pro-

CADIA come up with different plans like the “cavalier” and 9'®SS€s, the planner projects events and actions on this set

the “paranoid” ones? The answer lies in varying the tran- obtain more and more open s?ates. The heurlstlc selects an
open state from this set, examines the actions that are-appli

| cable to that state, and ranks them according to how likely
they will be able to take the system to a state that satisfies
the specified goals. This ranking is computed via an im-

sition times, or more precisely, the probability distrilouts
of transition times of events and actions in the model.
thenew- user - added- f ai | ur e- a transition takes an

amount : ; (
of time sufficient tat ur n- on- ver bose- | oggi ng and plementation of McDermott's regressmn—mgtch grébh,
Kill-attacker-a, then the “cavalier” plan, depicted 14]. When there are no more open states, i.e. when every

in Figure 2 may be the plan with highest expected util- State has been planned for, we obtain a complete plan.

ity. We can imagine this scenario to be a low-security  The backjumper, on the other hand, is responsible
scenario, when it is perceived that an attack is unlikely, for handling a plan that is deemed (via simulation) to
and when an attack occurs, there is plenty of time to re- have high probability of failure. Since the heuristic
spond. The goal is hence to maximize the expected util-does not consider failure but focuses exclusively on get-
ity by maximizing the throughput of node A. In the mil- ting to goal states, it tends to generate “over-ambitious”
itary information security area, this could correspond to plans that result in high failure probability. An illus-
the DoD’s INFOCON NORMAL' level. In contrast, if it  trating example is the “cavalier plan” that ignores the
is perceived that an attack is very likely from multiple threat untiinew- user - added- a (thereby trying to max-
sources INFOCON DELTA), the system should be put on imizing the time spent iver bose- | oggi ng-i s- of f

the high-security mode to react in the quickest way pos- states, see Figure 2). It is characteristic of the goal-
sible to any potential attack. This scenario will be refldcte oriented nature of the heuristic that the “cavalier plan”
in rapid transition times foipi ng2r oot att enpt - a, is the first plan generated byIRCADIA. If the transi-

pi ng2r oot success-a, new user - added-a, and tion time from this state to failure is so short that there
new- user - added- f ai | ur e- a, and the paranoid plan is not enough time td ur n- on- ver bose- | oggi ng
having the highest expected utility. We can also imagine andki | | - at t acker - a, then too many simulation traces
another scenario in between these two extreme scenariogill end in failure. In this case, the backjumper needs
(e.9.,INFOCON ALPHA), where the plan with highest ex- to examine the failure traces, identify the culprit de-
pected utility is the one that starts to react upon dete@ing cision that is responsible for failure (e.g., the system

pi ng2r oot at t enpt - a (see Figure 4). should t ur n- on- ver bose- | oggi ng upon detecting
pi ng2r oot at t enpt , instead of doing nothing). If we
1The five infocon levels, from the lowest to the highest aterRMAL, imagine the search for the best plan as a depth-first search

ALPHA, BRAVO, CHARLIE, DELTA. in a tree, a backjumper that correctly identifies the denisio
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Figure 4. The “ INFOCON ALPHA” plan balances security against performance.



culprit will be able to help the planner save a lot of time
generating and evaluating plans in a bad branch of the tree
where the better plans are located in different branches. A
good backjumper will also maintaicompletenesgy not
letting the best plan slip out of the search net (for example,
by jumping too far back and thus discarding the best plan).
Currently, the backjumper inICADIA is a modified ver-
sion of the backjumper already present in CIRCA. We have
the options to provide the backjumper with all the failure
traces, the shortest failure trace, or the most common fail-
ure trace, based on which the backjumper will identify the
most recentdecision that leads to failure. A detailed discus-
sion of the implementation of this backjumper is beyond the
scope of this paper and will be reported elsewhere. Our ex-
perience experimenting with these options indicate tHat al
of these options are complete: the planner, given sufficient 10]
time, will always find the plan with highest expected util-
ity. Furthermore, the savings afforded by these backjump-
ing options, i.e. the percentage of plans eliminated withou
evaluation, range from 39% to 51%.

[4]

[5]
[6]
[7]

(8]

[9]

[11]

While the performance of our backjumper is quite sat-
isfactory, much work remains to be done to improve the
current heuristic, as it is goal-oriented rather than EU-
oriented. While constructing EU-aware heuristic is an ob-
viously quite complex task, we could take the initial step by
incorporating the ability to rank the relative importande o
different goals. The next step would be to incorporate the
ability to analyze the existing decision choices and simula [14]
tion traces to provide a better heuristic.

[12]

[13]
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