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Abstract

All Internet-accessible computing systems are currently
faced with incessant threats ranging from simple script-
kiddies to highly sophisticated criminal enterprises. In re-
sponse to these threats, sites must perform extensive intru-
sion monitoring. This intrusion monitoring can have signif-
icant costs in terms of bandwidth, computing power, storage
space, and licensing fees. Furthermore, when exploits are
detected, the victims must take actions that can consume
further resources and compromise their objectives (e.g., by
reducing e-commerce server throughput). In this paper, we
explore techniques for modeling the costs and benefits of
various security monitoring and response actions. Given
these models and stochastic expectations about the types
of attacks that a site is likely to face, ourCIRCADIA au-
tomatic security control system is able to make real-time
tradeoffs between the level of safety and security that is en-
forced, and the level of system resources/performance that
are applied to the main computational objectives (e.g., e-
commerce transactions). We show howCIRCADIA is able
to dynamically adjust its security activities to account for
changing threat profiles and objectives. The result: a
continually-optimized balance of security-maintaining ac-
tivity that reduces risk while still allowing the system to
meet its goals.

1. Introduction

In this paper, we describe CIRCADIA , the Cooperative
Intelligent Real-Time Control Architecture for Dynamic In-
formation Assurance. We are developing CIRCADIA to pro-
vide active real-time response to intrusions as they occur.
CIRCADIA provides local, low-cost, autonomic defenses for
computing resources by intelligently adapting threat mon-
itoring systems and automatically responding to security
threats in real time. By detecting and responding to in-

trusion activities within the timescale of the attacks them-
selves, CIRCADIA is able to defeat scripted attacks and pre-
vent attackers from compromising protected systems.

The idea of responding automatically to attacks is not
new; various researchers have developed prototype systems
using rule-based, case-based, and other related inferential
approaches to select attack responses[2]. CIRCADIA dif-
fers from prior efforts in several ways. First, CIRCADIA

uses control-theoretic methods toautomatically synthesize
its reactive strategies, rather than relying on hand-builtrules
or other knowledge. This means that the system can au-
tomatically adapt its responses when faced with changing
system resources, changes in security policy, or an evolving
computational mission (i.e., the information processing and
storage tasks the network is meant to be supporting and de-
fending). Second, CIRCADIA reasons explicitly about the
timeliness of its responses. Using models of the attacks
that may occur and the available responses, CIRCADIA syn-
thesizes reactive security control rules that are guaranteed
to respond quickly enough to defeat an intruder, if possi-
ble. Third, when performance guarantees cannot be com-
pletely ensured, CIRCADIA can automatically make princi-
pled tradeoffs between the resources devoted to security and
the resources devoted to handle mission processes. Finally,
since CIRCADIA reasons explicitly about models of the at-
tacks it faces and assesses the expected performance of the
security controllers (reactions) it designs, CIRCADIA may
also be used in an offline, system-design methodology to
determine what level of security is achievable with a given
set of assets and anticipated attack spectrum.

2. An Example Scenario

We begin our discussion by describing a very simpli-
fied model of a security attack on a system, modeled for
CIRCADIA in Figure 1. The attack goes through sev-
eral steps, modeled by “event” and “temporal” transi-
tions that capture instantaneous or time-consuming pro-



;; Steps of the ping2root attack, modeled in CIRCADIA as non-volitional transitions.

(def-event ping2rootattempt-a
:preconds ((is-ping2rootattempt-a F))
:postconds ((is-ping2rootattempt-a T))
:delay-distribution (uniform-distribution 10 20))

(def-temporal ping2rootsuccess-a
:preconds ((is-ping2rootsuccess-a F) (is-ping2rootattempt-a T))
:postconds ((is-ping2rootsuccess-a T))
:delay-distribution (uniform-distribution 10 20))

(def-temporal new-user-added-a
:preconds ((is-new-user-added-a F) (is-ping2rootsuccess-a T))
:postconds ((is-new-user-added-a T))
:delay-distribution (uniform-distribution 10 20))

(def-temporal new-user-added-failure-a
:preconds ((is-new-user-added-a T))
:postconds ((failure T))
:delay-distribution (uniform-distribution 10 20))

;; Available actions to respond to the attack.
(def-action turnon-verbose-logging

:preconds ((verbose-logging off))
:postconds ((verbose-logging on))
:delay-distribution (uniform-distribution 1 2))

(def-action kill-attacker-a
:preconds ((is-ping2rootattempt-a T)(verbose-logging on))
:postconds ((is-ping2rootattempt-a R)

(is-ping2rootsuccess-a F)
(is-new-user-added-a F))

:delay-distribution (uniform-distribution 1 3))
(def-temporal recover-a

:preconds ((is-ping2rootattempt-a R)) ;; cleaning up after
:postconds ((is-ping2rootattempt-a F)) ;; killing the attacker
:delay-distribution (uniform-distribution 1 3))

(def-action turnoff-verbose-logging
:preconds ((verbose-logging on))
:postconds ((verbose-logging off))
:delay-distribution (uniform-distribution 1 2))

;; The initial state, before any attack.
(def-state initial-state

:features ((failure F)
(verbose-logging off)
(is-ping2rootattempt-a F)
(is-ping2rootsuccess-a F)
(is-new-user-added-a F)))

;; System’s goal: keep the logging activities minimal to maximize node A throughput.
(def-goal verbose-logging-is-off

:goal-type :maintenance
:features ((verbose-logging off))
:reward 1)

Figure 1. CIRCADIA ’s model of a simple attack.



cesses that are outside of CIRCADIA ’s control. First,
the attacker attempts to execute a particular “ping2root”
exploit on node A (ping2rootattempt-a), which
may succeed after some time (ping2rootsuccess-a).
The attack script then creates a new user on node A
(new-user-added-a). In this simple example, we have
told CIRCADIA that the system is considered to have failed
if the attacker is able to add a new user that persists for some
amount of time (new-user-added-failure-a).

To respond to this attack, the system needs to
turn on a verbose logging function. Unfortunately,
the verbose logging is so costly that it negatively af-
fects node A’s system performance, so there is a goal
verbose-logging-is-off. Once verbose logging
is on and the system detects the new user, it must de-
stroy the new user account (kill-attacker-a) be-
fore the failure transition (described above) can occur. If
thekill-attacker-a action is taken quickly enough,
then the node will be restored to its prior operation mode
(recover-a) and the attack may begin anew.

The model is completed with the specification of an ini-
tial state and a set of goals (which in this case contains a
single goal of minimizing logging activities, thus maximiz-
ing node A throughput). Other details such as stochastic
information (e.g.delay-distribution) and utilities
(e.g.reward) will be discussed in the next section. Given
this model, the CIRCADIA controller synthesis algorithm
projects possible future states and decides, for each state,
what control action is appropriate to preserve system secu-
rity and retain the maximum possible quality of service to
mission goals.

For example, Figure 2 depicts the state space that re-
sults from a particular automatically-generated plan. In
essence, this plan is “cavalier”: it reacts to the at-
tack only when the attacker has successfully added a
new account. Any further inaction will result in fail-
ure. This way, the total time the system spends in
goal states (withverbose-logging-is-off) is max-
imized. At the same time, there may be a chance that
starting to react in state 7 (once the new user is added)
is too late; the attacker may already have enough time
to cause system failure (state 10). We can imagine
a “paranoid” plan that leavesverbose-logging on
at all times, and activateskill-attacker-a when-
ever the system senses aping2rootattempt-a.
This plan will have higher probability of preventing
new-user-added-failure-a, but trades off that se-
curity against a low level of node A throughput. How should
we strike the right balance between these two extreme so-
lutions? That is the main question we address in this paper,
using the methodology of decision analysis.

Before continuing with discussion of the CIRCADIA
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Figure 2. The “cavalier” plan.



framework, it is worth noting that we do not give CIRCA-
DIA a sequential attack script, we give it each uncontrollable
“primitive” piece (transition) of the script, and logical pre-
conditions and postconditions that can be used to chain the
primitives together. The advantage of this approach is that,
as we provide CIRCADIA with more and more transitions
describing exploit primitives, the system reasons about all
possible combinations of individual transitions (the worst-
case, including timing constraints). Thus novel attacks that
combine previously-known elements in new ways are han-
dled without further work by either CIRCADIA or the secu-
rity engineer providing the input knowledge.

3. The Framework: Decision-Theoretic
CIRCA

CIRCADIA is built on the foundation of the CIRCA
architecture for intelligent real-time control systems[12,
13]. CIRCA automatically synthesizes and executes hard-
real-time discrete event control systems for embedded ap-
plications. We provide a brief discussion of the CIRCA
world model below.

3.1. The Original CIRCA World Model

The CIRCA planner searches for a plan that is guaran-
teed to be safe, by making sure that no failure state is reach-
able from initial states. Action transitions are planned to
“preempt” temporal transitions to failure states. Transition�1 preempts�2 in states if it can be proven that�1 will al-
ways be triggered before�2, independent of the history of
state transitions. Safety of a plan is formally verified using
model checking methods[15].

The formal non-probabilistic world model has seven el-
ements(S; SF ; S0; T; E;min�;max�). S is a finite set
of states, where each state represents a description of rel-
evant features.SF � S is a set offailure states, which
consists of all states inS that violate domain constraints or
control-level goals.S0 � S is a set of possibleinitial states.T = TE [TA[TT is a finite set oftransitions, whereTE is
a set ofevent transitionsrepresenting world occurrences as
instantaneous state changes,TA is a set ofaction transitions
representing actions performed by the run-time system, andTT is a set oftemporal transitionsrepresenting the progres-
sion of time. Each transition� 2 T is a mapping between
states;� : S ! S. FunctionE : S ! 2T is a function map-
ping a states to a set of transitions enabled ins. Functionsmin�;max� : T ! Rmap transitions to minimum and
maximum trigger times.

At any particular point in time, the world is considered
to occupy a single state in the model. The initial world state

can be any states 2 S0. The world state changes when a
transition is triggered. If the current state iss and transition� is triggered, the next state is given by� (s). Not all tran-
sitions are necessarily enabled in all states. For each states 2 S,E(s) is the subset ofT denoting the set of transitions
that can be triggered in states. Only one transition can be
triggered in each state at any given time, so transitions inE(s) compete to trigger a state change.

We can associate a clockrs;� with each enabled transi-
tion � in a states, showing the time remaining until� is
scheduled to occur ins. (All clock speedsr(s; � ) are set to1.) The clock valuers;� is called theresidual lifetimeof �
in s [6]. When a transition�� is triggered in states, caus-
ing a transition to states0 = � 0(s), then the lifetimes of the
transitions enabled ins0 are initialized as follows:

1. If � 2 E(s) n f��g, then letrs0;� = rs;� � rs;�� .

2. If � 62 E(s) n f��g, thenrs0;� is set to some value in
the interval[min�(� );max�(� )].

The type of a transition determines the general form of the
interval[min�(� );max�(� )]. Event transitions can occur
at any time, and thus have a lower limit of zero and an upper
limit of infinity. Temporal transitions are similar to events,
but can have a non-zero lower limit. An action transition
represents an action taken by the run-time system, and has
a finite upper limit representing the worst-case execution
time for that action.

3.2. Probabilistic Extension

Traditionally, CIRCA does not reason explicitly about
probabilities, but uses time bounds (min�;max�). More
recently, extensions have been made to include various
types of probability information[1, 18]. Younes and
Musliner [18] extended the CIRCA world model by as-
sociating a probability distribution functionF (t; � ) with
each transition� , giving the probability that� will be trig-
geredt time units after it was last enabled. We require thatF (0; � ) = 0 (i.e. the distribution function corresponds to
a positive random variable), because no transition can be
triggered before it has been enabled. A typical choice of
distribution for an event transition would be an exponential
distribution, and for a temporal transition a shifted expo-
nential distribution. For an action transition one could, for
example, use a uniform distribution or a truncated normal
distribution. In addition we can replaceS0 with a probabil-
ity distributionp0 overS, wherep0(s) is the probability that
the world starts in states. The set of possible initial states
is then simplyS0 = fs j p0(s) > 0g: Finally, we define
transition probabilitiesp(s0; s; � ) expressing the probability



of the next state beings0 given that� is triggered in states:p(s0; s; � ) = � 1 if � (s) = s00 otherwise

The elements (S; p0; p; T; E; F; r) constitute a time-
homogeneous generalized semi-Markov process(GSMP)
[6].

CIRCADIA adopts this probabilistic extension to the
CIRCA world model. For example, in our current scenario
the time it takes for the attacker to cause system failure after
he has successfully added a new user is modeled as a uni-
form distribution with range of [10, 20] (see Figure 1). In
this example, while all the delay-distributions happen to be
uniform, they are not required to be so. In fact, since our
approach is simulation-based, as will be seen in the next
section, almost any distribution can be specified to govern
the transition times of events and actions, as long as it is
amenable to sampling.

3.3. Introducing Utilities

In probabilistic terms, the traditional CIRCA planner can
only distinguish between zero and non-zero probability of
reaching a set of states. With probability distribution func-
tions available for the transitions, we can set an arbitrary
threshold� representing the highest acceptable failure prob-
ability of a plan. Setting� = 0 we revert to the old model.
With � > 0, though, we can accept plans that would have
otherwise been discarded. For example, it now becomes
possible to have a plan with event transitions to failure states
provided that the events represented by these transitions are
sufficiently infrequent, or the probability of entering a state
in which such events are enabled is sufficiently low. The
problem of plan verification now becomes a hypothesis test-
ing problem[18], which can be solved using the sequential
testing algorithm pioneered by Wald[17].

While this extension allows for more flexibility (by ac-
cepting plans with positive but small failure probability), it
fails to accommodate any tradeoffs between the severity of
failure and the importance of achieving goals, or any trade-
offs among the goals. In the information security domain
that we are interested in, these limitations prevent the plan-
ner from constructing defense plans that can flexibly adapt
to the uncertain nature of security threats, and the changing
demands of trading off information services against secu-
rity level. Decision theory[10], which models uncertainty
with probabilities and the costs/benefits of actions with util-
ities, provides an attractive answer to this challenge. In the
decision-theoretic world, failures are not created the same,
nor are goals. The best plan is the one thatmaximizes the
expected utility.

Toward this end, we need to have a model of utility, in
addition to the probabilistic models of events, transitions,
and actions. Because of the goal-oriented nature of plan-
ning missions in the information security domain (and sev-
eral other domains such as military planning), we define a
goal-directed utility model[8] that has the following char-
acteristics:

1. The utility function assigns a real number to afinite-
horizon plan execution path, where the time horizonh
is domain specific.

2. The utility function is a weighted sum of sub-utility
functions, each of which is scaled to have range[0; 1],
and belongs to one of three categories:maintenance-
goal (MG), achievement goal (AG), and repeated
achievement goal(RAG):u =Xi wiuMGi +Xj wjuAGj +Xk wkuRAGk ;
wherewi; wj; wk are the weights of the corresponding
sub-utility functions, which are scaled to sum to 1.

As an example, a CIRCADIA plan for running a web
server may have a maintenance goal“maintain high data
throughput for as long as possible”, an achievement goal
“complete the Perl interpreter upgrade”and a repeated
achievement goal“perform crucial data backup every
night” . The utility function may be defined as:u =:4uMG1 + :1uAG2 + :5uRAG3 : In this equation,uMG1 may be
defined proportional to the average data throughput,uAG2
can simply be a binary function, anduRAG3 may be defined
as the number of successful backups performed before the
time limit. Finally, the weights:4, :1, and:5 reflect the rel-
ative importance of the goals in the overall utility function.

Several observations are in order regarding the above for-
malization. First, we note that there are at least two other
approaches to modeling utility in decision-theoretic plan-
ning. In the first approach (see, e.g.[7]), a plan is modeled
as a sequence of actions that leads from an initial state to
some final state, and the utility function is defined as a real-
valued functionon the set of final states. In this approach,
only what happensat the endof plan execution counts.
In the second approach, the utility function is defined on
infinite-horizon plan execution paths via the use of a time-
discounted factor[4]. We choose to define the utility func-
tion onexecution paths(as opposed to final states) because
a) CIRCADIA plans are reactive (as opposed to sequen-
tial) and b) only an execution path contains necessary in-
formation to compute MG-directed and RAG-directed sub-
utilities. We choose to restrict ourselves tofinite-horizon
execution paths because available methods for computing



expected utility on infinite-horizon execution paths are typ-
ically analytical (as opposed to sampling-based), based on
much simpler models of time and utilities[3]. The second
observation is that this formalization is not exclusive: the
model of utility can be modified based on the specifics of
the actual problem. For example, we can add a deadline
to an achievement goal, or a time-discounted factor to the
sub-utility functions. Again, because of the sampling-based
nature of our approach, this modification in general can be
accommodated in the expected utility estimation method,
described in the next section.

In the “ping2root” scenario, there is one maintenance
goalverbose-logging-is-off, which hasreward
of 1. This means that the utility functionu is computed
over an execution path by computing the proportion of time
spent in states satisfyverbose-logging-is-off. Fi-
nally, we need to set the utility of failed execution paths to
the negative value of some large number (e.g. -10,000). The
fact that this number is finite means that the system designer
should make a conscious tradeoff between the achieving
goals versus maintaining system safety.

3.4. Identifying Plans with Highest Expected Utili-
ties

With the introduction of the utility model, the CIRCA-
DIA planning problem now becomes the problem of search-
ing for the plan with highest expected utility. The expected
utility of a plan� is E[u(X(�; h))], whereX(�; h) is the
random execution path resulting from executing plan� un-
til time horizonh. The key issue here is to compute the
EUs. Since our CIRCA model corresponds to a GSMP, for
which there are no known analytic methods to efficiently
compute the expected utility, the only feasible approach is
to use Monte Carlo sampling to approximate the EU.

Note that by definition, the utility function has range[0; 1], and as a consequence, the utility of a plan is a ran-
dom variable with range[0; 1]. Ideally, we would like our
estimate~u of E[u] to be within� of the actual mean with
probability of at least1 � �, where� and� are small posi-
tive real numbers:Pr(j~u � E[u]j > �) < �. Several well-
known results from statistics give upper bounds on the re-
quired number of simulation runs to ensure�-precision with(1� �)-confidence. We list these results below.

1. Chebyshev’s inequality: Pr(j~uk �E[u]j > �) � �2k�2 .

2. Bernstein’s inequality: Pr(j~uk � E[u]j > �) �2 exp( �k�22�2+2M�=3).
3. Hoeffding’s inequality: Pr(j~uk � E[u]j > �) �2 exp(� k�22M2 ).

In the above inequalities,�uk denotes the mean of ak-size
sample ofu, �2 denotes the variance ofu (which is at most
1/4 becauseu is bounded in[0; 1]), and in Bernstein’s and
Hoeffding’s inequalities,M is a positive number such thatju�E[u]j is bounded byM almost surely (for example, we
can setM = 1). Chebyshev’s inequality is classical. Bern-
stein’s inequality is discussed, for example in[16]. Hoeffd-
ing’s inequality[9] is often used in the machine learning
literature.

These inequalities translate into the following upper
bounds on the required number of samples to ensure(�; �)
approximation:

1. Chebyshev’s bound: k � 14��2 .

2. Bernstein’s bound: k � ln(2=�)(1=2�2 + 2=3�).
3. Hoeffding’s bound: k � ln(2=�)(2=�2).
Note that Chebyshev’s bound increases linearly with re-

spect to1=�, while Bernstein’s and Hoeffding’s increase
logarithmically. As� decreases, it is not hard to see that
Bernstein’s bound is smaller than Hoeffding’s. This leads
us to adopt Bernstein’s bound for small� and�, and Cheby-
shev’s bound for larger� and�. Algorithm 1 identifies the
plan with highest expected utility.

1. Setcurrent best EU = �1.

2. Generate a planA. SimulateA up to time horizonh, com-
pute the utility of the resulting path.

3. Repeat the above step fork times, wherek is the small-
est among the Chebyshev’s, Bernstein’s, and Hoeffding’s
bounds, compute the average utility�uk. If �uk >current best EU , setcurrent best EU = �uk .

4. Go back to step 2. Continue until some stopping criterion is
true (e.g. there are no more plans, or time limit is reached).

Algorithm 1. Identifying best plan using sta-
tistical guarantees.

3.5. Sequential Methods for Identifying Plans with
Highest Expected Utility

The above sample upper bounds are applicable forany
random variable with range[0; 1], which is important for
our analysis becauseu is a complex function and will most
likely not observe known parametric forms such as uni-
form or Gaussian. The downside of this generality is that
these upper bounds are rather high: for� = :01 error mar-
gin and95% confidence (� = :05), Bernstein’s bound is



1. Setcurrent best EU = �1.

2. Generate a planA. SimulateA up to time horizonh, com-
pute the utility of the resulting path.

3. Repeat 2 until one of the following occurs: (a) The number
of failed execution paths so far is greater than the “rejection
threshold”. In this case, the plan is eliminated as one with
high failure probability. Look at the failed execution paths,
identify the culprits, and backjump to generate a new plan
based on the culprit. (b) The number of execution paths re-
sulting in utility less thancurrent best EU is greater than
the “rejection threshold”. In this case, the plan is elimi-
nated as one with high probability of being inferior to the
current best plan. Chronologically backtrack to generate a
new plan. (c) The number of simulations reaches the lowest
among the three (Chebyshev’s,Bernstein’s, and Hoeffding’s)
bounds. Stop the simulation for this plan and compute the
average sample utility~u. If ~u > current best EU , then
setcurrent best EU = ~u. Otherwise, the current plan is
eliminated as being inferior to the current best plan.

4. Go back to step 2. Continue until some stopping criterion
is true (e.g. there are no more plans, or plan time limit is
reached).

Algorithm 2. Identify the plan with highest ex-
pected utility sequentially.

4,612 (Hoeffding’s bound is 7,378, and Chebyshev’s bound
is 50,000). One possible way to cut down on the number of
samples is to appeal to sequential analytic techniques (see
e.g. [18]). Unfortunately, there is no known effective se-
quential method to estimate the mean of a random variableu unless parametric assumptions are made aboutu [5]. Note
that in Step 4 in Algorithm 1, what we really are interested
in is whether the current plan� is inferior to the current best
plan, i.e.E[u(�; h)] < current best EU , which is clearly
a hypothesis testing problem. (We can not use sequential
methods to determine if the current plan issuperior tothe
current best plan, since if that is the case, we will need to es-
timate its expected utility anyway.) If we can quickly deter-
mine, via a sequential sampling procedure that� is inferior
to the current best plan, then there is no need to continue
estimating the EU of�; the algorithm can move on to the
next plan.

Algorithm 2 employs an heuristic, acceptance-based ap-
proach to this problem. For each sample execution of the
current plan, we compute and compare the utility of the cur-
rent plan to the expected utility of the current best plan. If
the current plan yields lower utility for enough number of
times (in a sequential analytic sense), it is deemed to be
inferior and eliminated. This approach is only a heuristic
because it does not take into account the magnitude of the

1

10

100

1000

10000

0 50 100 150 200 250 300 350 400 450

N
um

be
r 

of
 s

im
ul

at
io

n 
ru

ns

Plan Index

Failure
Inferior

Superior

Figure 3. Many plans are determined to be
failure-prone or inferior to the best-so-far with
fewer than 100 simulation runs.

utilities of the samples. We are working on a more rigor-
ous approach to sequentially determine if the current plan is
inferior to the current best plan.

Note that “rejection number” is not a constant; instead it
is updated after the completion of each simulation run. The
exact formula to compute this number depends on several
user-adjustable parameters such as “threshold probability of
accepting a plan with high failure probability” (type I error)
and “threshold probability of rejecting a plan with low fail-
ure probability (type II error). See Younes and Musliner
[2002] for more details.

One scenario where this technique does not result in sig-
nificant savings is when successive plans are of increasingly
better quality. On the other hand, if the best plan is identi-
fied rather quickly (this crucially depends on the strength
of the plan’s heuristic, and the strength of the simulation-
guided backjump routine, to be discussed later in Section 5),
then from that point on we will be able to save a significant
amount of time on estimating utilities, by quickly dismiss-
ing plans with high failure probability, or with high prob-
ability of being inferior to the current best. Figure 3 il-
lustrates the savings afforded by the new algorithm in the
“ping2root” problem described in Figure 1.

4. Making Tradeoffs in CIRCADIA

In Section 2, we raised the question of how to strike the
right balance between two extreme solutions (“cavalier” and
“paranoid”) to the “ping2root” attack. With the introduc-
tion of the decision-theoretic modeling described in Sec-
tion 3, we now have a principled answer to this question.



Instead of randomly deciding on being “cavalier,” “para-
noid,” or somewhere in between, the system designer can
now make a conscious effort to encode his preferences by
setting the utilities of achieving goals and enduring failure.
He also needs to carefully consider the probabilistic infor-
mation that characterizes the transition times of events, ac-
tions, and other non-volitional transitions. Finally, he needs
to set the thresholds for the sequential hypothesis tests de-
scribed in Algorithm 2. While all of these efforts are intel-
lectually demanding, their fruits can not be denied. The
system designer can now sit back and let CIRCADIA do
the hard work of identifying the plan that best balances be-
tween achieving the specified goals and avoiding failures.
If planning time is unlimited, CIRCADIA will find that best
plan simply by doing an exhaustive search through the plan
space. If this is not the case (which is the more practical
case), the system designer can interrupt CIRCADIA at any
time and obtain the plan that is the current best candidate.

To illustrate this point, let us go back to the now famil-
iar “ping2root” problem. We assume here that the utilities
are fixed (verbose-logging-is-off hasreward of
1, andfailure has utility of -10,000). How could CIR-
CADIA come up with different plans like the “cavalier” and
the “paranoid” ones? The answer lies in varying the tran-
sition times, or more precisely, the probability distributions
of transition times of events and actions in the model. If
thenew-user-added-failure-a transition takes an
amount
of time sufficient toturn-on-verbose-logging and
kill-attacker-a, then the “cavalier” plan, depicted
in Figure 2 may be the plan with highest expected util-
ity. We can imagine this scenario to be a low-security
scenario, when it is perceived that an attack is unlikely,
and when an attack occurs, there is plenty of time to re-
spond. The goal is hence to maximize the expected util-
ity by maximizing the throughput of node A. In the mil-
itary information security area, this could correspond to
the DoD’s INFOCON NORMAL1 level. In contrast, if it
is perceived that an attack is very likely from multiple
sources (INFOCON DELTA), the system should be put on
the high-security mode to react in the quickest way pos-
sible to any potential attack. This scenario will be reflected
in rapid transition times forping2rootattempt-a,
ping2rootsuccess-a, new-user-added-a, and
new-user-added-failure-a, and the paranoid plan
having the highest expected utility. We can also imagine
another scenario in between these two extreme scenarios
(e.g., INFOCON ALPHA), where the plan with highest ex-
pected utility is the one that starts to react upon detectinga
ping2rootattempt-a (see Figure 4).1The five infocon levels, from the lowest to the highest are:NORMAL ,
ALPHA , BRAVO, CHARLIE, DELTA.

5. Some Details of theCIRCADIA Planner

The reader up to this point has been given a rather high-
level overview of the CIRCADIA planner with emphasis on
its decision-theoretic reasoning capabilities. Since CIRCA-
DIA is based on CIRCA, answers to many architectural and
implementation questions can be found on previous CIRCA
publications. In this paper, we focus attention on two issues
that are of particular importance to CIRCADIA : theheuris-
tic and thebackjumper. These two seemingly disconnected
issues both have paramount importance in how determining
quickly the system arrives at the plan with highest expected
utility, and thus on the (anytime) performance of CIRCA-
DIA .

CIRCA’s heuristic is responsible for making a decision
to assign an action to a state, and thus indirectly responsi-
ble for theorder of the plans being generated. Presently,
CIRCADIA uses the original CIRCA heuristic[14]. At any
given time in the planning process, there is a set of states
that have not been planned for, calledopen states. Initially,
this set contains only the initial states. As planning pro-
gresses, the planner projects events and actions on this setto
obtain more and more open states. The heuristic selects an
open state from this set, examines the actions that are appli-
cable to that state, and ranks them according to how likely
they will be able to take the system to a state that satisfies
the specified goals. This ranking is computed via an im-
plementation of McDermott’s regression-match graph[11,
14]. When there are no more open states, i.e. when every
state has been planned for, we obtain a complete plan.

The backjumper, on the other hand, is responsible
for handling a plan that is deemed (via simulation) to
have high probability of failure. Since the heuristic
does not consider failure but focuses exclusively on get-
ting to goal states, it tends to generate “over-ambitious”
plans that result in high failure probability. An illus-
trating example is the “cavalier plan” that ignores the
threat untilnew-user-added-a (thereby trying to max-
imizing the time spent inverbose-logging-is-off
states, see Figure 2). It is characteristic of the goal-
oriented nature of the heuristic that the “cavalier plan”
is the first plan generated by CIRCADIA . If the transi-
tion time from this state to failure is so short that there
is not enough time toturn-on-verbose-logging
andkill-attacker-a, then too many simulation traces
will end in failure. In this case, the backjumper needs
to examine the failure traces, identify the culprit de-
cision that is responsible for failure (e.g., the system
should turn-on-verbose-logging upon detecting
ping2rootattempt, instead of doing nothing). If we
imagine the search for the best plan as a depth-first search
in a tree, a backjumper that correctly identifies the decision
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Figure 4. The “ INFOCON ALPHA” plan balances security against performance.



culprit will be able to help the planner save a lot of time
generating and evaluating plans in a bad branch of the tree
where the better plans are located in different branches. A
good backjumper will also maintaincompletenessby not
letting the best plan slip out of the search net (for example,
by jumping too far back and thus discarding the best plan).
Currently, the backjumper in CIRCADIA is a modified ver-
sion of the backjumper already present in CIRCA. We have
the options to provide the backjumper with all the failure
traces, the shortest failure trace, or the most common fail-
ure trace, based on which the backjumper will identify the
most recentdecision that leads to failure. A detailed discus-
sion of the implementation of this backjumper is beyond the
scope of this paper and will be reported elsewhere. Our ex-
perience experimenting with these options indicate that all
of these options are complete: the planner, given sufficient
time, will always find the plan with highest expected util-
ity. Furthermore, the savings afforded by these backjump-
ing options, i.e. the percentage of plans eliminated without
evaluation, range from 39% to 51%.

While the performance of our backjumper is quite sat-
isfactory, much work remains to be done to improve the
current heuristic, as it is goal-oriented rather than EU-
oriented. While constructing EU-aware heuristic is an ob-
viously quite complex task, we could take the initial step by
incorporating the ability to rank the relative importance of
different goals. The next step would be to incorporate the
ability to analyze the existing decision choices and simula-
tion traces to provide a better heuristic.
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