
Formal Methods for Comparing Behavior of
Procedures in Different Languages
David J. Musliner, Michael W. Boldt, Michael J. S. Pelican, Daniel J. Geschwender

Smart Information Flow Technologies (SIFT)
Minneapolis, USA

email: {dmusliner,mboldt,mpelican}@sift.info

Abstract—We are developing software tools to compare the
behavior of two executable procedures, written in the same or
different languages. These tools are useful in situations such as
verifying that an automated procedure does the same thing as its
manual backup, ensuring that a change to a procedure impacts
only the intended behavior, and verifying that a procedure
converted to a new language maintains its behavior. Our newest
tool translates each procedure into a common language, links the
initial conditions of the procedures together, and uses symbolic
execution to explore the behavior of every execution path,
comparing the behavior of the two procedures on each path.
In this paper, we describe our approach in detail and present
a case study of applying our tool to NASA procedures that
had previously been automatically translated from the Proce-
dure Representation Language (PRL) to the Timeliner scripting
language. Our tool easily scaled to these real-world procedures,
and identified several bugs in the prototype translator.

Keywords— procedure equivalence, symbolic execution

I. INTRODUCTION

Like any organization with complex, hazardous equipment,
NASA operates manned spacecraft according to rigorously-
defined standard operating procedures (SOPs). These pro-
cedures carefully define what steps should be taken to ac-
complish a wide variety of goals, including changing the
operating modes of equipment, starting up and shutting down
components or subsystems, and conducting various joint ma-
chine/crew activities such as spacewalks [1]. The procedures
may include sequences of primitive commands that change
the state of onboard equipment, tests that verify certain state
changes via input telemetry, or branching logic that varies the
procedural behavior depending on the state of the spacecraft or
other environmental factors. Some procedures can be executed
both automatically and manually.

Automatically comparing the behavior two such procedures
proves useful in many situations, such as verifying that an
automated procedure does the same thing as its manual
backup, ensuring that a change to a procedure impacts only the
intended behavior, and verifying that a procedure converted to
a new language or platform maintains its behavior. Comparing
two procedures can be difficult because they may be written in
different languages, and they may use different symbols and
control structures to represent the same desired behavior.

In this paper, we describe our tool for automatically com-
paring the behavior of two procedures. We also present a case
study applying this tool to verifying the equivalence of NASA

Input
variables

Translated
Procedure

Translated
Procedure

Same
Command

List?

Fig. 1. Procedures are considered equivalent if their command outputs are
the same.

procedures that had previously been automatically translated
from PRL to the Timeliner scripting language. Our tool easily
scaled to these real-world procedures and identified several
bugs in the translator.

II. APPROACH

A procedure has inputs, in the form of telemetry values
that the procedure’s control logic examines to determine what
output commands should be issued. Our tool must determine
whether, given a range of possible inputs, two procedures will
issue the same output commands, in the same order. If not,
the tool should identify the differences in a compact way.

To verify the functional equivalence of procedures, our
approach includes the following steps:

1) Translate each procedure to C to enable the use of
symbolic execution tools [2], [3].

2) Combine the translated procedures with driver code that
sends them the same inputs and compares their output.

3) Using symbolic execution, repeatedly execute each pro-
cedure until all reachable combinations of paths through
each procedure are covered, collecting and comparing
the sequence of commands from each execution.

A. Translation to C

Procedure languages contain variables, operators, state-
ments, and blocks, just like programming languages. Steps or
sequences in procedures map nicely to functions in program-
ming languages, as they represent parameterized, callable units
of execution.

However, some procedure languages contain event-based
statements, which trigger when certain conditions are met. For
example, a procedure may take an action every 10 seconds,
or when a sensor reading exceeds some threshold. Time-based

triggers can be easily translated to multi-threaded timer-based
operations in standard programming languages. One way of
dealing with other event triggers is to check for their trigger
conditions between each statement of the translated procedure,
though this seems inefficient and may explode the verification
state space. Our case studies have not included event-based
statements, so we have not needed to solve this problem yet.

To identify and compare the commands issued by the
procedures, we map each command to a unique integer. We
also use this mapping technique to handle command param-
eters. When a procedure issues a command, we append the
corresponding integers for the command and its parameters to
a list. This allows us to compare the commands issued by the
two procedures by simply comparing the list of integers.

B. Composition and Execution
Once translated, the procedures are inserted into a frame-

work that provides identical inputs to each procedure and
compares their output, as shown in Figure 1. Then a symbolic
execution tool repeatedly runs each procedure with different
inputs, ensuring coverage of all combinations of reachable
branches between the two procedures.

In symbolic execution, a user identifies a set of variables
that he is concerned with and the tool rewrites the target
program so that those “symbolic” variables can be controlled
and tracked. The tool iteratively executes the instrumented
program and updates its internal state with the results of the
run. Each time the instrumented program executes, it initializes
the symbolic variables with the values provided by the tool. As
it executes, the target program records its execution, including
the loads, stores, assignments, branches, function calls, and
returns that relate to the symbolic (traced) variables. The tool
iterates until it executes every code path in the target program
or meets other stopping criteria.

In our case, we define a set of symbolic global input
variables which can be accessed by both procedures. The
symbolic execution engine will run the procedures numerous
times, each time following a different execution path and gen-
erating output command lists. Comparing these lists effectively
compares the behavior of the two procedures. Over the course
of the runs, every reachable combination of paths through the
procedures is executed, so all potential differences in behavior
are considered.

III. CASE STUDY: NASA PROCEDURES

NASA is developing a translator to convert a set of PRL
procedures to Timeliner. We created a software tool to verify
the translation, using an implementation our approach in
Section II. Our tool verifies that the original PRL procedure
and the translated Timeliner procedure behave identically, or
it identifies how their behavior can differ. Here we describe
the implementation details and present the results of this case
study, including translation errors identified by our tool.

A. The Procedure Representation Language (PRL)
PRL is a still-evolving language designed to capture pro-

cedures that may be executed either by automation or by

Fig. 2. The PRIDE integrated development environment supports relatively
painless PRL editing and visualization.

humans [4]. Defined by an XML schema, PRL allows a
programmer to construct top-level procedures that are de-
composed into steps, each of which may execute blocks
of primitive instructions and control statements. Instructions
can include spacecraft commands, tests of telemetry values,
calls to other procedures, and wait instructions that block
for some time or until a boolean expression becomes true.
Instructions may be specified as manually-executable, or may
include automation data to help describe how an automatic
PRL executive should run the procedures. Automation data
can include the expected StartConditions that must be
true to enable the procedure, InvariantConditions that
must remain true during execution (or the procedure fails), and
EndConditions that wait until they are true to allow the
procedure to end.

PRL is being developed to support a gradual transition
from fully-manual, textual procedures towards automation.
As a result, some elements of a fully-automatic PRL system
are not yet defined, including a complete formal semantics
for the language and an automatic PRL executive. However,
initial steps towards both have been taken in an experimental
translation of PRL into the PLEXIL language [4].

An Eclipse-based development environment, PRIDE, has
been developed to simplify procedure authoring [5]. Figure 2
shows a fragment of PRL as it appears in the PRIDE envi-
ronment. This example is one part of a procedure to configure
an electrical component by issuing a series of commands and
verifying assorted telemetry values.

As illustrated by the example in Figure 3, translating
PRL into C is relatively simple. The scope of every block
and command is well established, so the control flow is
very easy to understand. PRL steps are analogous to func-
tions. Most of the PRL blocks have straightforward con-
versions to C loops and conditionals. Only the “unordered”
block has no direct equivalent. The PRL language con-
tains many types of instructions, though we only encoun-
tered CommandInstruction and VerifyInstruction
in this procedure set. A CommandInstruction issues a
command, which is collected in a list for comparison in
our translation. A VerifyInstruction is intended to test
whether input telemetry shows that the state of the controlled
system has reached some expected value. In our translation,
we map this to a test of an input value; if the test fails, the
procedure will halt.

int a_step1(node **commands) {
//procedures/example.prl

push(commands,x_rpcmcommonclearcmdtype,
"instr11864393570120");

if (! (x_rpcmpoweronresettype == off))
{ //=instr11864393688691

return -1;
}

if (! (x_rpcmoruhealthtype == okay))
{ //=instr11864393820572

return -1;
}

push(commands,x_rpcmundervoltagetrip
recoveryinhibitarmcmdtype,
"instr11864393957873");

push(commands,x_rpcmundervoltagetrip
recoveryinhibitfirecmdtype,
"instr11864393982804");

if (! (x_rpcmundervoltagerecovery
inhibittype == inhibit)) {
//=instr11864394053505

return -1;
}

return 0;
}

node * a() { //=5.420
//procedures/example.prl
node *commands = NULL;
if(a_step1(&commands) < 0) return

commands;
return commands;

}

Fig. 3. The PRL procedure from Figure 2 translated into C.

B. Timeliner

Timeliner is a suite of tools for building and deploying
automated and semi-automated control systems. Timeliner has
been utilized in several components of the International Space
Satation, including the Command and Control Multiplexer-
DeMultiplexer (MDM) and the Payload MDM. Timeliner’s
Logic Engine executes Timeliner Bundles, which are sets
of procedures written in a language that combines fully
autonomous and human interactive activities.

Timeliner has English-like code and many time-oriented
keywords and control structures. This makes the language
more accessible to system specialists without a background
in computer programming. A Timeliner procedure is speci-
fied within a source file known a Bundle. A single Bundle
may contain numerous Sequences and Subsequences, which
are both groupings of Timeliner statements to be executed
together. Sequences will execute in parallel by default, but can
be made to execute serially. Subsequences may be called upon
by any sequence to perform some common task. Sequences
and even entire Bundles may be started and stopped at any
time with the proper commands.

To illustrate some of the constructs of the Timeliner lan-
guage, Figure 4 shows an approximate Timeliner translation
of the partial PRL procedure shown in Figure 2. The Master

BUNDLE b5_420

DECLARE bErrFlag BOOLEAN

SEQUENCE Master ACTIVE

-- STARTing step1
START step1
WHEN step1.SEQSTAT = SEQ_FINISHED THEN
MESSAGE "Exiting Sequence Master

successfully."
END WHEN

CLOSE SEQUENCE Master

SEQUENCE step1

COMMAND X.RpcmCommonClearCmdType

SET bErrFlag = TRUE
IF X.RpcmPowerOnResetType = "OFF" THEN
SET bErrFlag = FALSE

END IF
IF bErrFlag = TRUE THEN
WARNING "ERROR:X.RpcmPowerOnResetType"
HALT b5_420

END IF

SET bErrFlag = TRUE
IF X.RpcmOruHealthType = "OKAY" THEN
SET bErrFlag = FALSE

END IF
IF bErrFlag = TRUE THEN
WARNING "ERROR:X.RpcmOruHealthType"
HALT b5_420

END IF

COMMAND X.RpcmUndervoltageTripRecovery
InhibitArmCmdType

COMMAND X.RpcmUndervoltageTripRecovery
InhibitFireCmdType

SET bErrFlag = TRUE
IF X.RpcmUndervoltageRecoveryInhibit

Type = "INHIBIT" THEN
SET bErrFlag = FALSE

END IF
IF bErrFlag = TRUE THEN
WARNING "ERROR:X.RpcmUndervoltage

RecoveryInhibitType"
HALT b5_420

END IF

CLOSE SEQUENCE step1

CLOSE BUNDLE b5_420

Fig. 4. The PRL procedure from Figure 2 translated into a Timeliner bundle.

sequence in our Timeliner encoding is the first sequence to
execute and is responsible for beginning other sequences. In
this example the Master sequence executes the sequence
step1. Within step1 are the four instructions present in the
original PRL procedure. PRL’s CommandInstruction is
easily represented by a Timeliner COMMAND statement. PRL’s
VerifyInstruction is represented by a test of an input
value; if the test fails, the translation sets an error flag and
halts execution.

Generating C to represent Timeliner is generally straight-
forward. For example, Figure 5 shows the translation of the
Timeliner procedure in Figure 4. Expressions are similar to
C expressions, so they require little processing. Most control

int b_step1(node **commands) {
//procedures/example.tls

push(commands,x_rpcmcommonclearcmdtype,
"23");

berrflag = 1;
if (x_rpcmpoweronresettype == off) { //=29
berrflag = 0;

}
if (berrflag == 1) { //=32
fprintf(stderr, "warning: error:x.rpcm

poweronresettype\n");
return -1;

}

berrflag = 1;
if (x_rpcmoruhealthtype == okay) { //=41
berrflag = 0;

}
if (berrflag == 1) { //=44
fprintf(stderr, "warning: error:x.rpcm

oruhealthtype\n");
return -1;

}

push(commands,x_rpcmundervoltagetrip
recoveryinhibitarmcmdtype,"52");

push(commands,x_rpcmundervoltagetrip
recoveryinhibitfirecmdtype,"57");

berrflag = 1;
if (x_rpcmundervoltagerecoveryinhibit

type == inhibit) { //=64
berrflag = 0;

}
if (berrflag == 1) { //=67
fprintf(stderr, "warning: error:x.

rpcmundervoltagerecoveryinhibit
type\n");

return -1;
}
return 0;

}

int b_master(node **commands) {
//procedures/example.tls
if (b_step1(commands) < 0) return -1;
fprintf(stderr, "message: exiting sequence

master successfully.\n");
return 0;

}

node * b() { //=b5_420
//procedures/example.tls
node *commands = NULL;
if(b_master(&commands) < 0) return

commands;
return commands;

}

Fig. 5. The Timeliner procedure from Figure 4 translated into C.

statements and instructions present no translation problems.
However, there are a handful of language features that could
be difficult to translate if they were encountered.

One such feature is the ability of Timeliner sequences to run
in parallel with each other. A Timeliner bundle will generally
have one master sequence that can execute other sequences.
In addition to the possibility of issuing interleaved commands,
parallel sequence execution also allows for “contingency”
sequences that constantly monitor a condition in order to
respond with a series of commands. These constructs could
be problematic to translate but they were not encountered in

our case study. The case study procedures run all of their
sequences serially.

Timeliner also includes several time-based control state-
ments. Our current procedure comparison only compares the
sequence of commands, maintaining no temporal information.
If this timing is considered an important part of the procedure
execution, then the comparison may be inaccurate, as this
timing will be lost.

C. CREST

We use the CREST concolic execution tool to verify all
execution paths without having to exhaustively check every
input value. CREST is referred to as a “concolic” execution
tool because it executes code both concretely and symbolically.
CREST uses the C Intermediate Language (CIL) [6] to instru-
ment a target program to simultaneously perform symbolic
and concrete execution. To use CREST, a user identifies a set
of variables that he is concerned with and CREST rewrites
the target program so that those “symbolic” variables can
be controlled and tracked. During each test iteration, CREST
writes an inputs file, executes the instrumented program and
updates its internal state with the results of the run. Each time
the instrumented program executes, it initializes the symbolic
variables with the values from the inputs file. If there are not
enough inputs or if no inputs are specified, the target program
initializes each symbolic variable with a random value. As it
executes, the target program records its execution, including
the assignments and branches that relate to the symbolic
variables. User-specified search modes, such as random or
depth first, use this execution information to choose inputs
for subsequent test iterations. CREST runs test iterations until
it executes every code path in the target program or meets
other stopping criteria.

D. Testing Framework

To test procedure equivalence, our tool provides identical
inputs to each procedure and compares the sequences of
commands they issue. Figure 6 shows the structure of our
code surrounding the two procedures. We use globally-defined
symbolic variables for to represent the procedure inputs. Since
they are symbolic variables, CREST will follow all branches
involving them.

CREST executes this code numerous times, each time
following a different execution path. Each translated procedure
will generate its own command list. The two lists should match
exactly along every execution path. If they do not, there is
some difference between the two procedures, which the tool
reports.

E. Results

We tested our tool on 61 different real-world procedures
used by one of NASA’s experimental manned space program
platforms. The procedures totalled almost 18000 lines of
PRL, containing 172 steps, 347 commands, and 394 verify
statements. The largest procedure consisted of 28 steps with
102 commands and 136 verification statements The PRL

//Command list functions
struct node {...}
void push(node **head, int invalue,

const char *location) {...}
int pop(node **head) {...}

//Command enumeration
enum mtype{
Command1,
Command2,
...}

//Input variable declaration
int Input1;
int Input2;
...

node * a() {
//Translated code from Procedure A

}

node * b() {
//Translated code from Procedure B

}

void main(void){
//specify inputs to be handled
//symbolically by CREST
CREST_int(Input1);
CREST_int(Input2);
...

//run each procedure
fprintf(stderr, ‘‘Procedure A:\n’’);
node *a_commands = a();
fprintf(stderr, ‘‘Procedure B:\n’’);
node *b_commands = b();
if (a_commands == NULL) {
fprintf(stderr, ‘‘A null!\n’’);

}
if (b_commands == NULL) {
fprintf(stderr, ‘‘B null!\n’’);

}

//loop through the commands until both
//lists are empty
while(a_commands!=NULL ||

b_commands!=NULL) {
//if the two commands are not the
//same, the procedures differ and
//this run is stopped
int a_cmd = pop(&a_commands);
int b_cmd = pop(&b_commands);
fprintf(stderr, ‘‘A: %d\nB: %d\n\n’’,

a_cmd, b_cmd);
if(a_cmd != b_cmd) {
fprintf(stderr, ‘‘Failure - ’’);
exit(1);

}
}
fprintf(stderr, ‘‘Success - ’’);

}

Fig. 6. The main program runs both procedures and compares the output
commands to ensure their equivalence.

was converted automatically by a NASA-sponsored prototype
translator into almost 15000 lines of Timeliner script.

Our tool easily scaled to these real-world procedures; testing
the entire set takes less than 30 seconds on a modern laptop.
Through this analysis, we identified four bugs in the prototype
translator.

Two of the bugs were syntactic in nature. First, the trans-
lated Timeliner compares operator input to string values, but
Timeliner does not accept string input. This was carried over

from PRL, which does accept string input from the operator.
Second, the Timeliner translation failed to declare the variable
used to hold the results of some operations.

The remaining two bugs caused subtle behavioral differ-
ences between the procedures. The first occurs in procedures
where the PRL contains an IfThen tag with no Condition
tag. This is legal PRL syntax; it requires manual execution.
The title attribute of the IfThen tag serves as the human-
readable condition query, and an operator must input its value.
The prototype PRL-Timeliner translator tool did not correctly
take this into account. The Timeliner translation of such a
construct has no if statement or condition. It does retain the
instructions in the PRL IfThen, however, executing them
even when the condition is false. The structure of this bug is
shown in Figure 7.

The other behavioral difference also involves the IfThen
tag. In PRL, an IfThenBlock may contain one or more
IfThen tags, optionally followed by an Else tag. PRL
semantics dictate that each IfThen and its Else are mutually
exclusive, like an if...elseif...else construct. So, for
the translation into Timeliner, the first IfThen should become
an IF statement, and any following IfThen tags in the
same IfThenBlock should become ELSIF statements. The
prototype PRL-Timeliner translator instead translated all PRL
IfThens to Timeliner IF statements, allowing for more than
one to execute in a single run. Additionally, the translator left
out the ELSE clause, so those statements will always execute.
The structure of this bug is shown in Figure 8.

While these translator bugs were easily repaired, they illus-
trate the value of our approach to automatic comparison of
procedure behaviors.

IV. RELATED WORK

This work is related to a wide variety of prior and ongoing
research in verification of high-reliability systems including
work on performed for NASA’s ongoing Automation for
Operations (A4O) project [1]. Previous work on verification of
procedures for NASA missions has largely focused on verify-
ing the internal consistency, safety, and semantics of individual
procedures and scripts, rather than comparison between two
implementations of a procedure. For example, recent NASA
research on verification of procedures written in PRL has
addressed static verification to ensure well-formed Program
Universal Identifier references, as well as dynamic verification
of assertions such as “after the state ‘abort plan’ is set to true,
no node in the plan repeats (loops)” [7]. Similarly, verification
methods have been used to ensure static and limited dynamic
properties of executable scripts coded in PLEXIL.

The verification of procedures has been explored in other
contexts, such as nuclear power plant operation. For example,
Zhang [8] has used SPIN model-checking to verify properties
of operator procedures (e.g., liveness), and developed an
incremental approach for the construction of system models
with increasing complexity in order to reduce the cost of find-
ing mistakes. These techniques may be useful for spacecraft
procedures when spacecraft models become more available,

<prl:IfThenBlock>
<prl:IfThen title="Condition">
<! Action -->
</prl:IfThen>

</prl:IfThenBlock>

(a)

Action
ENDIF

(b)

q = QUERY "Condition"
IF q THEN
Action

ENDIF

(c)

Fig. 7. The conditionless IfThen semantics bug found by our tool. (a) Source PRL. (b) Incorrect Timeliner from translator. (c) Correct Timeliner translation.

<prl:IfThenBlock>
<prl:IfThen>
<prl:Condition>Cond1</prl:Condition>
<! Action1 -->

</prl:IfThen>
<prl:IfThen>
<prl:Condition>Cond2</prl:Condition>
<! Action2 -->

</prl:IfThen>
<prl:Else>

<! Action3 -->
</prl:Else>

</prl:IfThenBlock>

(a)

IF Cond1 THEN
Action1

ENDIF

IF Cond2 THEN
Action2

ENDIF

Action3

(b)

IF Cond1 THEN
Action1

ELSIF Cond2 THEN
Action2

ELSE
Action3

ENDIF

(c)

Fig. 8. The multiple-IfThen semantics bug found by our tool. (a) Source PRL. (b) Incorrect Timeliner from translator. (c) Correct Timeliner translation.

depending upon the complexity of the models and procedures
and the performance of the verification tools.

The program equivalence problem for general programming
languages attracts extensive research from the verification
community. Program equivalence is formalized as several
forms of bisimulation. In general, bisimulation refers to the
idea that two programs have the same state transition structure.
CADP is a popular suite of tools that can analyze abstract
programs (formulated as Labelled Transition Systems (LTSs))
and verify complex properties expressed in specifications such
as temporal logic or mu-calculus [9]. Given two programs
formulated as LTSs (in our case, two procedures from different
sources), the CADP bisimulation tool can check to see if the
procedures are equivalent, modulo one of several equivalence
relations. These relations, including strong equivalence, obser-
vational equivalence, and safety equivalence, provide different
levels of guarantees about how the procedures correspond.
High licensing fees prevented us from investigating CADP
for our case study.

V. CONCLUSION AND FUTURE DIRECTIONS

We have presented an approach to comparing the behavior
of two procedures by translating them into a common lan-
guage, linking their inputs, and using symbolic execution to
explore all execution paths. We have illustrated the feasibility
and usefulness of this analysis through a case study, in
which we successfully identified bugs in a prototype language
translator operating on real NASA procedures.

However, we have not yet modeled significant aspects of
the Timeliner and PRL languages, such as parallel execution
of Timeliner sequences and PRL’s unordered statement blocks.

Adding more expressive correctness criteria would also
increase the utility of our approach for procedure verification.
In some cases, requiring an identical sequence of commands

is too strict. For example, some commands may be irrelevant
or order may not matter.

We are currently completing an integration of our procedure
comparison tool into the PRIDE procedure editing environ-
ment, so that procedure authors can compare procedures and
interact graphically with any identified behavioral differences.

ACKNOWLEDGMENTS

The authors would like to thank Mats Heimdahl for inspiring
our equivalence-checking approach. This work was supported by
NASA’s Automation for Operations program under SBIR Contract
NNX09CC43P. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of NASA or the U.S. Government.

REFERENCES

[1] J. Frank, “Automation for Operations,” in Proceedings of the AIAA SPACE
2008 Conference, 2008.

[2] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, July 1976.

[3] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu, “Differential
symbolic execution,” in Proc. 16th ACM SIGSOFT Int’l Symp. on
Foundations of Software Engineering. ACM, 2008, pp. 226–237.

[4] D. Kortenkamp, R. P. Bonasso, and D. Schreckenghost, “A procedure
representation language for human spaceflight operations,” in Proc. Int’l
Symp. on Artificial Intelligence, Robotics and Automation in Space, 2008.

[5] M. Izygon, D. Kortenkamp, and A. Molin, “A procedure integrated
development environment for future spacecraft and habitats,” in Proc.
Space Technology and Applications International Forum, available as
American Institute of Physics Conf. Proc. Volume 969, 2008.

[6] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
language and tools for analysis and transformation of C programs,”
in Compiler Construction, ser. Lecture Notes in Computer Science,
R. Horspool, Ed. Springer, 2002, vol. 2304, pp. 209–265.

[7] G. Brat, M. Gheorghiu, D. Giannakopoulou, and C. S. Păsăreanu,
“Verification of plans and procedures,” in Proc. IEEE Aerospace Conf.,
2008.

[8] W. Zhang, “Model checking operator procedures,” in Proc. Int’l SPIN
Workshop. London, UK: Springer-Verlag, 1999, pp. 200–215.

[9] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2010: A toolbox
for the construction and analysis of distributed processes,” in Proc. Int’l
Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, 2011.

