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Abstract—In Return Oriented Programming (ROP) attacks, a
cyber attacker crafts an exploit from instruction sequences
already contained in a running binary. ROP attacks are now used
widely, bypassing many cyber defense mechanisms. While pre-
vious research has investigated software diversity and dynamic
binary instrumentation for defending against ROP, many of these
approaches incur large performance costs or are susceptible
to Blind ROP attacks. We present a new approach that auto-
matically rewrites potentially-vulnerable software binaries into
chronomorphic binaries that change their in-memory instructions
and layout repeatedly, at runtime. We describe our proof of
concept implementation of this approach, discuss its security and
safety properties, provide statistical analyses of runtime diversity
and reduced ROP attack likelihood, and present empirical
results that demonstrate the low performance overhead of actual
chronomorphic binaries.
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I. INTRODUCTION

In the old days, cyber attackers only needed to find a buffer
overflow or other vulnerability and use it to upload their
exploit instructions, then make the program execute those new
instructions. To counter this broad vulnerability, modern oper-
ating systems enforce “write XOR execute” (W@X) defenses:
that is, memory is marked as either writable or executable, but
not both. So exploit code that is uploaded to writable memory
cannot be executed. Not surprisingly, attackers then developed
a more sophisticated exploit method.

Computer instruction sets are densely packed into a small
number of bits, so accessing those bits in ways that a program-
mer did not originally intend can yield gadgets: groups of bits
that form valid instructions that can be strung together by an
attacker to execute arbitrary attack code from an otherwise
harmless program. Known as Return Oriented Programming
(ROP), these types of cyber exploits have been effective
and commonplace since the widespread deployment of WX
defenses. This paper extends our previous research on runtime
program security to prevent ROP exploits [1].

Software with a single small buffer-overflow vulnerabil-
ity can be hijacked into performing arbitrary computations
using ROP-like code-reuse attacks [2], [3]. Hackers have
even developed ROP compilers that build the ROP exploits
automatically, finding gadgets in the binary of a vulnerable
target and stringing those gadgets together to implement the
attacker’s code [4], [5]. And to counteract various software
diversity defenses that try to move the gadgets around, so
that a previously-compiled ROP attack will fail, attackers have

developed Blind ROP (BROP) attacks that perform automated
reconnaissance to find the gadgets in a running program [6].

This paper presents a fully automated approach for trans-
forming binaries into chronomorphic binaries that diversify
themselves during runtime, throughout their execution, to offer
strong statistical defenses against code reuse exploits such as
ROP and BROP attacks. The idea is to modify the binary
so that all of the potentially-dangerous gadgets are repeatedly
changing or moving, so that even a BROP attack tool cannot
accumulate enough information about the program’s memory
layout to succeed.

In the following sections, we discuss related research in
this area (Section II), we outline the threat of ROP exploits
(Section III), we describe how our prototype Chronomorph
tool converts regular binaries into chronomorphic binaries
(Section IV), and we review its present limitations. We then
describe an analysis of the safety and security of the resulting
chronomorphic binaries, and performance results on early
examples (Section V). We conclude with several directions for
future work, to harden the tool and broaden its applicability
(Section VI).

II. RELATED WORK

Various defense methods have been developed to try to foil
code reuse exploits such as ROP and BROP. Some of defenses
instrument binaries to change their execution semantics [7] or
automatically filter program input to prevent exploits [8]; how-
ever, these approaches require process-level virtual machines
or active monitoring by other processes. Other approaches
separate and protect exploitable data (e.g., using shadow
stacks [9]), but such approaches incur comparatively high
overhead.

To reduce overhead and maintain compatibility with ex-
isting operating systems and software architectures, many
researchers have focused on lightweight, diversity-based tech-
niques to prevent code reuse exploits. For example, Address
Space Layout Randomization (ASLR) is common in modern
operating systems, and loads program modules into different
locations each time the software is started. However, ASLR
does not randomize the location of the instructions within
loaded modules, so programs are still vulnerable to ROP
attacks [10]. Some diversity techniques modify the binaries
themselves to make them less predictable by an attacker. For
example:

o Compile-time diversity (e.g., [11]) produces semantically
equivalent binaries with different structures.
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Figure 1.

« Offline code randomization (e.g., [12]) transforms a bi-
nary on disk into a functionally equivalent variant with
different bytes loaded into memory.

o Load-time code randomization (e.g., [13], [14]) makes
the binary load blocks of instructions at randomized
addresses.

These diversity-based approaches incur comparatively lower
overhead than other ROP defenses and they offer statistical
guarantees against ROP attacks.

Unfortunately, these compile-time, offline, and load-time
diversity defenses are still susceptible to BROP attacks that
perform runtime reconnaissance to map the binary and find
gadgets [6]. So, even with compile-time, offline, or load-time
diversity, software that runs for a significant period of time
without being reloaded (e.g., all modern server architectures) is
vulnerable. Some ROP defenses modify the operating system
to augment diversity [15], [16], but by nature they do not work
on existing operating systems.

Another recent approach uses compile-time diversity in
tandem with hardware-based enforcement mechanisms that
prevents adversaries from reading any code [17]. This protects
against memory disclosure— and thereby prevents ROP and
BROP attacks— but like the above techniques, this requires
modifying the underlying operating system or hardware.

Some runtime techniques clone executable elements in
memory and toggle between them during runtime, so the
attacker is unaware of which memory layout is executing;
however, the diversity factor is not as high as the above
approaches. Another recent approach combines execution-time
switching with runtime diversification [18] by instrumenting
all call, return, and jump instructions. On these instrumented

2. The chronomorphic program regularly rewrites its CFG upon
each transaction. The program returns from the vulnerable
function into unexpected instructions and subsequently crashes.

A traditional ROP attack— or blind ROP attack— is thwarted by the runtime diversity of a chronomorphic program.

instructions, execution may randomly switch between exe-
cutable copies while the other copy is diversified by fine-
grained ASLR. While this approach prevents varieties of ROP
attacks, it incurs significant runtime overhead due to a dynamic
binary instrumentation framework, and it doubles the size of
the binary due to executable memory cloning.

Other tools such as Dynlnst' rewrite the binary to add
runtime libraries and instrumentation, but this instrumentation
consumes substantially higher disk space, memory footprint,
or performance overhead.

Unlike the above diversity-based protection techniques,
chronomorphic programs only utilize a single instance of the
program in memory at any time, making them more suitable
for embedded or memory-constrained systems. Chronomor-
phic programs will diversify themselves throughout program
execution to statistically prevent code reuse attacks, even if
the attacker knows the memory layout. The only runtime
costs are incurred when actually morphing the program; when
not morphing, the program executes (almost) its original
instructions. Furthermore, the costs of the morphing behavior
can be adjusted and controlled to achieve desired performance
levels in the face of changing threat levels, rates of adversary-
provided input, etc. Unlike other approaches, our prototyped
chronomorphic programs run on existing hardware and oper-
ating systems, making them suitable for legacy systems.

III. THREAT MODEL

Here we describe the setting for chronomorphic programs—
including assumptions about the target program, the target
system, and the attacker— and we illustrate this setting in

Thttp://www.dyninst.org/



Figure 1. The chronomorphic defense against code reuse
attacks assumes the following of the targeted system and its
adversaries:

o The target program has a vulnerability that permits the
adversary to hijack the program’s control flow.

o The target host uses write-xor-execute (W&éX) permis-
sions on its memory pages.

o The target operating system contains standard functions
to modify WX memory permissions (e.g., mprotect
in Linux and VirtualProtect in Windows), which
we describe later.

o The adversary cannot influence the offline operations that
create the chronomorphic binary and its morph table from
a standard executable (see Figure 2).

o The adversary may have access to the target program’s
source code and to the original (non-chronomorphic) off-
the-shelf executable.

o The adversary may have a priori knowledge of the pro-
gram’s in-memory code layout at any point in execution,
unlike other ROP defenses (e.g., [11], [12], [13], [14],
[17]), due to cyber reconaissance (e.g., [6]) or runtime
information leaks whereby timing data, cache data, and
side channel data is available to the attacker.

o The adversary must interact with the target program (e.g.,
execute its in-memory code) in order to observe its in-
memory code layout or conduct an exploit.

Under these assumptions, the adversary may successfully
exploit the target program over multiple transactions (e.g.,
server requests), provided the target program does not change
its exploitable memory layout before or after those transac-
tions.

Chronomorphic programs foil cyber-attacks that rely on
consistency of a program’s memory layout— including code
reuse attacks like ROP— since the memory layout changes
during execution. As described below, these memory changes
should occur early in the processing of each transaction. Fig-
ure 1 illustrates an attempt of a classic stack-overflow-based
ROP exploit on a chronomorphic executable. The attacker
overflows a stack buffer to overwrite the return address with
one or more gadget addresses that he may have learned by
analyzing the executable on disk or by exploiting the runtime
information leaks mentioned above.

The chronomorphic program rewrites itself regularly
throughout execution (Figure 1, right), so the attacker’s knowl-
edge of the program is outdated. When the program returns
into the chain of gadgets written by the attacker, the program
executes different instructions than those intended by the
attacker. The program promptly crashes without executing the
exploit.

The empty, unlabeled area (i.e., block relocation space)
could be comprised of invalid, unexploitable instructions that
quickly cause a crash, or alternatively, nop-slides into an invo-
cation of alarms or forensic analysis functions that terminate
with an error signal, consistent with other software “booby
trapping” approaches [19].

Chronomorphic programs diversify themselves based on
random selections from their morph tables, which describe
how the program can be changed during execution. This means
that if the morph table is aware to the attacker and the
target host’s random operation is perfectly predictable, then
the attacker can predict the next configuration assumed by
the chronomorphic program and thereby conduct a successful
code reuse exploit. Consequently, even if the morph table is
acquired and decrypted by the adversary, they must perfectly
predict— or somehow influence— the host’s randomization,
which would already constitute a deep intrusion of the target
system.

We next describe how we create chronomorphic programs
from off-the-shelf executables, and how these programs diver-
sify themselves throughout the course of their execution.

IV. APPROACH

The Chronomorph approach requires changing machine
code at runtime, a technique known as self-modifying code
(SMC). Using SMC, Chronomorph must preserve the func-
tionality of the underlying program (i.e., maintain semantics),
maximize diversity over time, and minimize performance
costs.

Any SMC methodology requires a means to change the
permissions of the program’s memory (i.e., temporarily cir-
cumvent WX defense) to modify the code and then re-
sume its execution. Different operating systems utilize dif-
ferent memory protection functions: Linux’s mprotect and
Windows’ VirtualProtect have different signatures, but
both can temporarily change program memory permissions
from executable to writable, and back again, during program
execution. In this paper, we describe Chronomorph in a 32-bit
Linux x86 setting.

Our approach automatically constructs chronomorphic bi-
naries from normal third-party programs with the following
enumerated steps, also illustrated in Figure 2:

Offline:

1) Transform the executable to inject the Chronomorph
SMC runtime that invokes mprotect and rewrites
portions of the binary during execution. This produces a
SMC binary with SMC functions that are disconnected
from the program’s normal control flow.

2) Analyze the SMC binary to identify potentially-
exploitable sequences of instructions (i.e., gadgets).

3) Identify relocatable gadgets and transform the SMC
binary to make those gadgets relocatable.

4) Compute instruction-level, semantics-preserving trans-
forms that denature non-relocatable gadgets and sur-
rounding program code.

5) Write the relocations and transforms to a morph table
outside the chronomorphic binary.

6) Inject morph triggers into the SMC binary so that the
program will morph itself periodically. This produces
the chronomorphic binary.

Online:
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7) During program runtime, diversify the chronomorphic
binary’s executable memory space by relocating and
transforming instructions without hindering performance
or functionality.

We have implemented each step in this process and inte-
grated third-party tools including a ROP compiler [5], the
Hydan tool for computing instruction-level transforms [20],
and the open-source ob jdump disassembler. We next describe
each of these steps in this process, including the research
challenges and the strategy we employ in our Chronomorph
prototype implementation. We note relevant simplifying as-
sumptions in our prototype, and we address some remaining
research challenges in Section VI.

A. Injecting SMC morphing functionality

Before the Chronomorph tool can analyze the binary and
compute transformations, it must inject the Chronomorph
SMC runtime, which contains functions for modifying mem-
ory protection (e.g., mprotect), writing byte sequences to
specified addresses, and reading the morph table from outside
the binary. These Chronomorph functions may themselves
contain gadgets and have runtime diversification potential,
so the SMC-capable binary that includes these functions is
the input to the subsequent offline analyses, including ROP
compilation.

We identified three ways of automatically injecting the
Chronomorph runtime code, based on the format of the target
program.

1) Link the target program’s source code against the
compiled Chronomorph runtime. This produces a
dynamically- or statically-linked SMC executable. This
is the simplest solution, and the one used in our exper-
iments, but source code may not always be available.

2) Rewrite a statically-linked binary by extending its binary
with a new loadable, executable segment containing the
statically-linked Chronomorph runtime. This produces a
statically-linked SMC executable.

Chronomorph converts a third-party program into a chronomorphic binary.

3) Rewrite a dynamically-linked binary by adding
Chronomorph procedures and objects to an alternative
procedure linkage table (PLT) and global object
table (GOT), respectively, and then extend the binary
with a new loadable, executable segment containing
the dynamically-linked Chronomorph runtime. This
produces a dynamically-linked SMC executable.

All three of these approaches inject the self-modifying
Chronomorph runtime, producing the SMC binary shown in
Figure 2. At this point, the self-modification functions are not
yet invoked from within the program’s normal control flow,
so we cannot yet call this a chronomorphic binary.

B. Identifying exploitable gadgets

As shown in Figure 2, the Chronomorph offline analysis
tool includes a third-party ROP compiler [5] that automatically
identifies available gadgets within a given binary and creates
an exploit of the user’s choice (e.g., execute an arbitrary shell
command) by compiling a sequence of attack gadgets from
the available gadgets, if possible. The Chronomorph analysis
tool runs the ROP compiler against the SMC binary, finding
gadgets that span the entire executable segment, including the
Chronomorph SMC runtime.

The ROP compiler prioritizes Chronomorph’s diversification
efforts as follows, to allocate time and computing resources
proportional to the various exploitation threats within the
binary:

o Attack gadgets have the highest priority. The chronomor-
phic binary should address these with its highest-diversity
transforms.

o Available gadgets (i.e., found by the ROP compiler but
not present in an attack sequence) have medium priority.
These too should be addressed by high-diversity trans-
forms, within acceptable performance bounds.

« Instructions that have not been linked to an available gad-
get have the lowest priority, but should still be diversified
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when feasible. Since zero-day gadgets and new code-
reuse attack strategies may arise after transformation
time, this diversification offers additional security.

Our approach attempts all transformations possible, saving
more costly transformations, e.g., dynamic block relocations,
for the high-risk attack gadgets. The ROPgadget compiler [5]
currently used by Chronomorph may be easily replaced by
newer, broader ROP compilers, provided the compiler still
compiles attacks and reports all available gadgets. Also, a
portfolio approach may be used, running a variety of ROP
compilers and merging their lists of dangerous gadgets.

C. Diversity with relocation

We may not be able to remove a high-risk gadget entirely
from the executable, since its instructions may be integral to
the program’s execution; however, the chronomorphic binary
can relocate it with high frequency throughout execution, as
long as it preserves the control flow.

Relocation is the highest-diversity strategy that
Chronomorph offers. Chronomorph allocates an empty
block relocation space in the binary, reserved for gadget
relocation. Whenever the chronomorphic binary triggers a
morph, it shuffles relocated blocks to random locations in the
block relocation space and repairs previous control flow with
recomputed jmp instructions to the corresponding location in
the block relocation space.

For each high-risk attack gadget, Chronomorph performs
the following steps to make it relocatable during runtime:

1) Compute the basic block (i.e., sequence of instructions
with exactly one entry and exit point) that contains the
gadget.

2) Relocate the byte sequence of the gadget’s basic block
to the first empty area in the block relocation space.

3) Write a jmp instruction from the head of the basic block
to the new address in the block relocation space.

4) Write nop instructions over the remainder of the gad-
get’s previous basic block, destroying the gadgets.

F 1 T

II\/Iorph Itriggerls

Normal control flow

The resulting chronomorphic binary and its interaction with the morph table.

5) Write the block’s byte sequence and the address of the

new jmp instruction to the morph table.

The morph table now contains enough information to place
the gadget-laden block anywhere in the block relocation space
and recompute the corresponding jmp instruction accordingly.

Intuitively, diversity of the binary increases with the size of
the block relocation space. For a single gadget block g with
byte-size |g|, and block relocation space of size |b|, relocating
g adds V (g,b) = 1 + |b| — |g| additional program variants.

If we relocate multiple gadget blocks G = {go, .., 9|j¢|—1}
then we add the following number of variants:

IGl-1 i
V(G,b) =G+ TT (bl =D lg;D- ()
i=0 §=0

The probability of guessing all of the relocated gadgets’

addresses is therefore 1/V(G,b), which diminishes quickly
as the chosen size of the block relocation space increases.

Our Chronomorph prototype has the following constraints

for choosing gadget blocks for relocation:

o Relocated blocks cannot contain a call instruction.
When a call instruction is executed, the subsequent
instruction’s address is pushed onto the stack, and if the
calling block is then relocated, execution would return
into an arbitrary (incorrect) spot in the block relocation
space.

e Relocated blocks must be at least the size of the jmp
to the block relocation space, so that Chronomorph has
room to write the jmp.

¢ Relocated blocks must end in an indirect control flow
(e.g., ret) instruction; otherwise, we would have to
recompute the control flow instruction at the block’s tail
at every relocation. Empirically, the vast majority of these
blocks end in ret.

« Relocated gadgets cannot span two blocks.

In the conclusion of this paper we discuss some potential
improvements that would remove some of these constraints.
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Figure 4. Small portion of a control flow graph (CFG) automatically created during Chronomorph’s offline analysis. Shaded regions are functions, instruction

listings are basic blocks, and edges are control flow edges.

D. Diversity with in-place code randomizations

Chronomorph uses in-place code randomization (IPCR)
strategies to randomize non-relocated instructions [12]. IPCR
performs narrow-scope transformations without changing the
byte-length of instruction sequences.

At present, Chronomorph uses two IPCR strategies to com-
pute transformations. The first, instruction substitution (IS),
substitutes a single instruction for one or more alternatives.
For example, comparisons can be performed in either order,
xor’ing a register with itself is equivalent to mov’ing or
and’ing zero, etc. These instructions have the same execution
semantics, but they change the byte content of the instruction,
so unintended control flow instructions (e.g., 0xC3 = ret)
are potentially transformed or eliminated. A single IS adds as
many program variants as there are instruction alternatives.

Another IPCR strategy, register preservation code reorder-
ing (RPCR) reorders the pop instructions before every ret
instruction of a function, and also reorders the corresponding
push instructions at the function head to maintain symmetry.
A register preservation code reordering for a single function
adds as many variants as there are permutations of push or
pop instructions.

Importantly, RPCR changes the layout of a function’s stack
frame, which may render it non-continuable. For instance, if
control flow enters the function and it preserves register values
via push’ing, and then the chronomorphic binary runs RPCR
on the function, it will likely pop values into unintended
registers when it continues the function, which will adversely
affect program functionality.

Any stack-frame diversity method such as RPCR should
only be attempted at runtime if execution cannot continue
or re-enter the function, e.g., from an internal call, after
a SMC morph operation. We enforce this analytically with
control flow graph (CFG) analysis: if execution can continue
within a function f from the morph trigger (i.e., if the morph

trigger is reachable from f in the CFG), the stack frame of
f should not be diversified. Stack frame diversification is a
valuable tool for ROP defense, but it requires these special
considerations when invoked during program execution.

E. Writing and reading the morph data

The morph table is a compact binary file that accompa-
nies the chronomorphic binary, as shown in Figure 3. The
morph table binary represents packed structs: MorphPoint
structs with internal MorphOption byte sequences. Each
MorphPoint represents a decision point (i.e., an IS or RPCR
opportunity) where any of the associated MorphOption
structs will suffice. Each MorphPoint is stateless (i.e., does
not depend on the last choice made for the MorphPoint),
and independent of any other MorphPoint, so random
choices are safe and ordering of the morph table is not
important.

The relocation data is a separate portion of the morph table,
containing the content of relocatable blocks alongside their
corresponding jmp addresses. Like IPCR operations, reloca-
tions are stateless and independent, provided the Chronomorph
runtime does not overlay them in the block relocation space.

Intuitively, the morph table cannot reside statically inside
the binary as executable code, otherwise all of the gadgets
would be accessible.

F. Injecting morph triggers

We have described how Chronomorph injects SMC ca-
pabilities into third-party executables and its diversification
capabilities, but Chronomorph must also automatically connect
the Chronomorph runtime into the program’s control flow to
induce diversification of executable memory during runtime.

The injection of these morph triggers presents a trade-off:
morphing too frequently will unnecessarily degrade program
performance; morphing too seldom will allow wide windows
of attack. Ideally, morphing will happen at the speed of input,



e.g., once per server request or user input (or some modulo
thereof). The location of the morph trigger(s) in the program’s
control flow ultimately determines morph frequency.

Figure 4 shows a portion of the CFG for the program used
in our experiment, calling out the getc () input function.
Chronomorph can inject calls to the SMC runtime at these
input points, or at calling functions with stack-based buffers
(which are more likely to contain vulnerabilities through which
a ROP attack would begin).

Chronomorph also includes an interface for the application
developer to add a specialized MORPH comment in the source
code, which is replaced by a morph trigger during the rewriting
phase.

G. Runtime diversification

A chronomorphic binary executes in the same manner as
its former non-chronomorphic variant, except when the morph
triggers are invoked.

When the first morph trigger is invoked, the Chronomorph
runtime loads the morph table and seeds its random number
generator. All morph triggers induce a complete SMC diver-
sification of the in-process executable memory according to
IPCR and relocation data in the morph table:

1) The block relocation space is made writable with

mprotect.

2) Relocated basic blocks in the block relocation space are
overwritten with nop instructions.

3) Each relocatable block is inserted to a random block
relocation space address, and its jmp instruction (where
the block used to be in the program’s original CFG) is
rewritten accordingly.

4) The block relocation space is made executable.

5) Each MorphPoint is traversed, and a corresponding
MorphOption is chosen at random and written. Each
operation is surrounded by mprotect calls to make
the corresponding page writable and then executable.
Future work will group MorphPoints by their ad-
dress to reduce mprotect invocations, but our results
demonstrate that the existing performance is acceptable.

We have described how to create chronomorphic bina-
ries from off-the-shelf binaries, and we have described how
chronomorphic binaries perform runtime diversification. Next
we discuss important safety and correctness considerations
for chronomorphic programs, since runtime rewriting has
implications for concurrency, continuation, and reentrancy.

H. Multithreading

In a traditional multi-threaded setting, multiple threads use
the same executable memory. This means that one thread
could diversify the function, block, or even the instruction that
another thread is executing.

Without additional protections such as thread synchroniza-
tion, many runtime diversification strategies are unsafe in a
multithreaded setting:

« Block relocation is unsafe if another thread is executing
a relocatable block.

o Reordering a function’s push and pop register preserva-
tion instructions is unsafe if another thread is executing
the function, since the thread may pop values into the
wrong registers.

o Reordering instructions within a block (e.g., [12]) is
unsafe if another thread is executing the block.

Injecting thread synchronization around diversifiable re-
gions in the chronomorphic program’s morph table would
prevent these unsafe operations, but this might be costly,
since— as we demonstrate in our experiments— there are
many diversifiable regions in even the smallest binaries.

For the above reasons, our prototype tool only supports
creating chronomorphic binaries for single-threaded execution,
but we discuss some possible avenues for multi-threaded
chronomorphic programs in our discussion of future work.

1. Guaranteeing safe continuation

Runtime diversity can invalidate stack frame integrity and
return address correctness if not properly constrained. These
are important considerations for guaranteeing function contin-
uation (i.e., resuming execution of a function after returning
from another function) within a chronomorphic program. We
discuss two continuation pitfalls and our approach for avoiding
them.

Reordering push and pop instructions, are effective meth-
ods of foiling ROP attacks [12]; however, performing these
operations at runtime will complicate continuation by chang-
ing the expected structure of the stack frame: if execution
continues in (i.e., returns back into) a function whose push
and pop differ from when execution initially entered, the
program will pop the wrong data into the registers, causing
a random fault in subsequent execution.

Another consideration is return address correctness. When a
program executes a call instruction, it will write the address
following the call onto the stack as the return address,
and then transfer control flow to the called function. Suppose
that after invoking a call instruction and writing the return
address, the program triggers a downstream diversification that
relocates this upstream call instruction. This changes the
address that the program should return to; however, the old
address is still written to the stack, and the program will
ultimately return into an undesired location, causing a random
fault.

Both of these continuation problems stem from changing ex-
ecutable memory in a way that is inconsistent with presently-
written stack memory. There are three general strategies for
preserving continuation in light of both of these problems:

1) Avoidance: Do not perform push and pop register
preservation reordering, and do not relocate any block
containing a call instruction.

2) Rectification: Rectify stack memory at diversification
time by transposing register preservation data (to al-
low push and pop reordering) and rewriting return
addresses (to allow call relocation) of continuable
functions.



3) Reachability: Do not modify the stack frame (e.g.,
push and pop register preservation) or return addresses
(e.g., location of call instructions) of functions that
can plausibly be continued after runtime diversification,
using a CFG graph-reachability criterion.

All of these strategies incur a cost. The avoidance strategy
reduces diversity by disallowing push and pop register
preservation and disallowing call instructions to be relo-
cated. Other strategies such as instruction substitution and the
relocation of other non-call blocks are still plausible, but
this is an unnecessary loss.

The rectification strategy will incur memory overhead to
store the data necessary to identify register preservation values
and return addresses that have been pushed onto the stack. The
time necessary to rectify the stack would be proportional to
the depth of the stack, and it could take arbitrarily long to
rectify all of the values, e.g., when modifying deep recursive
functions.

The reachability strategy reduces diversity potential, but
provides more diversity potential than the avoidance strategy.
This approach also incurs substantially less overhead than
the rectification strategy and permits more diversity than
the avoidance strategy, so this is our preferred strategy for
chronomorphic programs.

Our prototype tool implements the reachability strategy
using a graph-theoretic reachability criteria in the program’s
CFG. From the CFG, we can infer the set of functions that
could reach the runtime diversification function injected into
the chronomorphic binary. Our approach recovers the CFG
from the binary automatically, using mixed recursive/linear
disassembly of the binary, static identification of jump tables,
and dynamic tracing to identify indirect control flow (e.g.,
jump addresses stored as data) [21]. This over-approximates
the CFG and ultimately over-approximates the set of func-
tions that will be continued after runtime diversification. In a
hypothetical worst case, where every function in the program
can reach the runtime diversification function, the reachability
strategy is equivalent to the avoidance strategy described
above, which is still preferable to the rectification strategy.

We conducted an experiment with our Chronomorph proto-
type on a third-party Linux binary to characterize the diversity,
ROP attack likelihood, and performance overhead of our
Chronomorph approach. We discuss this experiment and its
results in the next section.

V. EVALUATION

We tested our prototype tool on small Linux desktop ap-
plications, into which we deliberately injected vulnerabilities
and gadgets (in the source code). Here, we discuss results for
the dc (desktop calculator) program.

The original target program, with injected flaws, is easily
compromised by our ROP compiler. We also inserted the spe-
cial MORPH comment in the source code, to trigger morphing
after each input line was read. After running the prototype
Chronomorph system, the new binary operates as described
in Figure 3, and cannot be defeated by the ROP compiler.

The dynamically-linked version of the original binary is small
(47KB), and after our tool has made it chronomorphic (with
a block relocation space of 4KB) it is 62KB.

The rewritten binary is currently able to perform approxi-
mately 1000 changes to its own code in less than one millisec-
ond, on a standard laptop. When the chronomorphic binary
is not rewriting itself, it incurs no additional performance
overhead, so the overhead is strictly the product of the time for
a complete morph (e.g., one millisecond) and the frequency
of morphs, as determined by the injected morph triggers. In
our experiments with dc performing a short regression test,
the chronomorphic version incurred an additional 2% over-
head. However, this was an unoptimized version that reloaded
the morph table on every morph trigger. For other binaries,
overhead will depend heavily on morph trigger placement.
Also, a more compute-intensive application might suffer a mild
degradation due to cache-misses and branch prediction failures
that might not occur in the non-morphing version.

Figure 5 shows two bitmaps illustrating how the binary
instructions change in memory, as the program runs. Each
pixel of each image represents a single byte of the program’s
executable code segment in memory. At the top of both
images, the gray area is the nop-filled block relocation space,
with colored segments representing the blocks moved there.
Note that the colored segments are in different locations in
the two images. Below the gray area, the original binary
bits that are never changed remain black, while instructions
that are rewritten are shown in different colors, where the
red/green/blue values are computed from the byte values and
nop instructions are gray. Comparison of the images will
show that many of the colored areas are different between the
images— this clearly shows the broad in-memory diversity
induced by the chronomorphic behavior.

We assessed this example’s morph table and estimate that
it is capable of randomly assuming any one of approxi-
mately 10°%° variants at any given time during execution. The
chronomorphic version of the statically-linked target binary (>
500KB) can assume any one of approximately 103°°° variants,
using about 8ms to perform all of its rewrites. However,
those variant counts do not really accurately characterize the
probability that a ROP or BROP attack will succeed.

To do that, we must consider how many gadgets the attacker
would need to locate, and how they are morphing. The
dynamically linked target contains 250 indirect control flow
instructions, and two thirds of those potentially risky elements
are moved by the block-relocation phase. With the ROPgadget
compiler we used for this evaluation, the original application
yielded an exploit needing eight gadgets, of which six were
subjected to morphing:

e inc eax ; ret - relocated.

e int 0x80 — relocated.

e pop edx ; ret — relocated.

e POp edx ; pop ecx ; pop ebx ;

ordered (6 permutations).

e pop ebx ; ret — relocated.

e XOr eax,eax ; ret — intact.

ret - re-
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Figure 5.

ret — relocated.
ret — intact.

e POp eax ;

e move [edx],eax ;
Five of the gadgets are relocated dynamically within the block
relocation space of size |b|, and a sixth gadget is rewritten to
one of six permutations. As a result, to accurately locate all
eight of those gadgets in the chronomorphed binary, a potential
ROP attacker would have to pick correctly from approximately
6x|b|° alternatives. For our |b| = 4KB example, the probability
of a correct guess is approximately 1/10*®, which is extremely
unlikely. Needless to say, the ROPgadget exploit was unable to
compromise the chronomorphic binary, in thousands of tests.
Furthermore, a BROP attack will have no ability to accumulate
information about gadget locations, because they change every
time a new input is received.

VI. CONCLUSION AND FUTURE WORK

We have implemented an initial version of an auto-
matic Chronomorph tool and demonstrated that the resulting
chronomorphic binaries are resistant to ROP and BROP at-
tacks and retain their initial functionality. Our automatically-
generated chronomorphic binary incurred no runtime overhead
during normal operation, and only incurred one millisecond
overhead to perform over 1000 sequential rewrites to exe-
cutable memory during a morph operation.

Our initial version and experimental results demonstrate
that chronomorphic programs are feasible: runtime diversity
yields real security benefits on existing software running on
existing operating systems and hardware. For chronomorphic
programs to become widespread and practical, further research
must characterize the effect on chronomorphic programs’
error reporting capabilities, performance tuning, and reliable
binary disassembly for safe code relocation. We prototyped
our approach in a 32-bit x86 Linux setting, and scaling to
x86_64 would increase the size of the morph table (due to
64-bit addresses), require a x86_64 ROP compiler, and require
support for disassembly and binary rewriting to account for
x86_64 argument-passing via registers.

Additional high-level research challenges remain for safety
and scalability. The system call that allows the chronomorph-
ing code to rewrite executable code is, of course, a dangerous

Example memory visualizations illustrating how the executable memory space of the binary changes at runtime.

call; if an attacker could locate it and exploit it, he could
rewrite the code to do whatever he wants. Therefore, we
would ideally like the rewriting/SMC code itself to relocate or
transform at runtime; however, the code cannot rewrite itself.
We can work around this limitation with a fairly simple trick:
we can use two copies of the critical code to alternately rewrite
or relocate each other throughout runtime.

Another security concern requiring additional research is
ROP attacks tailored to chronomorphic programs. If the at-
tacker has full reconnaissance to the program in memory,
he can identify which blocks the program has replaced with
a dynamic jmp instruction that points to the block’s new
(changing) address. This means that the ROP payload can (1)
load the target address of one of said jmp instructions, (2)
use the target address as an offset for the desired attack gadet,
and (3) compute the location of the desired attack gadget.
However, this assumes that (1) the attacker already access to
gadgets that can load these addresses and perform the required
arithmetic, and that (2) all of the desired gadgets are protected
by relocation and not by the other code randomization tech-
niques used in our prototype. Alternatively, chronomorphic
binaries could compute their jumps to relocated blocks using
control-flow-sensitive values, so that relocated block addresses
cannot be trivially looked up. The performance overhead of
this approach might be reasonable, based on the density of
relocated blocks, but this is an empirical question. Even in
light of chronomorph-tailored ROP attacks, chronomorphic
programs offer significantly more protection than the other
techniques reviewed in Section II in a fully-observable setting
on legacy hardware and software.

We do not presently protect the morph table, which resides
outside of the binary. While chronomorphic binaries do not
rely on obscurity for security, an attacker’s chances of success
would be higher if he has access to the morph table describing
how the binary can change itself. Straightforward encryption
techniques should allow us to protect the morph table.

We can potentially support multi-threading— and also en-
sure safe function continuation— by automatically injecting
control flow monitors into diversifiable functions. Control



flow monitors, similar to those used for runtime-injected
aspect-oriented programming [22], can be certified by well-
established model-checking techniques [23]. These control
flow monitors can determine during runtime when threads
actually have an active stack frame for a given function,
so runtime diversification will not modify those functions.
These control flow monitors could also implement thread
synchronization to prevent threads from entering a function
that is currently being rewritten. Despite their certifiability by
model-checking, these thread monitoring and synchronization
techniques may incur high performance overhead, so this
remains an open empirical question.

These challenges represent areas of future research and
development for chronomorphic programs. Our prototype tool
and preliminary analyses demonstrate that chronomorphic bi-
naries reduce the predictability of code reuse attacks for single-
threaded programs, and we believe that these avenues of future
work will improve the safety and robustness of chronomorphic
binaries in complex multi-threaded applications.
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