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Abstract

The CIRCA system automatically synthesizes hard real-time discrete event controllers from plant
and environment descriptions. CIRCA’s automatically-synthesized controllers provide guaranteed
real-time performance and safety preservation in adversarial, non-closed-world domains. By sepa-
rating controller construction from formal controller verification, CIRCA makes controller synthesis
decisions in a time-abstract state space that is quite compact. However, controller verification re-
quires a more complete consideration of time, to make real-time performance guarantees. By
retaining information between verifications of partial controllers during the controller synthesis
process, the incremental verification methods that we present here dramatically reduce the com-
plexity of controller synthesis. We provide formal characterizations of our incremental verification
technique and performance results demonstrating up to a 97% reduction in controller synthesis
time using these methods.
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1 Introduction

As interest grows in deploying autonomous systems for mission-critical ap-
plications such as controlling spacecraft and military robots, research-grade
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autonomous control systems are under increasing pressure to provide some
level of performance guarantees or assurances of correctness. In these do-
mains, correctness involves not just ensuring that a logical or appropriate
action is taken, but that it is taken at an appropriate and logical time [14].
Researchers are investigating various approaches including using formal verifi-
cation methods to check planner code [18], and tying planning and execution
semantics to formal automaton models [9].

The Cooperative Intelligent Real-Time Control Architecture (CIRCA) em-
phasizes guaranteed timely and logical performance by using formal verifica-
tion methods to check that the plans it will execute meet strict logical safety
and real-time response requirements [12,5]. Rather than verifying the planner
code itself, CIRCA incorporates on-line verification of the plans its planner
builds. This approach allows us to use an arbitrarily complex planning en-
gine, including unguaranteeable methods such as domain-independent search
heuristics, to produce plans which are then checked by a non-heuristic formal
verification tool.

In prior publications we have described how CIRCA repeatedly maps its
partial plans into timed automata during plan generation, and repeatedly uses
a model checker to ensure that the growing plans meet safety and timing con-
straints. The key contribution of this paper is our incremental verification
technique, which takes advantage of the relative stability of the planner’s for-
ward search to dramatically reduce plan verification time. As the planner
makes new action choices for unplanned states, our CIRCA-Specific Verifier
(CSV) retains partial verification traces and only generates extensions to those
traces. We present the formal foundations, the algorithm, and performance
results on a wide variety of domains showing dramatic performance improve-
ments. While our discussion centers on how CIRCA uses these techniques,
they can be more broadly applied to model checking in iterative generate-
and-test settings such as offline or manual system design and verification.

2 CIRCA Background

CIRCA’s Controller Synthesis Module (CSM) contains two main components
of interest for this paper: the State-Space Planner (SSP) that reasons about
time-abstract states to plan actions, and the CIRCA-Specific Verifier (CSV)
that reasons about partial and complete plans to ensure that they meet logical
and timing safety requirements. In this section, we briefly sketch these func-
tional modules and describe an example problem that we will carry throughout
the paper, to clarify how incremental verification works.
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ACTION turn-on-main-engine ;; Turning on the main engine
PRECONDITIONS: ’((engine off))
POSTCONDITIONS: ’((engine on))
DELAY: <= 1

EVENT IRU1-fails ;; Sometimes the IRUs break without warning.
PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’((IRU1 broken))

;; If the engine is burning while the active IRU breaks,
;; we have a limited amount of time to fix the problem before
;; the spacecraft will go too far out of control.
TEMPORAL fail-if-burn-with-broken-IRU1

PRECONDITIONS: ’((engine on)(active-IRU IRU1) (IRU1 broken))
POSTCONDITIONS: ’((failure T))
DELAY: >= 5

Fig. 1. Example transition descriptions given to CIRCA’s CSM.

State 8
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)

State 6
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)

turn_on_main_engine warm_up_IRU2

State 3 **
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)

start_IRU2_warm_up

State 0
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)

Fig. 2. The beginning of a state space plan for Saturn Orbit Insertion.
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2.1 State Space Planning

Unlike traditional AI planners, CIRCA reasons about uncontrollable processes
including adversaries, and metric, continuous time. The SSP takes in a de-
scription of the processes in the system’s environment, represented as a set of
time-constrained transitions that modify the value of world features. Discrete
states of the system are modeled as sets of feature-value assignments. Tran-
sitions have preconditions, describing when they are applicable, and bounded
delays, capturing the temporal characteristics of controllable processes (i.e.,
actions) and uncontrollable processes (i.e., world dynamics). For example,
Figure 1 shows three transitions from a CIRCA problem description for con-
trolling the Cassini spacecraft during Saturn Orbital Insertion [4,13]. The
transition descriptions, together with specifications of initial states, implicitly
define the set of possible system states. The CSM is responsible for deciding,
in each state, what action the system should take to maintain system safety
and drive the system towards its goals. For example, Figure 2 illustrates a
small portion of the Saturn problem’s state space, after the CSM has made
only its first few decisions about how to control the system. Note that this
view of controller synthesis is somewhat different than that of Ramadge and
Wonham [16], where the task is to choose which actions to disable in each
state, rather than which preferred action to take in each state.

The CSM reasons about both controllable and uncontrollable transitions:

Action transitions represent actions selected by CIRCA; the SSP’s objec-
tive is to assign an action to each reachable state. In Figure 2, a dashed
arrow shows that the system has chosen the action start_IRU2_warm_up

in the initial state zero. The special ’do nothing’ action “no op” can be
assigned. Associated with each action is a worst case execution time, an
upper bound on the delay before the action occurs.

Temporal (uncontrollable) transitions represent uncontrollable processes.
Associated with each temporal transition is a lower bound on its delay. If
the preconditions hold true for at least this time, the transition may fire and
enforce its postconditions. If a temporal transition leads to an undesirable
state, the CSM may plan an action to preempt the temporal by ensuring
that the action will definitely occur before the temporal could possibly oc-
cur. Transitions whose lower bound is zero are referred to as events, and
are handled specially for efficiency reasons. Transitions whose postcondi-
tions include the distinguished proposition (failure T) are called temporal
transitions to failure (TTFs).

Reliable temporal transitions represent continuous processes that may need
to be employed by the CIRCA agent. Reliable temporal transitions have
both upper and lower bounds on their delays. For example, when CIRCA
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turns on an Inertial Reference Unit it initiates the process of warming up
that equipment; the process will definitely complete if it is continued with-
out interruption for some time, as shown by the solid arrow leaving state 3
in Figure 2.

Note that each transition is an implicit description of many transitions in
an automaton model. Each of these transitions is enabled in any discrete state
that satisfies its preconditions, and disabled everywhere else.

Algorithm 1 (Controller Synthesis).

(i) Choose a state from the set of reachable states (at the start of state space
planning, only the initial states are reachable).

(ii) For each uncontrollable transition enabled in this state, choose whether
or not to preempt it. Transitions that lead to failure states must be pre-
empted.

(iii) Choose a single control action or no-op for this state.
(iv) Invoke the verifier to confirm that the (partial) controller is safe.
(v) If the controller is not safe, use information from the verifier to direct

backjumping and goto step i.
(vi) If the controller is safe, recompute the set of reachable states.
(vii) If there are no “unplanned” reachable states (reachable states for which

a control action has not yet been chosen), terminate successfully.
(viii) If some unplanned reachable states remain, loop to step i.

As shown in Algorithm 1, the CSM search algorithm maintains the deci-
sions that have been made, along with the potential alternatives, on a search
stack. The algorithm makes decisions at two points: step ii and step iii.

The SSP uses the verifier to confirm both that failure is unreachable and
that all the chosen preemptions will be enforced. The SSP uses the verifier
module after each assignment of a control action (see step iv). This means
that the verifier will be invoked before the controller is complete. At such
points we use the verifier as a conservative heuristic by treating all unplanned
states as if they are “safe havens.” Unplanned states are treated as absorbing
states of the system, and any verification traces that enter these states are
regarded as successful. Note that this process converges to a sound and com-
plete verification when the controller synthesis process is complete. When the
verifier indicates that a controller is unsafe, the SSP will query it for a path
to the distinguished failure state. The set of states along that path provides
a set of candidate decisions to revise, as discussed in [6].

D.J. Musliner et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 71–90 75



3 Formal Underpinnings

In this section, we provide a mathematical description of a controller graph and
briefly introduce the corresponding timed automaton model and algorithms
used for formal safety verification.

The search described by Algorithm 1 is conducted to create a controller
graph:

Definition 3.1 [CIRCA controller graph] P = 〈S, E,
→

F,
→

V , φ, I, T, ι, η, p, π〉
where

(i) S is a set of states.
(ii) E is a set of edges.

(iii)
→

F= [f0...fm] is a vector of features (in a purely propositional domain,
these will be propositions).

(iv)
→

V = [V0...Vm] is a corresponding vector of sets of values (Vi = {vi0...viki
})

that each feature can take on.
(v) φ : S �→

→

V is a function mapping from states to unique vectors of value
assignments.

(vi) I ⊂ S is a distinguished subset of initial states.
(vii) T = U ∪ A is the set of transitions, made up of an uncontrollable (U)

subset, the temporals and reliable temporals, and a controllable (A) sub-
set, the actions. Each transition, t, has an associated delay (∆t) lower
and upper bound: lb(∆t) and ub(∆t). For temporals ub(∆t) = ∞, for
events lb(∆t) = 0, ub(∆t) = ∞.

(viii) ι is an interpretation of the edges: ι : E �→ T .
(ix) η : S �→ 2T is the enabled relationship — the set of transitions enabled

in a particular state.
(x) p : S �→ A∪ε (where ε is the “action” of doing nothing) is the actions that

the SSP has planned. Note that p will generally be a partial function.
(xi) π : S �→ 2U is a set of preemptions the SSP expects.

In order to verify a partial SSP controller graph, P, we translate it into
a timed automaton (TA) model, θ(P). θ(P) is the product of a number of
individual automata.

Definition 3.2 [Timed Automaton [3]] A timed automaton A is a tuple
〈S,si,X ,L, E , I〉 where S is a finite set of locations; si is the initial loca-
tion; X is a finite set of clocks; L is a finite set of labels; E is a finite set of
edges; and I is the set of invariants. Each edge e ∈ E is a tuple (s, L, ψ, ρ, s′)
where s ∈ S is the source, s′ ∈ S is the target, L ⊆ L are the labels, ψ ∈ ΨX

is the guard , and ρ ⊆ X is a clock reset. Timing constraints (ΨX ) appear in
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guards and invariants and clock assignments. In our models, all clock con-
straints are of the form ci ≤ k or ci > k for some clock ci and integer constant
k. Guards dictate when the model may follow an edge, invariants indicate
when the model must leave a state. In our models, all clock resets re-assign
the corresponding clock to zero; they are used to start and reset processes.
The state of a timed automaton is a pair: 〈s, C〉. s ∈ S is a location and
C : X → Q ≥ 0 is a clock valuation, that assigns a non-negative rational
number to each clock.

It often simplifies the representation of a complex system to treat it as
a product of some number of simpler automata. The labels L are used to
synchronize edges in different automata when creating their product.

A timed automaton trace is a series of state transitions that represents
the computation of a timed automaton. Corresponding to any timed automa-
ton, A, is a transition system, SA, with two types of transitions: time-elapse
transitions and jump transitions:

Definition 3.3 [Time-Elapse Transition] A time-elapse transition, 〈s, C〉
t
→

〈s, C+t〉 can occur when for all t′ such that 0 ≤ t′ ≤ t, t′ satisfies the invariant
I(s).

Definition 3.4 [Jump Transition] A jump transition, 〈s0, C〉
e
→ 〈s1, C

′〉, for
some e ∈ E can occur when C satisfies the guard of e, ψ(e) and C ′ satisfies
the reset of e applied to C, ρ(e, C).

Definition 3.5 [Time Quotient] The time quotient of a timed automaton is
a non-deterministic finite automaton whose states correspond to the locations
of the timed automaton, and in which there is an edge e between s and s′

whenever there exists s′′ and t such that s
t
→ s′′

e
→ s′.

The CIRCA controller graph is the time quotient of a TA model of the
corresponding controller. The translation of controller graphs to TA models
is described in [5].

Figure 3 illustrates the timed automaton model corresponding to our run-
ning example, the partial Saturn orbit insertion controller shown in Figure 2.
Since the SSP has not yet completed the controller in Figure 2, the timed au-
tomata model has sinks at locations 4 and 5, corresponding to the unplanned
SSP states 6 and 8. Figure 4 illustrates the corresponding transition system
reachability graph, where boxes correspond to a reachable location and clock
region, represented as a difference bound matrix. The reachability graph shows
that locations 4 and 5 are reachable, but since their corresponding states are
unplanned, the verification traces halt there. The plan is safe so far, since
failure is not reachable.
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INIT
Guard: ()
Resets: (1 2 3 4)

RTA−Location 0
INIT
Invariant: ()

RTA−Location 1
FAILURE
Invariant: ()

#<ACTION start_IRU2_warm_up>
Guard: (c(1) >= 0)
Resets: (1 3)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

RTA−Location 2
SSP−State 0
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 OFF)
Invariant: (c(1) <= 1)

#<ACTION turn_on_main_engine>
Guard: (c(1) >= 0)
Resets: (1 2)

#<RELIABLE−TEMPORAL warm_up_IRU2>
Guard: (c(3) >= 45)
Resets: (1)

#<TEMPORAL fail_if_dont_burn>
Guard: (c(2) >= 1000)
Resets: NIL

RTA−Location 3
SSP−State 3 **
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: (c(1) <= 1 c(3) <= 60)

RTA−Location 4
SSP−State 8
(ACTIVE_IRU NONE)
(ENGINE ON)
(IRU1 OFF)
(IRU2 WARMING)
Invariant: uninitialized

RTA−Location 5
SSP−State 6
(ACTIVE_IRU NONE)
(ENGINE OFF)
(IRU1 OFF)
(IRU2 ON)
Invariant: uninitialized

Fig. 3. The timed automaton model corresponding to Figure 2.

In this paper, we will concern ourselves primarily with reachability verifi-
cation of a particular timed automaton. We will be asking if it is possible for
a timed automaton to reach a particular location, s ∈ S. In particular, we will
be checking the safety of a CIRCA controller by asking if a timed automaton
corresponding to the controller can ever reach the distinguished failure state.
While such reachability queries are not tractable, they are computable, and
can be answered by simple graph search algorithms.

Algorithm 2 (Reachability Verification).

(i) let openlist := initial state (〈si, 0〉)
(ii) if openlist = ∅ then return safe;
(iii) let state := pop(openlist);
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INIT

RTA−State 0
SSP−State INIT

#<ACTION start_IRU2_warm_up>

RTA−State 1
SSP−State 0

#<RELIABLE−TEMPORAL warm_up_IRU2> #<ACTION turn_on_main_engine>

RTA−State 3
SSP−State 3

RTA−State−Continuation 4
SSP−State 8

RTA−State−Continuation 5
SSP−State 6

Fig. 4. The timed automaton reachability space corresponding to Figure 2.

(iv) if visited(state) then goto ii;
(v) if failure(state) then return unsafe;
(vi) let succ := successors(state)
(vii) openlist := openlist ∪ succ;
(viii) goto ii;

Of course, any näıve attempt to apply Algorithm 2 is doomed to failure.
In particular, if one assumes dense time, the state space of this search may be
uncountably large. Practical verification systems for timed automata typically
search in a space of equivalence classes of states, since the state space of any
timed automaton can be reduced to a finite number of equivalence classes[1].
Typically, a verification system will collapse together multiple states using
clock zones. In the following discussion we will use “state” for both state
and state equivalence class; no confusion should result since any practical
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algorithm will have to manipulate the latter, rather than the former.

Verification systems also employ clever techniques for reducing the num-
ber of states that must be explored, answering the visited query (step iv,
above), and computing the successor set (step vi). Furthermore, instead of
simply returning unsafe, reachability verification systems typically return a
counterexample trace, that exhibits a path from the initial state to the failure
state, and can be used for debugging. To the best of our knowledge, CIRCA is
unique in automating the exploitation of counterexample traces in controller
synthesis (see [6] for an explanation of our technique for using counterexample
traces to direct backtracking in controller synthesis search). We will return to
the skeletal search algorithm later and describe modifications for our controller
synthesis application.

Recall that the SSP verifies partial controllers during construction, before
they are fully designed. Before the controller synthesis process is complete,
there will be states that do not yet have action assignments. We verify partial
controllers by treating such states as safe sink states. That is, we modify
Algorithm 2 by adding a step after iv as follows:

4.5 if not action-assigned(state) then goto ii;

Note that when Algorithm 1 is completed, all of the states will have an action
assigned to them, so the final verification will be a full verification. The
sequence of verifications can be thought of as a fixpoint computation that
converges on a full TA verification of the SSP controller.

4 Generating the State Space On-The-Fly

Even with the many techniques for efficient representation developed by timed
automaton verification researchers, a direct combination of Algorithms 1 and
2 will suffer a state space explosion. We have developed two techniques to
overcome this problem. The first, which we explain in this section is a special
purpose way of lazily generating the timed automaton state space correspond-
ing to a CIRCA controller. The second technique, which has never before been
reported, and which we explain in the following section, is a way of reusing the
results of the partial verifications executed in the course of controller synthesis.

One reason that CIRCA can efficiently search the space of the controllers
generated in the course of Algorithm 1 is that it uses an implicit state-space
representation. Instead of representing the state space explicitly, the state
space is implicitly represented by the initial state feature set, and the set of
transitions. CIRCA only assigns actions to states that it has reason to believe
to be reachable. We have built a CIRCA-Specific Verifier (CSV) able to exploit
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CIRCA’s implicit state-space representation. The CSV constructs its timed
automata, both the individual automata and their product, in the process of
computing reachability.

The efficiency gains from our factored state representation come in the
computation of successor states, step vi of Algorithm 1. A näıve implementa-
tion of the search would compute all of the locations (distinct discrete states)
of the timed automaton up front, but many of those might be unreachable.
We compute the product automaton lazily, on demand, thus constructing only
reachable states.

The individual automata, as well as their product, are computed on-the-fly.

The transitions that synchronize with the primary transition are of three
types:

(i) updates to the world automaton, recording the effect (the postconditions)
of the primary jump on the discrete state of the world;

(ii) enabling and disabling jumps that set the state of uncontrolled transitions
in the environment;

(iii) a jump that has the effect of activating the control action planned for the
new state.

Accordingly, we can very efficiently implement a lazy successor generation
for a set of states S = 〈s,C〉, where s is a discrete state and C is a symbolic
representation of a class of clock valuations, in our case a difference-bound
matrix. When one needs to compute the successor locations for the location
s, one need only compute a single outgoing edge for the RTS transition and
make one outgoing edge for each uncontrollable transition.

Making the outgoing edges is a matter of (again lazily) building the suc-
cessor locations and determining the clock resets for the edge. The clocks that
must be reset are: (a) For each uncontrolled transition that is enabled in the
successor location, but not enabled in the source location, s, add a clock reset
for the corresponding transition; (b) If the action planned for the successor
location is different from the action planned for the source location, reset the
action clock. These computations are quite simple to make and much easier
than computing the general product construction.

We do not have room here to provide further details of the CSV. For a
more thorough discussion, and for more details about the timed automaton
semantics of CIRCA controllers, see [5]. In that paper we provide experimental
results that illustrate the efficiency gains provided by the CSV.
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5 Incremental Reachability Computations

As we explained earlier, in the course of controller synthesis, we repeatedly
verify the partial controller automata that we generate. As one can readily
imagine, this can be a very expensive process and, indeed, our experience was
that the verification times dominated other aspects of controller synthesis. We
have developed a technique that permits us to reuse the results of one (partial)
reachability search in ensuing searches in the same controller generation.

The central insight behind the technique is that each run of the reachability
search algorithm generates not only a judgment about the safety of the partial
controller, but also a set of search states for each of the frontier states of the
controller, where a frontier state is an as yet unplanned state that can be
reached in one transition from a planned state. Indeed, if one looks at the
partial verification state this way, one can see that a “safe” partial controller
is a partial controller that can safely reach all of its frontier states.

In order to reuse search results, then, we need to save the states of the
search at the frontier states as continuations. We make a table of such con-
tinuations, indexed by the states of the controller graph. Incorporating these
continuations together with the modifications for partial verification described
in the previous section, we get the following algorithm for verifying an action
assignment to some controller graph state, S:

Algorithm 3 (Incremental Reachability Verification).

(i) var continuations: f(S) → openlist := ∅;
(ii) var cache valid = false;
(iii) function verify(S)
(iv) var openlist;
(v) if cache valid then
(vi) openlist := continuations(S)
(vii) else openlist := {〈si, 0〉}
(viii) cache valid := true;
(ix) search(openlist);
(x) end verify
(xi) function search(openlist)
(xii) if openlist = ∅ then return safe;
(xiii) let state := pop(openlist);
(xiv) if visited(state) then goto xii;
(xv) if not action-assigned(state) then

(a) continuations(SSP (state)) := continuations(SSP (state)) ∪ {state};
(b) goto xii;

(xvi) if failure(state) then return unsafe;
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(xvii) let succ := successors(state)
(xviii) openlist := openlist ∪ succ;
(xix) goto xii;
(xx) end search

Note that for every location, l, of a CIRCA timed automaton, there is
a corresponding discrete state, ssp(l), in the controller graph generated by
CSM search. It follows from this that for every state explored in verification
search, there is also a unique controller graph state that corresponds to it.
With a certain abuse of notation, we refer to this as SSP (state) in Algorithm
3.

In Algorithm 3, we have described the continuations as functions that
return a new openlist when “forced.” For those of a more formal temperament,
these continuations can also be thought of as functions from a state to an
(eventual) value of safe or unsafe: f(S) → (f → {safe,unsafe}). The
continuations can be concretely implemented as either a hash table or an
extensible array, depending on how the states are implemented.

In line a, we simply add the new state to the table of continuations for
the corresponding frontier state of the controller graph P, SSP (state). In
practice, however, we check to make sure that we do not add any states that
are subsumed by previously encountered ones.

When the search in the SSP backtracks, it invalidates the timed automa-
ton implicit in Algorithm 3. Accordingly, when this occurs, when the SSP
backtracks, we clear the cache. At the expense of some more book-keeping,
we could reuse partial results even after backtracking. We do not believe
that the search savings would be worth the additional overhead, but have not
experimented extensively: the current savings are adequate to our current
applications. However, we have a modified version of the controller synthesis
algorithm that works in a gradually-refined abstraction space, and we have
developed techniques to save results over model refinements. We do not have
space to discuss those additional techniques here.

6 Evaluation

Not surprisingly, the benefits of incremental verification depend heavily on the
degree to which the planner searches forward without backtracking, and the
degree of temporal complexity in the domain (since the verifier is primarily
addressing temporal correctness). If the planner’s heuristic is generally cor-
rect and the planner does not need to backtrack often, the costs of incremental
verification approach the optimal lower-bound, the cost of a one-shot verifi-
cation after the plan is created. On the other hand, if the planner backtracks
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frequently so that the verification trace cache is cleared frequently, the costs of
incremental verification approach the worst-case upper bound represented by
our earlier implementation, performing a complete from-scratch verification
on each action decision.

Since the incremental verification does not impose significant additional
storage or computation requirements beyond the original verification task, its
worst case is not significantly worse than the complete-verification-every-time
approach.

To evaluate the performance of our incremental verification approach, we
have examined three problem sets. First, we examined the most benefit that
incrementality can achieve, by testing with scalable robot tasking domains
that are solved with little or no backtracking. Second, we assessed the over-
head costs of the incremental approach on a spectrum of scalable domains that
are constructed specifically to fool the search heuristic into poor choices, lead-
ing to extensive backtracking that clears the incremental verification cache.
Third, we assessed the overall benefits of incremental verification on our re-
gression testing domains of varying size, derived from real-world problems and
prior investigations (available at
http://www.htc.honeywell.com/projects/sa-circa/).

6.1 No Backtracking

One of the few available benchmark domains for this type of controller syn-
thesis is based on a timed, discretized robot navigation and object-delivery
problem [8,15]. The domain consists of a set of rooms connected by doors, a
set of objects, and a robot that is capable of opening doors, moving from room
to room through open doors, and picking up and putting down the objects.
The goal is to move the objects from their initial positions into specified goal
positions and to leave the robot in a predefined position. The domain differs
from a classical closed-world form because it includes a random process (a
“kid”) that closes the doors. The size of the problem can be scaled by the
number of rooms, “kid-doors,” and objects to be delivered.

CIRCA solves problems in this domain without backtracking, because its
greedy goal regression search heuristic always makes a safe choice that leads
towards the goals, and there is no requirement that the resulting controller
yield the shortest path to success. Since the system never backtracks, it is
always able to simply extend its verification traces incrementally.

To evaluate incremental verification in this domain, we generated 300 test
problems in an 8-room, 7-door world. We varied the number of objects to
be delivered from one to six, with randomly-generated initial and goal rooms.
We varied the number of randomly-selected “kid-doors” from zero to four. For
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Fig. 5. When the CSM does not backtrack, incremental verification saves up to 97% of planning
time.

each setting of the number of delivery goals and kid-doors, we ran the CSM
on ten sample domains 4 .

Figure 5 plots the average controller synthesis time for each set of ten
domains. In every one of the 300 tests, the incremental version is faster
than the non-incremental version, saving up to 97% of the overall controller
synthesis time. The savings increase as the problems become more complex,
since the non-incremental version runs an exponential verification process after
each decision in the growing search, while the incremental version performs
only a linear expansion of its cached verification traces.

6.2 All Backtracking

To evaluate the overhead costs of incremental verification in domains where
extensive backtracking largely negates its advantages, we created a different
set of scalable domains and degraded the CIRCA heuristic, so that the search
engine makes a poor decision at every state the first time it is encountered. The
domains are composed of a series of N actions that are required to achieve the

4 Note the robot is also given a random final destination to park at, so the number of goals
varied from two to seven.
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Fig. 6. Even when backtracking is prevalent, incremental verification requires minimal overhead
and provides significant benefits.

final goal, and they must be executed in a specific order or else uncontrollable
temporals will occur that undo the progress made towards the goal. We declare
the final goal to be mandatory, so that CIRCA is not allowed to build a
plan that does not achieve that goal. We carefully construct the domain so
that the degraded heuristic always suggests the wrong ordering first, forcing
backtracking in proportion to N !.

Figure 6 illustrates the resulting performance for values of N from three
to six. As the number of actions in the ordered chain grows, the degraded
heuristic forces the controller synthesis system to explore many more incorrect
orderings (infeasible controllers that make failure reachable). For example, the
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N = 6 domain causes 76657 backtracks, each of which clears the verification
cache. The bottom segments in Figure 6 show that the overhead of the in-
cremental verification algorithm is minimal, so that the system uses about
the same amount of time performing verifications “from scratch” (after back-
tracks) in either mode. And even in this backtrack-laden domain, incremental
verification yields significant benefits.

Note that these performance results are obtained with a degraded heuris-
tic; with the normal CIRCA heuristic, these domains are all solved without
backtracking, in less than one second. These degraded-heuristic experiments
only serve to show the worst-case penalty of incremental verification.

6.3 Regression Suite

In a set of 23 domains from our regression suite, our evaluations indicate major
advantages for incremental verification in moderate and large domains. These
domains range from very small test-cases that exercise planning behaviors
such as backtracking, to fairly large domains drawn from models of robotic
workcells, spacecraft commanding, and UAV tasking.

As shown in Figure 7, the incremental CSV algorithm uses less time than
the batch CSV in all cases except two problems: one short problem where their
times are essentially equal and one that ran until the test’s 20-minute timeout.
For reference, the chart also shows the CSM runtimes when using the Kronos
verifier tool, which also operates in a batch mode (and over a file-system
based interface). The Kronos results are not always perfectly comparable,
since in some cases Kronos returns different culprit paths than CSV, which
leads to different backjumping behavior and different search space exploration.
However, in all cases the CSV and CSV-incremental algorithms are faster. It
is worth noting that Kronos is a far more general verification tool than CSV,
which is tailored to our specific reachability concerns.

7 Related Work

The SSP algorithm is closely related to techniques for game-theoretic synthesis
of controllers for timed systems [2,10]. One difference is that the SSP algo-
rithm works “on-the-fly” starting from an initial state and building forward
by search. The game-theoretic algorithms, on the other hand, use a fixpoint
operation, to be implemented by dynamic programming, to find a controllable
subspace, starting from unsafe states (or other synthesis failures).

Tripakis and Altisen [19] have independently developed an algorithm very
similar to ours. They use the term “on-the-fly” for algorithms that generate
their reachable state spaces at the same time as they synthesize the controller.
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Fig. 7. Our spectrum of regression tests also show significant benefits from incremental verification,
averaging 40% savings over batch CSV.

Most AI planning algorithms, including CIRCA’s [11,12] are on-the-fly in this
sense. We believe some of our efficiency improvements could be adapted to
their algorithm.

Sahay et. al. [17] describe algorithms for modifying a “timed state-variable
graph” (TSG) analogous to the region graph built during CIRCA plan verifi-
cation. They modify the TSG when changes are made to the corresponding
system design. Their solution is aimed at a different problem, where full
verifications of full designs are run, rather than to verification in on-the-fly
controller synthesis.

Gordon-Spears [7] has also recognized the need for swift verification of
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plans for autonomous systems. She proposes novel “incremental reverifica-
tion” algorithms suitable for use when a machine learning system adapts
an existing plan. Unlike CIRCA’s controllers, hers are untimed automata,
which reduces the computational complexity of verification. However, because
Gordon-Spears’ agents adapt their plans in ways that may affect large por-
tions of the plan, in the worst case the entire plan will need to be re-verified;
this makes her verification problem more like Sahey et al.’s.

8 Conclusions and Future Directions

We have described an incremental verification technique that can provide ma-
jor benefits for on-the-fly controller synthesis and verification. While our
approach is implemented in the context of the CIRCA system, it could be
more broadly applied to verification processes in other automatic and manual
system design applications. Our evaluations have demonstrated that the ap-
proach induces little or no additional overhead, but can eliminate up to 97%
of the verification time consumed by a normal batch verification process used
in iterative fashion.

In our current implementation, the cache of verifier traces is cleared any
time the SSP backtracks to change one of its decisions. In theory it would be
possible to always perform incremental verification, by keeping track of the
detailed dependencies between SSP decisions and the verifier traces, and only
invalidating those traces affected by altered SSP decisions. We have not yet
tried to build this more complex version of the approach, because preliminary
estimates indicate that it is not likely to yield a huge payoff. The remaining
complexity lies primarily in the search heuristic and in the need to verify a
successful plan at least once, which is unavoidable in our framework.
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