
RT-MLab: Really Real-Time RoboticsKaren Zita Haigh, David J. Musliner, Sunondo GhoshHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fkhaigh,musliner,sghoshg@htc.honeywell.com
In the 2000 AAAI SSS `Real-Time Autonomous Systems'

AbstractA common misconception about real-time computingis that it is equivalent to \fast computing." Manyrobotics examples in recent history have shown thatwithout rigorous understanding of the resource require-ments and interactions of the software, these systemsare doomed to failure.In this paper, we discuss our application of rigorousreal-time analysis and execution methods to GeorgiaTech's MissionLab system for robot tasking and con-trol [Endo et al. 1999; MacKenzie, Arkin, & Cameron1997]. In this paper, we describe RT-MLab, whichcombines MissionLab with Honeywell's MetaH real-time analysis and execution tool to provide real-timeschedulability analysis and reliable real-time executionsupport for robot behaviour con�gurations.IntroductionFor decades, robotics researchers have pushed theboundaries of computer science and computing hard-ware, striving to build intelligent control systems thatare smart enough and fast enough to control robotsmoving through complex, dynamic, real-world environ-ments. One of the key constraints on these systems isthe need to operate in real-world time, rather than sim-ulated or virtual time: the robot's control system mustdetect and react appropriately to a continuously chang-ing world that is not entirely controllable, and cannotbe slowed down. The progression of Moore's Law andthe advent of mega
op processors has not changed thefundamental situation: we still need robot control al-gorithms and architectures that behave in timely ways.That is, we need real-time robotics.A commonmisconception about real-time computingis that it is equivalent to \fast computing" [Stankovic1988]. As a result, most robotics researchers to datehave treated the timing behaviour of their systems in anad hoc fashion, re-engineering algorithms when testing

indicates that they are running too slowly or causing er-rors. Without a rigorous understanding of the resourcerequirements and interactions of their software, thesetesting-based e�orts are doomed to the same sort offailures we've seen in many other well-tested embeddedsystems (e.g., Space Shuttle launches delayed by syn-chronization errors, Mars Rover and Deep Space Onefailures caused by improperly-controlled multitasking).In real-time computing, the correctness of the systemdepends not only on the logical result of the computa-tion, but also on the time at which the results are pro-duced [Stankovic 1988]. The real-time systems commu-nity has studied these issues and developed techniquesto address them using formal, rigorous techniques [Shin& Ramanathan 1994; Krishna & Shin 1997]. In thispaper, we discuss our application of rigorous real-timeanalysis and execution methods to Georgia Tech's Mis-sionLab system for robot tasking and control [Endo etal. 1999; MacKenzie, Arkin, & Cameron 1997].MissionLab allows a user to easily construct a setof robot behaviours, download the behaviours to therobot, and execute the behaviours while observing feed-back data. Prior to our e�orts, the user could con-struct any set of behaviours, combining as many com-plex computations as he wished, and each behaviourwould simply run \as fast as it could." Clearly, it is pos-sible to assemble behaviours that overwhelm the robot'scomputing system and will not meet the real-time con-straints imposed by the environment. For example, ifthe robot's computer cannot run the obstacle detectionbehaviour quickly enough, the robot will run into ob-jects.Our work with MissionLab has three primary objec-tives:1. To develop automatic real-time analysis methodsthat assess whether a user-de�ned con�guration ofrobot behaviours will be executed in a timely fashionon a particular robot.2. To provide a real-time execution environment that



supports predictable, timely execution of behaviourcon�gurations.3. To demonstrate the general applicability of hard real-time performance guarantees for robots.The system we developed, RT-MLab, combines Mis-sionLab with Honeywell's MetaH real-time analysisand execution tool [Binns & Vestal 1993; Vestal 1997;1998]. The MetaH toolset combines modelling, perfor-mance analysis, reliability, and partition security withautomatic tailoring of e�cient middleware services forembedded computer systems.RT-MLab looks almost exactly like the original Mis-sionLab system from the user's perspective. Via theoriginal GUI, the user constructs a con�guration of be-haviours. RT-MLab analyzes the behaviours to deter-mine whether they meet the timing constraints imposedby the hardware and execution environment. If the be-haviours are feasible, they are compiled with MetaHglue code and downloaded to the MetaH execution en-vironment, providing reliable real-time execution that isguaranteed to meet the speci�ed timing requirements.The result: a robotic tasking and control system thatguarantees it will correctly execute any behaviour con-�guration it allows the user to generate.ArchitectureMissionLabMissionLab is an end-to-end robot behaviour speci�ca-tion and execution toolset. Figure 1 shows the archi-tecture of the overall MissionLab system.The human operator speci�es a mission by drawinga �nite-state diagram using the Con�guration Editor.Figure 2 shows a behaviour con�guration for a can-collecting robot. The end user selects behaviours froma library created by a system designer.When the behaviour con�guration is ready, the userbinds it to a robot type. At this point, particularbehaviours are bound to particular hardware capabil-ities. For example, a \detect human" behaviour mightbe bound to an infra-red sensor on one robot, andto a camera-based face-detection algorithm on anotherrobot.
MLab User

Interface Console

Robot Simulator

Mission
Operator

Configuration
Editor

Configuration
Network

Language (CNL)

Configuration
Description

Language (CDL)

GNU C
compilerFigure 1: MissionLab Architecture.

Figure 2: The Con�guration Editor.
move_robot

navigate

detect_obstacle

avoid_obstacle nav_at_goal

get_locationextract_goal

stop_robotFigure 3: A simpli�ed network of CNL nodes for a \(gotox,y)" behaviour con�guration.When the user clicks the \compile" button, Mission-Lab uses a series of compilers to generate a binaryexecutable. MissionLab �rst compiles the Con�gura-tion Description Language (CDL) representation of therobot behaviours into the Con�guration Network Lan-guage (CNL). Each behaviour shown to the user isbound to several CNL nodes. For example, the user-level behaviour \(goto x,y)" requires the CNL nodesfor obstacle detection, obstacle avoidance, localization,goal identi�cation, and other functions. Figure 3 showsa very simpli�ed CNL network for the \(goto x,y)" be-haviour. The arrows between CNL nodes refer to the
ow of information in the network. After compiling theuser's behaviour con�guration into CNL, MissionLabthen compiles the CNL code into C, and then the Ccode into a target binary.The compilation procedure generates two \logicalunits" of information, as shown in Figure 4. The �rstis the behaviour, which forms the basis of the end user'scon�guration. The second, generated by the CDL-to-CNL compiler, is a CNL node. Each behaviour maps toseveral nodes, and each node may be required by severalbehaviours. Each node runs as a light-weight thread in



Robot Executable

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Behaviour

Control Flow

Behaviour-to-node map

Data Flow

CNL nodeFigure 4: Behaviours and Nodes in MissionLab. Each noderuns as a light-weight thread in the executable.the executable. At execution time, each thread (node)in the CNL network runs continuously, generating a newoutput value for each set of new input values.The �nal step is to run the executable. The user clicksthe \run" button and chooses to execute on either theMLab simulator or a particular real robot. The MLabGUI, shown in Figure 5, allows the user to monitor theexecution.RT-MLabRT-MLab is a rebuilt version of MissionLab with newcapabilities including:� Automatically calibrating CNL node runtimes.� Analyzing con�gurations of behaviours for real-timeexecution feasibility.� Predictably executing behaviour con�gurations andenforcing guaranteed real-time timing constraints.From the user's perspective, the interaction with therobots is the same, with one added functionality: be-fore compiling the behaviour con�guration into a bi-nary, the user clicks \analyze" in the con�guration edi-tor, and MetaH will analyze the con�guration for feasi-bility. That is, it checks to see if all of the process tim-ing constraints and communication interconnects forma set of processes that can be successfully executed onthe robot, without violating any timing constraints.
Figure 5: The MLab User Interface.

Figure 6 shows a high-level view of the RT-MLabarchitecture. The following section describes the RT-MLab functions in more detail.Real-Time AnalysisRT-MLab analyzes the code that will be running onthe robot using rate-monotonic scheduling theory todetermine whether all processes can meet their timingconstraints. We have replaced the MissionLab CNL-to-C compiler with a new compiler that interacts withMetaH to analyze mission feasibility, and then generatescode that provides hard real-time performance guaran-tees when executed on a real-time operating system.While the user's interaction with RT-MLab is essen-tially the same as the user's interaction with Mission-Lab, the robot executable has changed signi�cantly. InMissionLab, each CNL node executes as a light-weightthread. In RT-MLab, sets of CNL nodes that run at thesame frequency are grouped into a single MetaH process,as shown in Figure 7. At execution time, MetaH man-ages the execution of each process, and ensures that thedata
ow requirements are met. Although MetaH sup-ports multi-processor computation at both the analysisand execution stages of interaction, in this paper weassume that the robot has one processor.There are two main advantages for setting di�erentperiods for di�erent nodes. The �rst is to accommo-date di�erent-rate sensors. Assume, for example, thatone sensor takes �ve seconds to update and process in-formation, while another takes 100ms (say, vision andsonar, respectively). MetaH will run the faster sensor atevery opportunity, while using old data from the slowersensor.The second advantage is that more frequent processesare treated with higher priority at run-time. As a re-sult, critical processes can interrupt less important pro-cesses, ensuring that performance guarantees are met.For example, even if a vision process overruns its allo-cated processor time, obstacle avoidance routines canstill ensure that the robot will not crash. In particular,background processes will not a�ect the robot's exe-cution performance. This feature allows some 
exiblescheduling of the processor, while ensuring that criticalroutines will be executed as frequently as necessary.
�
�
�
�

MetaH process

Behaviour

Control Flow

Robot executable

Data Flow

CNL node

Behaviour-to-node map

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��Figure 7: Behaviours, Nodes and Processes in RT-MLab.MetaH manages the inter-process interactions.



MissionLab

analysis presentation

behaviours
performance-aware

MetaH

analysis

behaviour code
performance data

specifications

schedulability

target architecture

executables
(behaviour
scheduling

communication
interfaces)Figure 6: RT-MLab Architecture.To perform real-time analysis, MetaH needs to knowthree things about the processes that will run in the�nal executable:1. the data
ow between processes,2. the execution time of each process, and3. the period of each process.The con�guration network speci�es a data
ow diagrambetween CNL nodes. From this network, the new CNL-to-C compiler builds the MetaH processes, and derivestheir execution times and periods.Data
owAs each behaviour con�guration is compiled into CNL,the compiler also extracts the data 
ow between nodes.For example, in the con�guration network shown in Fig-ure 3, the node detect obstacle() reads the sonar val-ues and calculates an array of object locations that areused by avoid obstacle() to calculate a desired travelvector.This data
ow information serves two purposes. First,it allows us to derive appropriate periods for nodes thatdepend on inputs from di�erent sources, as describedbelow. From this derivation, the compiler can createMetaH processes that consist of all nodes running atthe same period.Second, by reasoning about the relative frequenciesof processes that produce and consume data along par-ticular data
ows, MetaH tools can automatically syn-thesize the necessary communication bu�ers to supportover- and under-sampling. For example, if one processproduces new data at a much slower rate than the con-suming process runs, the data must be bu�ered to sup-port oversampling.Execution TimesExecution times need to be calibrated whenever hard-ware is changed on the robot, or when a new CNL nodeis added to the robot's capabilities. If a function re-lies on particular features of the hardware, its execu-tion time may change. For example, if we change theframe grabber for a camera to a new frame grabber with

higher resolution, the execution time of a vision routinemay increase.The execution time of a MetaH process is the sumof the execution time of each of its constituent nodes.The execution time of a node will remain constant for agiven hardware con�guration, and hence the executiontime of a process can be directly calculated for eachbehaviour con�guration.PeriodsTo assess the feasibility of a behaviour con�guration,RT-MLab requires that each process in the �nal exe-cutable have an assigned period. The period of a processis the length of time between consecutive dispatches ofthe process. The robot designer sets the period of aCNL node, and the CNL-to-C compiler places all nodeswith the same period into a single MetaH process.Many of the nodes in a robot program have peri-ods that are hardware-dependent. For example, if thesonars are being �red ten times per second, then a nodethat acquires that sonar data should be run every 100milliseconds. Since data 
ows along the arrows fromnode to node, the periods of upstream nodes can beused to derive suitable periods for downstream nodesthat are not tied directly to hardware inputs. We wantsensor data to 
ow as quickly as possible through thenetwork, so we make downstream nodes run at leastas frequently as their most frequent predecessor. Thesystem designer needs to set the period for every nodewith no inputs (critical node).For example, in the con�guration network shown inFigure 3, the detect obstacle() node should be run asfrequently as the sonars can �re. The get location()node, which �nds the current robot location, is less crit-ical than detecting obstacles, but its frequency deter-mines how precisely the robot will be able to achieve agiven goal location. The extract goal() node, whichgets the goal location from the GUI, can be run lessfrequently. Assume we assign the following periods:extract goal() 500 msget location() 250 msdetect obstacle() 100 ms



The compiler can propagate these periods to down-stream nodes, always selecting the more frequent value,generating: nav at goal() 250 msstop robot() 250 msavoid obstacle() 100 msnavigate() 100 msmove robot() 100 msThe compiler creates the following three, independentMetaH processes:500 ms:extract_goal()250 ms:get_location()nav_at_goal()stop_robot() 100 ms:detect_obstacle()avoid_obstacle()navigate()move_robot()MetaH will guarantee that each process uses themost recent information available from (possiblyslower) processes that it depends on. For example,navigate() may be relying on 500ms-old data fromextract goal(). In a traditional, non-real-time archi-tecture, communication delays or other problems maycause data to backlog, and a process might make deci-sions based on out-of-date information. MetaH elimi-nates the need to hand-manage data 
ow and latencyconcerns.Con�guration AnalysisThe CNL-to-C compiler generates a set of MetaH pro-cess, along with their data
ow, execution times, and pe-riods. RT-MLab uses this information to assess the fea-sibility of the user-level behaviour con�guration. This\schedulability analysis" determines whether all pro-cesses can be executed at their speci�ed periods. Theanalysis includes communication times between nodes,and overhead generated by the process dispatcher.The analysis returns the total (or actual) utilizationof the processor, and the breakdown (or maximumpos-sible) utilization. For example:Total utilization = 83.5%Breakdown utilization = 96.7%Processor schedule is feasibleThe breakdown utilization is an indication of how dis-harmonic the process periods are. Harmonic periods oc-cur when each period is an integer multiple of all lowerperiods; a set of harmonic processes is easy to scheduleon the processor without leaving signi�cant down-time.Dis-harmonic periods make it di�cult to schedule highlevels of utilization. For example, consider the two pro-cesses A and B depicted in Figure 8. Process A has anexecution time of 2 ms, and a period of 5ms, yieldinga processor utilization of 40%. Process B has an ex-

1 2 3 4 50 6 7 8 9 10

A

B

40% utilization

46.4% utilizationFigure 8: A set of unschedulable processes that do not over-load the processor.ecution time of 3.25ms, and a period of 7ms, yieldinga processor utilization of 46.4% utilization. However,despite the fact that they would only utilize 86.4% ofthe processor's total available time, there is no way forthem to be scheduled to meet their timing constraints.In the current version of RT-MLab, the system designeris responsible for selecting harmonic periods.ExampleWe envision the end user exercising RT-MLab's real-time analysis tools in an interactive fashion. He wouldbuild an initial behaviour con�guration, and ask RT-MLab to analyze it. If the con�guration is not feasible,he would modify the con�guration, iterating until heachieves a �nal, feasible con�guration.As a simple example, consider an exploring robot thathides at \home" whenever it senses an enemy robot.In our �rst con�guration, we use the \Near(Object)"behaviour to trigger the hide, and the \MoveTo(Named-Location)" behaviour to get to the home location, asshown in Figure 9. The CNL network for this con�gu-ration contains 52 nodes.MetaH uses our timing and period values to deter-
Figure 9: Exploring robot, using \Near" and \MoveTo". Thisbehaviour con�guration is not feasible.



mine the schedulability of this con�guration, and re-ports that it is infeasible. One solution to this problemis to replace some of the expensive behaviours with sim-ilar cheaper behaviours.The \Near(Object)" behaviour requires the robotto (i) calculate what objects are detected and wherethey are, and then (ii) calculate whether an enemyrobot is one of the sensed objects, and �nally (iii)decide whether the robot is \near." This procedureis extremely expensive, particularly when there aremany objects in the environment. The behaviour \De-tect(Object)," on the other hand, only requires therobot to calculate whether the enemy robot is detected,eliminating steps (ii) and (iii), and potentially signi�-cantly shortening step (i).The \MoveTo(NamedLocation)" behaviour requiresthe robot to sense the home base before navigatingthere. If the home base doesn't move, then we can elim-inate all the sensing steps by replacing this expensivebehaviour with a simpler \GoTo(x,y)" behaviour.By replacing both behaviours in the con�guration, weget the con�guration shown in Figure 10, which yieldsa CNL network of 39 nodes. This simpler con�gurationis feasible, while yielding the same general behaviourfrom the robot.
Figure 10: Exploring robot, using \Detect" and \GoTo". Thisbehaviour con�guration is feasible.Future WorkOur future work will focus on increasing the usabilityof the RT-MLab's real-time analysis features. Our goalis to advise the end user through the process of cre-ating a feasible con�guration. We will add two maincomponents:

1. a guarantee that user-settable parameters do not ex-ceed robot-hardware limits (e.g. the robot will readsonar information frequently enough for its speed).2. a search for alternate feasible con�gurations.Hardware ConstraintsIn order to guarantee that user-settable parameters donot exceed hardware or environmental limits, we intendto create functions relating robot parameters to pro-cess periods. We will then check that these constraintsare met. For example, we would like to guarantee thatthe robot processes its sonar data often enough that itdoesn't bump into objects. (Note that this constraint isan extension of the current guarantee that the robot willread its sensors and react with a speci�ed frequency.)Let v = robot speedp = sonar perioda = robot accelerationd = maximum sonar visibility distancee = total execution time of all processesin con�gurationUsing these variables, we can de�ne the following con-straint:d >= v � reaction time� stopping distanced >= v � 2p� v22aThe reaction time of the robot is identi�ed as shownin Figure 11. Note that the process detect obstacle()will be executed once per period; not that it will startexecution at exactly the start of the period. The maxi-mum reaction time is hence 2p.This function computes the process periods directlyfrom hardware parameters (e.g., sonar range) and user-speci�ed behaviour parameters (e.g., robot speed).These constraint functions will augment RT-MLabwith two new abilities:1. RT-MLab will guarantee constraints at a much moreabstract level than the processor. RT-MLab cur-rently guarantees that the processor will handle theload placed on it. These functions will allow RT-MLab to guarantee that the executable will meet cer-tain behavioural performance requirements.2. RT-MLab will be able to automatically deduce manyof the process periods. Currently, the system designersets a �xed period for each critical node. By usingfunctions relating di�erent hardware capabilities toeach other, RT-MLab will be able to automaticallycalculate possible periods for sensor-based nodes.Search for Feasible Con�gurationsThere are two ways to make an infeasible con�gurationfeasible. The �rst is to relax the user's constraints. The



e

start N
A

V
IG

A
T

E

start X

start A
V

O
ID

_O
B

ST
A

C
L

E

start M
O

V
E

_R
O

B
O

T

start D
E

T
E

C
T

_O
B

ST
A

C
L

E

p p

e

start N
A

V
IG

A
T

E

start X

start A
V

O
ID

_O
B

ST
A

C
L

E

start M
O

V
E

_R
O

B
O

T

start D
E

T
E

C
T

_O
B

ST
A

C
L

E

Obstacle moves into range

reaction timeFigure 11: Reaction time for obstacle detection. The process\X" refers to any other nodes in the con�guration network,and may be scattered throughout the execution.second is to automatically swap behaviours for similar,cheaper behaviours. We are still considering possibledesigns for this second capability, and hence do not con-sider it here.The constraints described above contain two types ofvariables: (1) hardware values, such as the maximum�ring rate of the sonar card, or the execution time ofa process, and (2) user variables, such as robot speed.Hardware values are �xed, but user variables can berelaxed. We can solve the constraint equations usingthe �xed values, yielding ranges on the variables.We intend to use AI search techniques to searchthrough the space de�ned by these values to yield fea-sible solutions, and present those with the least impacton performance to the user.Related WorkWhile there are many reactive, behaviour-based archi-tectures for robot control (e.g., RAPs, subsumption,3T), very few have paid close attention to issues ofhard-real-time responsiveness. Notable exceptions in-clude Rex/Gapps, PRS, DR/MARUTI and CIRCA.Rex is a language used to describe digital machinesthat can be viewed as reactive systems [Rosenschein &Kaelbling 1986]. Rex programs are compiled into au-tomata descriptions that perform a constant-time map-ping between inputs (sensors) and outputs (actuators).Gapps [Kaelbling & Rosenschein 1990] is a system forcompiling declarative descriptions of agent behavioursinto Rex machines. Thus Rex/Gapps resembles theoriginal MissionLab system in providing a powerful andpredictable reactive programming environment and ex-ecutive. The improvements we made by adding real-time analysis and execution support would apply evenmore smoothly to Rex/Gapps, because of its formal�xed-time basis.

The Procedural Reasoning System (PRS) [George�& Ingrand 1989; Ingrand & George� 1990] has featuresmaking it suited to real-time applications. Ingrand andGeorge� have shown that, given certain assumptionsabout event frequencies and the form of the system'sprocedural knowledge, PRS can be guaranteed to no-tice (or begin reacting to) every world event withina bounded time. This guarantee is based on the factthat PRS processing is highly interruptible. However,\noticing" an event is distinguished from responding tothe event. It is also possible to limit PRS' inferencingcapabilities and make guarantees about overall responsetime [Ingrand & George� 1990]. However, PRS hasnot been tied to real-time operating systems or analysismechanisms, so these potential performance guaranteesremain unrealized.Hendler and Agrawala [1990] did preliminary workintegrating an enhanced Dynamic Reaction (DR) sys-tem and the MARUTI operating system to implementguaranteed real-time reactive reasoning that closely re-sembles the output of RT-MLab, without the automaticanalysis and programming environments. The DR sys-tem sets up asynchronous monitor processes to checkconditions on speci�c world model features: signalsfrom these monitors drive changes in reactive activities.The MARUTI operating system provides explicit sup-port for scheduling hard real-time tasks on distributedsystems, guaranteeing the execution of jobs that are ac-cepted. By using MARUTI to schedule and execute thereactive elements of DR, the combined system can makeperformance guarantees. DR/MARUTI does not havemechanisms to automatically reason about or analyzeits scheduling requirements.The CIRCA system [Musliner, Durfee, & Shin 1993;1995] combines a hard-real-time reactive executive withsoft-real-time AI planning methods that automaticallygenerate reactive plans given a set of high-level goals.CIRCA includes its own scheduling module that allowsit to reason explicitly about the real-time requirementsof its reactive behaviours, and automatically adjustthose behaviours (plans) when its execution resourcesare not su�cient. In many ways, CIRCA resembles RT-MLab with the user and GUI replaced by AI planningmethods. We are anxious to explore the potential forcombining CIRCA's planning capabilities with the al-ternative execution semantics o�ered by RT-Mlab.SummaryOur RT-MLab extensions to MissionLab provide real-time schedulability analysis and reliable real-time exe-cution support for robot behaviour con�gurations. Us-ing formal real-time analysis and execution tools en-sures that the robot programs created in RT-MLab will



be executed as designed, without unpredictable tim-ing behaviour or communications delays. As one ofthe �rst robot control architectures providing hard real-time guarantees, we believe that RT-MLab is a majorstep forward in the deployment of reliable robotic sys-tems. AcknowledgmentsThe authors would like to thank Ron Arkin, TomCollins, Tucker Balch, and Steve Vestal for their helpand insightful comments.References[Binns & Vestal 1993] Binns, P., and Vestal, S. 1993.Scheduling and communication in MetaH. In Real-Time Systems Symposium.[Endo et al. 1999] Endo, Y.; MacKenzie, D. C.; Ali,K. S.; Balch, T.; Cameron, J. M.; and Cheng, Z.1999. MissionLab: User manual for MissionLabversion 3.0. Technical report, College of Comput-ing, Georgia Institute of Technology, Atlanta, GA.Available via http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/mlab manual.ps.gz.[George� & Ingrand 1989] George�, M. P., and In-grand, F. F. 1989. Decision-making in an embeddedreasoning system. In Proceedings of the InternationalJoint Conference on Arti�cial Intelligence (IJCAI),972{978.[Hendler & Agrawala 1990] Hendler, J., and Agrawala,A. 1990. Mission critical planning: AI on theMARUTI real-time operating system. In Proceed-ings of the Workshop on Innovative Approaches toPlanning, Scheduling and Control, 77{84.[Ingrand & George� 1990] Ingrand, F. F., andGeorge�, M. P. 1990. Managing deliberation andreasoning in real-time AI systems. In Proceedings ofthe Workshop on Innovative Approaches to Planning,Scheduling and Control, 284{291.[Kaelbling & Rosenschein 1990] Kaelbling, L. P., and

Rosenschein, S. J. 1990. Action and planning in em-bedded agents. In Robotics and Autonomous Systems6, 35{48.[Krishna & Shin 1997] Krishna, C. M., and Shin, K. G.1997. Real-Time Systems. McGraw Hill.[MacKenzie, Arkin, & Cameron 1997]MacKenzie, D. C.; Arkin, R. C.; and Cameron, J. M.1997. Multi-agent mission speci�cation and execu-tion. Autonomous Robots 4(1):29{52.[Musliner, Durfee, & Shin 1993] Musliner, D. J.; Dur-fee, E. H.; and Shin, K. G. 1993. CIRCA: A co-operative intelligent real-time control architecture.IEEE Transactions on Systems, Man, and Cybernet-ics 23(6):1561{1574.[Musliner, Durfee, & Shin 1995] Musliner, D. J.; Dur-fee, E. H.; and Shin, K. G. 1995. World modeling forthe dynamic construction of real-time control plans.Arti�cial Intelligence 74(1):83{127.[Rosenschein & Kaelbling 1986] Rosenschein, S. J.,and Kaelbling, L. P. 1986. The synthesis of digi-tal machines with provable epistemic properties. InProceedings of the Conference on Theoretical Aspectsof Reasoning About Knowledge, 83{98.[Shin & Ramanathan 1994] Shin, K. G., and Ra-manathan, P. 1994. Real-time computing: A newdiscipline of computer science and engineering. Pro-ceedings of the IEEE 82(1):6{24.[Stankovic 1988] Stankovic, J. A. 1988. Misconceptionsabout real-time computing: A serious problem fornext-generation systems. IEEE Computer 21(10):10{19.[Vestal 1997] Vestal, S. 1997. An architectural ap-proach for integrating real-time systems. In Work-shop on Languages, Compilers and Tools for Real-Time Systems.[Vestal 1998] Vestal, S. 1998. MetaH user's man-ual. Available from http://www.htc.honeywell.com/-metah/uguide.pdf.


