In the 2000 AAAT S5S ‘Real-Time Autonomous Systems’

RT-MLab: Really Real-Time Robotics

Karen Zita Haigh, David J. Musliner, Sunondo Ghosh
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418
{khaigh musliner,sghosh }@htc.honeywell.com

Abstract

A common misconception about real-time computing
is that it is equivalent to “fast computing.” Many
robotics examples in recent history have shown that
without rigorous understanding of the resource require-
ments and interactions of the software, these systems
are doomed to failure.

In this paper, we discuss our application of rigorous
real-time analysis and execution methods to Georgia
Tech’s Missionl.ab system for robot tasking and con-
trol [Endo et al. 1999; MacKenzie, Arkin, & Cameron
1997]. In this paper, we describe RT-MLab, which
combines MissionLab with Honeywell’s MetaH real-
time analysis and execution tool to provide real-time
schedulability analysis and reliable real-time execution
support for robot behaviour configurations.

Introduction

For decades, robotics researchers have pushed the
boundaries of computer science and computing hard-
ware, striving to build intelligent control systems that
are smart enough and fast enough to control robots
moving through complex, dynamic, real-world environ-
ments. One of the key constraints on these systems is
the need to operate in real-world time, rather than sim-
ulated or virtual time: the robot’s control system must
detect and react appropriately to a continuously chang-
ing world that is not entirely controllable, and cannot
be slowed down. The progression of Moore’s Law and
the advent of megaflop processors has not changed the
fundamental situation: we still need robot control al-
gorithms and architectures that behave in timely ways.
That is, we need real-time robotics.

A common misconception about real-time computing
is that it is equivalent to “fast computing” [Stankovic
1988]. As a result, most robotics researchers to date
have treated the timing behaviour of their systems in an
ad hoc fashion, re-engineering algorithms when testing

indicates that they are running too slowly or causing er-
rors. Without a rigorous understanding of the resource
requirements and interactions of their software, these
testing-based efforts are doomed to the same sort of
failures we’ve seen in many other well-tested embedded
systems (e.g., Space Shuttle launches delayed by syn-
chronization errors, Mars Rover and Deep Space One
failures caused by improperly-controlled multitasking).

In real-time computing, the correctness of the system
depends not only on the logical result of the computa-
tion, but also on the time at which the results are pro-
duced [Stankovic 1988]. The real-time systems commu-
nity has studied these issues and developed techniques
to address them using formal, rigorous techniques [Shin
& Ramanathan 1994; Krishna & Shin 1997]. In this
paper, we discuss our application of rigorous real-time
analysis and execution methods to Georgia Tech’s Mis-
sionLab system for robot tasking and control [Endo et
al. 1999; MacKenzie, Arkin, & Cameron 1997].

MissionLab allows a user to easily construct a set
of robot behaviours, download the behaviours to the
robot, and execute the behaviours while observing feed-
back data. Prior to our efforts, the user could con-
struct any set of behaviours, combining as many com-
plex computations as he wished, and each behaviour
would simply run “as fast as it could.” Clearly, it is pos-
sible to assemble behaviours that overwhelm the robot’s
computing system and will not meet the real-time con-
straints imposed by the environment. For example, if
the robot’s computer cannot run the obstacle detection
behaviour quickly enough, the robot will run into ob-
jects.

Our work with MissionLab has three primary objec-
tives:

1. To develop automatic real-time analysis methods
that assess whether a user-defined configuration of
robot behaviours will be executed in a timely fashion
on a particular robot.

2. To provide a real-time execution environment that

supports predictable, timely execution of behaviour
configurations.

3. To demonstrate the general applicability of hard real-
time performance guarantees for robots.

The system we developed, RT-MLab, combines Mis-
sionLab with Honeywell’s MetaH real-time analysis
and execution tool [Binns & Vestal 1993; Vestal 1997;
1998]. The MetaH toolset combines modelling, perfor-
mance analysis, reliability, and partition security with
automatic tailoring of efficient middleware services for
embedded computer systems.

RT-MLab looks almost exactly like the original Mis-
sionLab system from the user’s perspective. Via the
original GUI, the user constructs a configuration of be-
haviours. RT-MLab analyzes the behaviours to deter-
mine whether they meet the timing constraints imposed
by the hardware and execution environment. If the be-
haviours are feasible, they are compiled with MetaH
glue code and downloaded to the MetaH execution en-
vironment, providing reliable real-time execution that is
guaranteed to meet the specified timing requirements.
The result: a robotic tasking and control system that
guarantees it will correctly erecute any behaviour con-
figuration it allows the user to generate.

Architecture
MissionLab

MissionLab 1s an end-to-end robot behaviour specifica-
tion and execution toolset. Figure 1 shows the archi-
tecture of the overall MissionLab system.

The human operator specifies a mission by drawing
a finite-state diagram using the Configuration Editor.
Figure 2 shows a behaviour configuration for a can-
collecting robot. The end user selects behaviours from
a library created by a system designer.

When the behaviour configuration is ready, the user
binds it to a robot type. At this point, particular
behaviours are bound to particular hardware capabil-
ities. For example, a “detect human” behaviour might
be bound to an infra-red sensor on one robot, and
to a camera-based face-detection algorithm on another
robot.

Mission
Operator

Configuration MLab User
Editor ¥ Interface Console

Configuration Configuration GNUC
Description Network compiler Robot Simulator
Language (CDL) Language (CNL)

Figure 1: MissionLab Architecture.

> cfgedit v1.0c [c) Georgia Institute of Technology =] B3

File Edit Layout Configure Libraries Binding Help

File: UNTITLED Architecture: RAuRA | Current Page: $AN_466

Wavigation

FirstTine| "
w1 Lovel]| (), e /‘\ E— ()

(Wander Cans

Construction

0.3 curious
0.5 cautious|

FirstTine

FirstTime|

Execution

PutInBasket|

RT exec

Timing 1.0 wove_to_object_gain
m 1.0 avoid_obstacle_gain
fnalyze =P s 0.0 wander_gain
B 3.0 avoid_obstacle_sphere
Compile b | STanCE| 0.5 avoid_obstacle_safety_wargin|

= \’/

Figure 2: The Configuration Editor.

[detect_obstacle] [extract __goa] [get_location]

N

nav_at_goal

avoid obstacle

Figure 3: A simplified network of CNL nodes for a “(goto
x,y)" behaviour configuration.

When the user clicks the “compile” button, Mission-
Lab uses a series of compilers to generate a binary
executable. MissionLab first compiles the Configura-
tion Description Language (CDL) representation of the
robot behaviours into the Configuration Network Lan-
guage (CNL). Each behaviour shown to the user is
bound to several CNL nodes. For example, the user-
level behaviour “(goto x,y)” requires the CNL nodes
for obstacle detection, obstacle avoidance, localization,
goal identification, and other functions. Figure 3 shows
a very simplified CNL network for the “(goto x,y)” be-
haviour. The arrows between CNL nodes refer to the
flow of information in the network. After compiling the
user’s behaviour configuration into CNL, MissionLab
then compiles the CNL code into C, and then the C
code into a target binary.

The compilation procedure generates two “logical
units” of information, as shown in Figure 4. The first
is the behaviour, which forms the basis of the end user’s
configuration. The second, generated by the CDL-to-
CNL compiler, is a CNL node. Each behaviour maps to
several nodes, and each node may be required by several
behaviours. Each node runs as a light-weight thread in

&% Behaviour
Control Flow
& Behaviour-to-node map
] CNL node

—> DataFlow

Q Robot Executable

Figure 4: Behaviours and Nodes in MissionLab. Each node
runs as a light-weight thread in the executable.

the executable. At execution time, each thread (node)
in the CNL network runs continuously, generating a new
output value for each set of new input values.

The final step is to run the executable. The user clicks
the “run” button and chooses to execute on either the
MLab simulator or a particular real robot. The MLab
GUI, shown in Figure 5, allows the user to monitor the
execution.

RT-MLab

RT-MLab is a rebuilt version of MissionLab with new
capabilities including:

e Automatically calibrating CNL node runtimes.

e Analyzing configurations of behaviours for real-time
execution feasibility.

e Predictably executing behaviour configurations and
enforcing guaranteed real-time timing constraints.

From the user’s perspective, the interaction with the
robots 1s the same, with one added functionality: be-
fore compiling the behaviour configuration into a bi-
nary, the user clicks “analyze” in the configuration edi-
tor, and MetaH will analyze the configuration for feasi-
bility. That is, it checks to see if all of the process tim-
ing constraints and communication interconnects form
a set of processes that can be successfully executed on
the robot, without violating any timing constraints.

3¢ MissionLab v2.0_{c) Georgia Institute of Technology

File Configue Comsand 0 Help
Scale: 0 100 (Qfission area is 250.0n by 250.0u) Pause| Zoon: 1005 Y| A
— n
o0 .
o
[N] . Pi2a
Y
oo . 00000
P PP Pila pita pilb
o0
.o °
o0 o
o o b
° »b
o 0000
Péa
000 000
[B N J o000
[] []
[] []
- Urban - o
) -

Figure 5: The MLab User Interface.

Figure 6 shows a high-level view of the RT-MLab
architecture. The following section describes the RT-
MLab functions in more detail.

Real-Time Analysis

RT-MLab analyzes the code that will be running on
the robot using rate-monotonic scheduling theory to
determine whether all processes can meet their timing
constraints. We have replaced the MissionLab CNL-
to-C compiler with a new compiler that interacts with
MetaH to analyze mission feasibility, and then generates
code that provides hard real-time performance guaran-
tees when executed on a real-time operating system.

While the user’s interaction with RT-MLab is essen-
tially the same as the user’s interaction with Mission-
Lab, the robot executable has changed significantly. In
MissionLab, each CNL node executes as a light-weight
thread. In RT-MLab, sets of CNL nodes that run at the
same frequency are grouped into a single MetaH process,
as shown in Figure 7. At execution time, MetaH man-
ages the execution of each process, and ensures that the
dataflow requirements are met. Although MetaH sup-
ports multi-processor computation at both the analysis
and execution stages of interaction, in this paper we
assume that the robot has one processor.

There are two main advantages for setting different
periods for different nodes. The first 1s fo accommo-
date different-rate sensors. Assume, for example, that
one sensor takes five seconds to update and process in-
formation, while another takes 100ms (say, vision and
sonar, respectively). MetaH will run the faster sensor at
every opportunity, while using old data from the slower
Sensor.

The second advantage is that more frequent processes
are treated with higher priority at run-time. As a re-
sult, critical processes can interrupt less important pro-
cesses, ensuring that performance guarantees are met.
For example, even if a vision process overruns its allo-
cated processor time, obstacle avoidance routines can
still ensure that the robot will not crash. In particular,
background processes will not affect the robot’s exe-
cution performance. This feature allows some flexible
scheduling of the processor, while ensuring that critical
routines will be executed as frequently as necessary.

%“ Behaviour
Control Flow
& Behaviour-to-node map
[J CNL node
— DataFlow

@ MetaH process
Q Robot executable

Figure 7: Behaviours, Nodes and Processes in RT-MLab.
MetaH manages the inter-process interactions.

executables

Figure 6: RT-MLab Architecture.

To perform real-time analysis, MetaH needs to know
three things about the processes that will run in the
final executable:

1. the dataflow between processes,
2. the execution time of each process, and
3. the period of each process.

The configuration network specifies a dataflow diagram
between CNL nodes. From this network, the new CNL-
to-C compiler builds the MetaH processes, and derives
their execution times and periods.

Dataflow

As each behaviour configuration is compiled into CNL,
the compiler also extracts the data flow between nodes.
For example, in the configuration network shown in Fig-
ure 3, the node detect _obstacle() reads the sonar val-
ues and calculates an array of object locations that are
used by avoid_obstacle() to calculate a desired travel
vector.

This dataflow information serves two purposes. First,
it allows us to derive appropriate periods for nodes that
depend on inputs from different sources, as described
below. From this derivation, the compiler can create
MetaH processes that consist of all nodes running at
the same period.

Second, by reasoning about the relative frequencies
of processes that produce and consume data along par-
ticular dataflows, MetaH tools can automatically syn-
thesize the necessary communication buffers to support
over- and under-sampling. For example, if one process
produces new data at a much slower rate than the con-
suming process runs, the data must be buffered to sup-
port oversampling.

Execution Times

Execution times need to be calibrated whenever hard-
ware is changed on the robot, or when a new CNL node
is added to the robot’s capabilities. If a function re-
lies on particular features of the hardware, its execu-
tion time may change. For example, if we change the
frame grabber for a camera to a new frame grabber with

(behaviour
X scheduling
performance-aware behaviour code) communication
behaviours performance data target architecture interfaces)
specifications
MissionLab
_ = MetaH
analysis presentation schedul ability
analysis

higher resolution, the execution time of a vision routine
may increase.

The execution time of a MetaH process is the sum
of the execution time of each of its constituent nodes.
The execution time of a node will remain constant for a
given hardware configuration, and hence the execution
time of a process can be directly calculated for each
behaviour configuration.

Periods

To assess the feasibility of a behaviour configuration,
RT-MLab requires that each process in the final exe-
cutable have an assigned period. The period of a process
is the length of time between consecutive dispatches of
the process. The robot designer sets the period of a
CNL node, and the CNL-to-C compiler places all nodes
with the same period into a single MetaH process.

Many of the nodes in a robot program have peri-
ods that are hardware-dependent. For example, if the
sonars are being fired ten times per second, then a node
that acquires that sonar data should be run every 100
milliseconds. Since data flows along the arrows from
node to node, the periods of upstream nodes can be
used to derive suitable periods for downstream nodes
that are not tied directly to hardware inputs. We want
sensor data to flow as quickly as possible through the
network, so we make downstream nodes run at least
as frequently as their most frequent predecessor. The
system designer needs to set the period for every node
with no inputs (eritical node).

For example, in the configuration network shown in
Figure 3, the detect_obstacle() node should be run as
frequently as the sonars can fire. The get_location()
node, which finds the current robot location, is less crit-
ical than detecting obstacles, but its frequency deter-
mines how precisely the robot will be able to achieve a
given goal location. The extract_goal() node, which
gets the goal location from the GUI, can be run less
frequently. Assume we assign the following periods:

extract_goal() 500 ms
get_location() 250 ms
detect_obstacle() 100 ms

The compiler can propagate these periods to down-
stream nodes, always selecting the more frequent value,
generating:

nav_at_goal() 250 ms
stop_robot () 250 ms
avoid obstacle() 100 ms
navigate() 100 ms
move_robot () 100 ms

The compiler creates the following three, independent

MetaH processes:
500 ms:

extract_goal() 100 ms:

detect_obstacle()
avoid_obstacle()
navigate()
move_robot ()

250 ms:
get_location()
nav_at_goal()

stop_robot ()

MetaH will guarantee that each process uses the
most recent information available from (possibly
slower) processes that it depends on. For example,
navigate() may be relying on 500ms-old data from
extract_goal(). In a traditional, non-real-time archi-
tecture, communication delays or other problems may
cause data to backlog, and a process might make deci-
sions based on out-of-date information. MetaH elimi-
nates the need to hand-manage data flow and latency
concerns.

Configuration Analysis

The CNL-to-C compiler generates a set of MetaH pro-
cess, along with their dataflow, execution times, and pe-
riods. RT-MLab uses this information to assess the fea-
sibility of the user-level behaviour configuration. This
“schedulability analysis” determines whether all pro-
cesses can be executed at their specified periods. The
analysis includes communication times between nodes,
and overhead generated by the process dispatcher.

The analysis returns the total (or actual) utilization
of the processor, and the breakdown (or maximum pos-
sible) utilization. For example:

83.5Y%
96.7Y%
Processor schedule is feasible

Total utilization =
Breakdown utilization =

The breakdown utilization is an indication of how dis-
harmonic the process periods are. Harmonic periods oc-
cur when each period is an integer multiple of all lower
periods; a set of harmonic processes is easy to schedule
on the processor without leaving significant down-time.
Dis-harmonic periods make 1t difficult to schedule high
levels of utilization. For example, consider the two pro-
cesses A and B depicted in Figure 8. Process A has an
execution time of 2 ms; and a period of bms, yielding
a processor utilization of 40%. Process B has an ex-

A }—\ ‘—\

B | —

0 1 2 3 4 5 6 7 8 9 10

40% utilization

46.4% utilization

Figure 8: A set of unschedulable processes that do not over-
load the processor.

ecution time of 3.25ms, and a period of 7ms, yielding
a processor utilization of 46.4% utilization. However,
despite the fact that they would only utilize 86.4% of
the processor’s total available time, there 1s no way for
them to be scheduled to meet their timing constraints.
In the current version of RT-MLab, the system designer
is responsible for selecting harmonic periods.

Example

We envision the end user exercising RT-MLab’s real-
time analysis tools in an interactive fashion. He would
build an initial behaviour configuration, and ask RT-
MLab to analyze it. If the configuration is not feasible,
he would modify the configuration, iterating until he
achieves a final, feasible configuration.

As asimple example, consider an exploring robot that
hides at “home” whenever it senses an enemy robot.

In our first configuration, we use the “Near(Object)”
behaviour to trigger the hide, and the “MoveTo(Named-
Location)” behaviour to get to the home location, as
shown in Figure 9. The CNL network for this configu-
ration contains 52 nodes.

MetaH uses our timing and period values to deter-

N

Hander
0.8 curious

]
0.5 cautious

Hear
Enemy_Robots
10.0 Distance

Near
Home_Base
0.1 Distance

HoveTo
Home_Base
1.0 wove_to_object_gain
1.0 avoid_obstacle_gain
.0 wander_gain
.0 avoid_obstacle_sphere
.5 avoid_obstacle_safety_margin

[—R-"-N—]

Figure 9: Exploring robot, using “Near” and “MoveTo". This
behaviour configuration is not feasible.

mine the schedulability of this configuration, and re-
ports that it is infeasible. One solution to this problem
1s to replace some of the expensive behaviours with sim-
ilar cheaper behaviours.

The “Near(Object)” behaviour requires the robot
to (i) calculate what objects are detected and where
they are, and then (ii) calculate whether an enemy
robot is one of the sensed objects, and finally (iii)
decide whether the robot is “near.” This procedure
1s extremely expensive, particularly when there are
many objects in the environment. The behaviour “De-
tect(Object),” on the other hand, only requires the
robot to calculate whether the enemy robot is detected,
eliminating steps (ii) and (iii), and potentially signifi-
cantly shortening step (i).

The “MoveTo(NamedLocation)” behaviour requires
the robot to sense the home base before navigating
there. If the home base doesn’t move, then we can elim-
inate all the sensing steps by replacing this expensive
behaviour with a simpler “GoTo(x,y)” behaviour.

By replacing both behaviours in the configuration, we
get the configuration shown in Figure 10, which yields
a CNL network of 39 nodes. This simpler configuration
is feasible, while yielding the same general behaviour

from the robot.

Hander
1.0 curious
0.17 cautious

AtGoal
0.5 Goal_Tolerance
Goal_Location <11.5,13.5>

Detect
Enewny_Robots

GoTo
Goal_Location <11.5,13.5>
1.0 wove_to_location_gain
1.0 avoid_obstacle_gain
3.0 avoid_obstacle_sphere
0.5 avoid_obstacle_safety_margin

Figure 10: Exploring robot, using “Detect” and “GoTo". This
behaviour configuration is feasible.

Future Work

Our future work will focus on increasing the usability
of the RT-MLab’s real-time analysis features. Our goal
is to advise the end user through the process of cre-
ating a feasible configuration. We will add two main
components:

1. a guarantee that user-settable parameters do not ex-
ceed robot-hardware limits (e.g. the robot will read
sonar information frequently enough for its speed).

2. a search for alternate feasible configurations.

Hardware Constraints

In order to guarantee that user-settable parameters do
not exceed hardware or environmental limits, we intend
to create functions relating robot parameters to pro-
cess periods. We will then check that these constraints
are met. For example, we would like to guarantee that
the robot processes its sonar data often enough that it
doesn’t bump into objects. (Note that this constraint is
an extension of the current guarantee that the robot will
read its sensors and react with a specified frequency.)

Let = robot speed

sonar period

robot acceleration

maximuim sonar visibility distance
= total execution time of all processes

in configuration

o Qe
I

Using these variables, we can define the following con-
straint:

d >= v X reaction time — stopping distance
2
v
d >= vX2p— —
2a

The reaction time of the robot is identified as shown
in Figure 11. Note that the process detect_obstacle()
will be executed once per period; not that 1t will start
erecution at exactly the start of the period. The maxi-
mum reaction time is hence 2p.

This function computes the process periods directly
from hardware parameters (e.g., sonar range) and user-
specified behaviour parameters (e.g., robot speed).

These constraint functions will augment RT-MLab
with two new abilities:

1. RT-MLab will guarantee constraints at a much more
abstract level than the processor. RT-MLab cur-
rently guarantees that the processor will handle the
load placed on it. These functions will allow RT-
MLab to guarantee that the executable will meet cer-
tain behavioural performance requirements.

2. RT-MLab will be able to automatically deduce many
of the process periods. Currently, the system designer
sets a fixed period for each critical node. By using
functions relating different hardware capabilities to
each other; RT-MLab will be able to automatically
calculate possible periods for sensor-based nodes.

Search for Feasible Configurations

There are two ways to make an infeasible configuration
feasible. The first is to relax the user’s constraints. The

- Obstacle moves into range

v
l L I } \ | I
a a aaq ; a a a aa
2 0% 2 88 : 3 8 2 83
o X > zZz Z (oI > zZz=Z
M 3 < >0 m S 20
m 0 =< m O =<
o) o o m [9) o @ m
4 I~ »ly - o ==
| o 4 | o 4
> Z,"“%] @ m 3
g 59 g S
o e o e
[m [m
m m
e e
p p

reaction time

Figure 11: Reaction time for obstacle detection. The process
“X" refers to any other nodes in the configuration network,
and may be scattered throughout the execution.

second is to automatically swap behaviours for similar,
cheaper behaviours. We are still considering possible
designs for this second capability, and hence do not con-
sider it here.

The constraints described above contain two types of
variables: (1) hardware values, such as the maximum
firing rate of the sonar card, or the execution time of
a process, and (2) user variables, such as robot speed.
Hardware values are fixed, but user variables can be
relaxed. We can solve the constraint equations using
the fixed values, yielding ranges on the variables.

We intend to use Al search techniques to search
through the space defined by these values to yield fea-
sible solutions, and present those with the least impact
on performance to the user.

Related Work

While there are many reactive, behaviour-based archi-
tectures for robot control (e.g., RAPs, subsumption,
3T), very few have paid close attention to issues of
hard-real-time responsiveness. Notable exceptions in-
clude Rex/Gapps, PRS, DR/MARUTT and CIRCA.

Rex i1s a language used to describe digital machines
that can be viewed as reactive systems [Rosenschein &
Kaelbling 1986]. Rex programs are compiled into au-
tomata descriptions that perform a constant-time map-
ping between inputs (sensors) and outputs (actuators).
Gapps [Kaelbling & Rosenschein 1990] is a system for
compiling declarative descriptions of agent behaviours
into Rex machines. Thus Rex/Gapps resembles the
original MissionLab system in providing a powerful and
predictable reactive programming environment and ex-
ecutive. The improvements we made by adding real-
time analysis and execution support would apply even
more smoothly to Rex/Gapps, because of its formal
fixed-time basis.

The Procedural Reasoning System (PRS) [Georgeff
& Ingrand 1989; Ingrand & Georgeff 1990] has features
making it suited to real-time applications. Ingrand and
Georgefl have shown that, given certain assumptions
about event frequencies and the form of the system’s
procedural knowledge, PRS can be guaranteed to no-
tice (or begin reacting to) every world event within
a bounded time. This guarantee is based on the fact
that PRS processing is highly interruptible. However,
“noticing” an event is distinguished from responding to
the event. It is also possible to limit PRS’ inferencing
capabilities and make guarantees about overall response
time [Ingrand & Georgeff 1990]. However, PRS has
not been tied to real-time operating systems or analysis
mechanisms, so these potential performance guarantees
remain unrealized.

Hendler and Agrawala [1990] did preliminary work
integrating an enhanced Dynamic Reaction (DR) sys-
tem and the MARUTI operating system to implement
guaranteed real-time reactive reasoning that closely re-
sembles the output of RT-MLab, without the automatic
analysis and programming environments. The DR, sys-
tem sets up asynchronous monitor processes to check
conditions on specific world model features: signals
from these monitors drive changes in reactive activities.
The MARUTT operating system provides explicit sup-
port for scheduling hard real-time tasks on distributed
systems, guaranteeing the execution of jobs that are ac-
cepted. By using MARUTI to schedule and execute the
reactive elements of DR, the combined system can make
performance guarantees. DR/MARUTI does not have
mechanisms to automatically reason about or analyze
its scheduling requirements.

The CIRCA system [Musliner, Durfee, & Shin 1993;
1995] combines a hard-real-time reactive executive with
soft-real-time Al planning methods that automatically
generate reactive plans given a set of high-level goals.
CIRCA includes its own scheduling module that allows
it to reason explicitly about the real-time requirements
of its reactive behaviours, and automatically adjust
those behaviours (plans) when its execution resources
are not sufficient. In many ways, CIRCA resembles RT-
MLab with the user and GUI replaced by Al planning
methods. We are anxious to explore the potential for
combining CIRCA’s planning capabilities with the al-
ternative execution semantics offered by RT-Mlab.

Summary
Our RT-MLab extensions to MissionLab provide real-
time schedulability analysis and reliable real-time exe-
cution support for robot behaviour configurations. Us-
ing formal real-time analysis and execution tools en-
sures that the robot programs created in RT-MLab will

be executed as designed, without unpredictable tim-
ing behaviour or communications delays. As one of
the first robot control architectures providing hard real-
time guarantees, we believe that RT-MLab is a major
step forward in the deployment of reliable robotic sys-
tems.

Acknowledgments

The authors would like to thank Ron Arkin, Tom
Collins, Tucker Balch, and Steve Vestal for their help
and insightful comments.

References
[Binns & Vestal 1993] Binns, P., and Vestal, S. 1993.

Scheduling and communication in MetaH. In Real-
Tume Systems Symposium.

[Endo et al. 1999] Endo, Y.; MacKenzie, D. C.; Ali,
K. S.; Balch, T.; Cameron, J. M.; and Cheng, Z.
1999. MissionLab: User manual for MissionLab
version 3.0. Technical report, College of Comput-
ing, Georgia Institute of Technology, Atlanta, GA.
Available via http://www.cc.gatech.edu/ai/robot-
lab /research /MissionLab/mlab_manual.ps.gz.

[Georgeff & Ingrand 1989] Georgeff, M. P., and In-
grand, F. F. 1989. Decision-making in an embedded
reasoning system. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
972-978.

[Hendler & Agrawala 1990] Hendler, J., and Agrawala,
A. 1990. Mission critical planning: Al on the
MARUTT real-time operating system. In Proceed-
wings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, 77-84.

[Ingrand & Georgeff 1990] Ingrand, F. F., and
Georgeff, M. P. 1990. Managing deliberation and
reasoning in real-time Al systems. In Proceedings of
the Workshop on Innovative Approaches to Planning,
Scheduling and Control, 284-291.

[Kaelbling & Rosenschein 1990] Kaelbling, L. P., and

Rosenschein, S. J. 1990. Action and planning in em-
bedded agents. In Robotics and Autonomous Systems
6, 35—48.

[Krishna & Shin 1997] Krishna, C. M., and Shin, K. G.
1997. Real-Time Systems. McGraw Hill.

[MacKenzie, Arkin, & Cameron 1997)
MacKenzie, D. C.; Arkin, R. C.; and Cameron, J. M.
1997. Multi-agent mission specification and execu-
tion. Autonomous Robots 4(1):29-52.

[Musliner, Durfee, & Shin 1993] Musliner, D. J.; Dur-
fee, E. H.; and Shin, K. G. 1993. CIRCA: A co-
operative intelligent real-time control architecture.

IEEFE Transactions on Systems, Man, and Cybernet-
ics 23(6):1561-1574.

[Musliner, Durfee, & Shin 1995] Musliner, D. J.; Dur-
fee, E. H.; and Shin, K. G. 1995. World modeling for
the dynamic construction of real-time control plans.

Artificial Intelligence 74(1):83-127.

[Rosenschein & Kaelbling 1986] Rosenschein, S. J.,
and Kaelbling, L. P. 1986. The synthesis of digi-
tal machines with provable epistemic properties. In
Proceedings of the Conference on Theoretical Aspects
of Reasoning About Knowledge, 83-98.

[Shin & Ramanathan 1994] Shin, K. G., and Ra-
manathan, P. 1994. Real-time computing: A new
discipline of computer science and engineering. Pro-

ceedings of the IEEE 82(1):6-24.

[Stankovic 1988] Stankovic, J. A. 1988. Misconceptions
about real-time computing: A serious problem for
next-generation systems. IEEFE Computer 21(10):10—
19.

[Vestal 1997] Vestal, S. 1997. An architectural ap-
proach for integrating real-time systems. In Work-
shop on Languages, Compilers and Tools for Real-
Time Systems.

[Vestal 1998] Vestal, S. 1998.
ual. Available from http://www.htc.honeywell.com/-
metah /uguide.pdf.

MetaH user’s man-

