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Abstract—Conventional military planning systems construct plans
with very limited flexibility. In the future, military planswill evolve
into a much more expressive, contingent form. This paper describes
how Honeywell’s distributed Coordinator agents reason about com-
plex domains to construct and execute highly contingent plans. The
agents operate in a very dynamic environment in which complex
hierarchical tasks can arrive unpredictably and the agentshave to
build coordinated joint plans on the fly, while execution proceeds.
Using carefully limited forms of inter-agent communication, the
agents develop agreements on their future coordinated behavior and
rely on those agreements to build highly contingent plans (partial
policies) that specify what actions they should take in a wide variety
of possible futures. As mission execution proceeds and the tasks yield
varying outcomes, the agents must rapidly, continually coordinate
and adapt their plans. The result is a distributed multi-agent system
capable of building and flexibly executing complex, highly-contingent
coordinated mission plans.

1. INTRODUCTION

Conventional military planning systems construct plans with
very limited flexibility; often there is only a baseline oper-
ational plan with a few hand-crafted contingency branches
that essentially amount to deploying reserved assets which
otherwise remain unused. In the future, as automated planning
systems become more sophisticated and military operations
become more automated, military plans will evolve into a
much more expressive, contingent form. Plans will be built to
account, ahead of time, for operational tasks that take varying
time, have varying levels of success, and should be combined
in widely different ways depending on what earlier tasks (and
adversaries) have accomplished. Constructing such contingent
plans in a distributed coalition environment and coordinating
the distributed execution of those plans will become much
harder than current coalition activities. The DARPA COOR-
DINATORs program is exploring the core computational issues
that underlie exactly these problems.

This paper describes how Honeywell’s distributed COOR-
DINATOR agents reason about complex domains to construct
and execute highly contingent plans. The agents operate in
a very dynamic environment in which complex hierarchical
tasks can arrive unpredictably and the agents have to build
coordinated joint plans on the fly, while execution proceeds.

Using carefully limited forms of inter-agent communication,
the agents develop agreements on their future coordinated
behavior and also develop highly contingent plans (partial
policies) that specify what actions they should take in a wide
variety of possible futures. As mission execution proceedsand
the tasks yield varying outcomes, the agents must rapidly,
continually coordinate and adapt their plans.

Our current solution combines restricted forms of inter-
agent coordination agreements with dynamic, probabilistic
projections of possible future worlds in the form of Markov
Decision Problems (MDPs). By carefully guiding and pruning
the projection, or unrolling, of the MDP model of possible
future states, our COORDINATOR agents attempt to focus their
decision-making attention on the partial plans with the highest
probability of being useful. The MDP formulation allows our
COORDINATOR agents to produce highly contingent plans
in the form of partial policies, specifying what actions to
take in all the possible future states explored so far. Novel
technical elements of our COORDINATOR agents include their
ability to exploit problem structure to dramatically reduce the
complexity of future planning, their methods for guiding the
MDP unrolling process, and their ability to continue unrolling
during mission execution.

The result is a distributed multi-agent system capable of
building and flexibly executing complex, highly-contingent
coordinated mission plans.

2. THE COORDINATORSPROBLEM

Our work is being done in the context of the DARPA-
funded COORDINATORs program, which aims to identify,
prototype, and evaluate technical approaches to scheduling and
managing distributed activity plans in dynamic environments.
As a motivating example, consider the following scenario. A
hostage has been taken and might be held in one of two
possible locations. Rescuing the hostage requires that both
possible locations are entered by special forcessimultaneously.
As the activities to move personnel and materiel into place
are pursued, delays may occur or actions intended to achieve
precursor objectives may have unexpected results (e.g., fail-
ure). COORDINATOR agent systems will be associated with
the various human participants. COORDINATOR agents should
monitor the distributed plans and manage them as the situation
evolves, to increase their effectiveness and make them more
likely to succeed.



In general, a set of COORDINATOR agents is meant to work
together to maximize the reward gained by the group as a
whole. In other words, the problem is to compute an effective
joint policy for the agent society, in which the actions taken
by one agent can depend on the state of the group as a
whole, not just the local state of that agent. The agents are
time-pressured: each agent must make timely action decisions
during execution. Furthermore, the problem must be solved in
a distributed fashion.

Although this is a problem of joint action, the problem
solving is necessarily distributed, for reasons both definitional
and practical. The definitional reasons include the fact that
each agent has only a partial, local model of the problem,
and the agents are prohibited (for organizational reasons)from
building a complete joint model of the situation. The practical
reasons include the sheer scope of the problem to be solved.

Each agent’s partial problem model (aka domain model)
includes the actions that the agent can execute, which are
stochastic, rather than deterministic, and some of the actions
its peers can perform. The problem model also providespartial
information about the rewards that the society as a whole will
receive for reaching various states. This model is not static:
the agent can receive information about action outcomes and
problem model updates during execution. Therefore, agents
must be able to manage and reformulate policies reactively.

3. C-TÆMS

COORDINATORs researchers have jointly defined a common
problem domain representation based on the original TÆMS
language [1]. The new language, C-TÆMS [2], provides a se-
mantically sound subset of the original language, representing
multi-agent hierarchical tasks with stochastic outcomes and
complex hard and soft interactions. Unlike other hierarchical
task representations, C-TÆMS emphasizes complex reasoning
about the utility of tasks, rather than emphasizing interactions
between agents and the state of their environment.

C-TÆMS permits a modeler to describe hierarchically-
structured tasks executed by multiple agents. A C-TÆMS task
network hasnodesrepresentingtasks(complex actions) and
methods(primitives).1 Nodes are temporally extended: they
have durations (which may vary probabilistically), and may
be constrained by release times (earliest possible starts)and
deadlines. Methods that violate their temporal constraints yield
zero quality (and are said to havefailed). At any time, each
C-TÆMS agent can be executing at most one of its methods,
and no method can be executed more than once.

A C-TÆMS model is a discrete stochastic model: meth-
ods have multiple possible outcomes. Outcomes dictate the
duration of the method, itsquality, and its cost. Quality is
constrained to be non-negative, and duration must be an integer
greater than zero. Cost is not being used in the current work.
Quality and cost are unitless, and there is no fixed scheme for
combining them into utilities. For the initial COORDINATORs

1The terminology is somewhat unfortunate, since conventional HTN plan-
ners refer to their composite actions asmethodsand their primitives as
operators.

experiments, we treat quality as non-normalized utility (we
will use the terms “utility” and “quality” pretty much inter-
changeably).

To determine the overall utility of a C-TÆMS execution
trace, we must have a mechanism for computing the quality
of tasks (composite actions) from the quality of their children.
Every task in the hierarchy has associated with it a “quality
accumulation function” (QAF) that describes how the quality
of its children are aggregated up the hierarchy. The QAFs
combine both logical constraints on subtask execution and how
quality accumulates. For example, a :MIN QAF specifies that
all subtasks must be executed and must achieve some non-zero
quality in order for the task itself to achieve quality, and the
quality it achieves is equal to the minimum achieved by its
subtasks. The :SYNCSUM QAF is an even more interesting
case. Designed to capture one form of synchronization across
agents, a :SYNCSUM task achieves quality that is the sum
of all of its subtasks that start at the same time the earliest
subtask starts. Any subtasks that start after the first one(s)
cannot contribute quality to the parent task.

The quality of a given execution of a C-TÆMS task network
is the quality the execution assigns to the root node of the task
network. C-TÆMS task networks are constrained to be trees
along the subtask relationships, so there is a unique root whose
quality is to be evaluated. C-TÆMS task networks are required
to have a deadline on their root nodes, so the notion of the
end of a trace is well-defined. One may be able to determine
bounds on the final quality of a task network before the end
of the trace, but it is not in general possible to determine the
quality prior to the end, and it may not even be possible to
compute useful bounds.

Traditional planning languages model interactions between
agents and the state of their environment through preconditions
and postconditions. In contrast, C-TÆMS does not model
environmental state change at all: the only thing that changes
state is the task network. Without a notion of environment
state, in C-TÆMS task interactions are modeled by “non-local
effect” (NLE) links indicating inter-node relationships such as
enablement, disablement, facilitation, and hindrance.

Figure 1 illustrates a simple version of the two-agent
hostage-rescue problem described earlier. The whole diagram
shows a global “objective” view of the problem, capturing
primitive methods that can be executed by different agents (A
and B). The COORDINATORs agents arenot given this view.
Instead, each is given a (typically) incomplete “subjective”
view corresponding to what that individual agent would be
aware of in the overall problem. The subjective view specifies
a subset of the overall C-TÆMS problem, corresponding to the
parts of the problem that the local agent can directly contribute
to (e.g., a method the agent can execute or can enable for
another agent) or that the local agent is directly affected by
(e.g., a task that another agent can execute to enable one of the
local agent’s tasks). In Figure 1, the unshaded boxes indicate
the subjective view of agent-A, who can perform the primitive
methods Move-into-Position-A and Engage-A. The “enable”
link indicates a non-local effect dictating that the Move-into-
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Figure 1: A simple C-TÆMS task network for two agents, illustrating some of the representation features. Some details
have been omitted for brevity.

Position-A method must be completed successfully before the
agent can begin the Engage-A method. The diagram also illus-
trates that methods may have stochastic expected outcomes;
for example, agent-B’s Move-into-Position-B method has a
40% chance of taking 25 time units and a 60% chance of
taking 35 time units. The :SYNCSUM QAF on the Engage
task encourages the agents to perform their subtasks starting
at the same time (to retain the element of surprise).

4. SOLUTION APPROACH: MARKOV DECISION PROCESSES

Given a C-TÆMS task network with stochastic method
outcomes, we can frame the objective COORDINATORs prob-
lem as a multi-agent Markov Decision Process (MDP) [3].
Briefly, an MDP is akin to a finite state machine, except that
transitions are probabilistic, rather than deterministicor non-
deterministic. Agents may also receive reward (which may be
either positive or negative) for entering some states. Typically,
this reward is additive over any trajectory through the state
space (some adjustments are needed in the case of MDPs of
infinite duration). The solution to an MDP is apolicy — an
assignment of action choice to every state in the MDP — that
maximizesexpected utility. Expressing the COORDINATORs
problem as an MDP provides a sound theoretical basis for
decision-making and action under uncertainty. Furthermore,
there are relatively simple, efficient algorithms for finding
optimal policies. However, the state space size of the MDPs
can be enormous.

A single COORDINATOR agent’s C-TÆMS task model
specifies afinite-horizonMDP. The problems are finite-horizon
because C-TÆMS problems have finite duration, with no
looping or method retries. However, the MDP tends to be
quite large for even modest-sized C-TÆMS problems because
of the branching factor associated with uncertain outcomes,
and because of the temporal component of the problem.
For example, even a single applicable method with three
possible durations and three possible quality levels givesus a
branching factor of nine. In addition, time is a critical aspect
of TÆMS problems: methods consume time and NLEs can
have associated delays (so WAIT is often a useful action

alternative). Furthermore, an agent can always abort a method
that it is executing, and choose to start a different method.So
the branching factor is never less than two at every time tick,
in a full consideration of the (single-agent) problem.

Multi-agent C-TÆMS MDPs are even worse. If one were
to formulate a centralized COORDINATORs problem directly
as an MDP, the action space would have to be a tuple of
assignments of actions to each agent. Each agent’s policy
could be dependent on all the possible actions that the other
agents could choose, and all the outcomes they could receive.
Naturally this causes an explosion in the state space of the
problem. Beyond complexity, there are other reasons we
cannot construct the optimal multi-agent MDP. COORDINA-
TORs problems are time-constrained and truly distributed: each
COORDINATOR agent gets only a limited subjective view and
a limited time to build and execute its plans, so forming
a perfectly optimal, centralized joint policy is not feasible.
Furthermore, information security policies may prevent the
agents from sharing their local views completely.

Therefore, we have a developed a distributed COORDINA-
TOR agent system that tries to retain the principled advantages
of an MDP-based approach while supporting truly distributed
operations and information hiding, in a time-adaptive manner.
Each agent builds apartial MDP for its local subjective prob-
lem, to support its own decision-making about what actions
(methods) it should perform. The partial MDP is incrementally
extended as more deliberation time is available to the agent,
so that it becomes complete and locally-optimal if sufficient
time is available.

Because each agent’s subjective view may not accurately
convey how local method quality contributes to the overall
team mission quality, simply solving local MDPs for optimal
policies is not sufficient. We must have the agents communi-
cate to share information about their plans and expectations, so
that agents whose problems interact can coordinate effectively.
To that end, our agents also have a coordination/negotiation ca-
pability that allows them to efficiently reach joint agreements
about how they will coordinate over interactions portions of
the full C-TÆMS problem.



5. PARTIAL MDPS: “I NFORMED UNROLLING”

We refer to the process of converting a C-TÆMS problem
into an MDP problem as “unrolling,” because it involves
projecting forward from an initial state (where no methods
have been executed) to imagine future possible states of the
C-TÆMS network in which some methods have been executed
at particular times and have received particular outcomes.
The core unrolling algorithm is thus a simple state-space
enumeration process where an MDP state is expanded by
creating the successor stats that result from each of the possible
action choices and their outcomes. These successor states are
added to anopenlistof un-expanded states, and the process
ideally continues until the openlist is empty and the full MDP
state space has been enumerated.

Since full enumeration of even single-agent C-TÆMS
MDPs is often impractical, we have developed a technique
for heuristically-guiding the enumeration of a subspace ofthe
full MDP. Our informed unroller(IU) algorithm prioritizes the
openlist of states waiting to be unrolled based on an estimate
of the likelihood that the state would be encountered when
executing the optimal policy from the initial state. The intent is
to guide the unrolling algorithm to explore the most-probable
states first.

One cannot determine the probability of reaching a state
without considering the policy followed by the agent. There-
fore, the IU intersperses policy-formulation (using the Bellman
backup algorithm) with unrolling. This means that we must be
able to find an (approximately) optimal policy for partial MDP
state spaces, which means we must have a heuristic to use to
assign a quality estimate to leaf nodes in our search that do
not represent complete execution traces. We have developeda
suite of alternative heuristics for estimating intermediate state
quality, since the problem of finding a good heuristic is quite
difficult.

Early results from our evaluation of the IU algorithm against
a complete solution of (small) MDPs are promising. For exam-
ple, in Figure 2 we show a comparison of the performance of
the informed unroller against the complete unrolling process.
In these small test problems, the informed unroller is able to
find a high-quality policy quickly and to return increasingly
effective policies given more time. This allows the IU-agent
to flexibly trade off the quality and timeliness of its policies.

The IU approach is related to the “approximate dynamic
programming” algorithms discussed in the control theory and
operations research literature [4]. These approaches derive
approximate solutions to MDP-type problems by estimating,
in various ways, the “cost to go” in leaf nodes of a limited-
horizon portion of the full state space. While our exploration of
the literature is not yet complete, initially we believe that a key
difference in our IU approach is the notion of time-dependent
horizon control and unrolling-guidance (vs. just estimation of
leaf-node reward for policy derivation).

The IU method is a special case of the find-and-revise
algorithm schema [5] (which is a generalization of algorithms
such asLAO∗ [6]). LDFS-family algorithms use knowledge
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Figure 2: The Informed Unroller can find near-optimal
policies much faster than building the complete
MDP.

of the initial state(s) and heuristics to generate a state subspace
from which a policy can be abstracted. A find-and-revise
algorithm finds a state in the network for which the current
value estimate is inaccurate, and revises the value for that
state (e.g., by generating successors, and propagating thevalue
functions backwards in standard MDP fashion).

Our technique differs from the general case, and its in-
stances, in substantial ways.LAO∗ generates a state subspace
from which the optimal policy can be provably derived. The
IU, on the other hand, executes online, and might lack enough
time to enumerate such a state subspace even if it knew exactly
which states to include. The IU is an anytime algorithm,
unlike LAO

∗, which runs offline. For this reason, the IU
makes no claims about policy optimality; indeed, it is not even
guaranteed to generate a closed policy.

The general find-and-revise algorithm family can provide
guarantees weaker than those ofLAO∗, but those guarantees
rely on having an admissible heuristic value function for states
that have not been fully explored. However, even if we had
an admissible heuristic, it is not at all clear that the IU
should use it. An admissible heuristic will tend to push the
policy expansion to explore states where it ispossible that the
optimum will be found, in order that we not miss the optimum.
However, the IU is operating in a time-pressured domain. So
we should not be encouraging the system to move towards
promising unexplored areas — that will tend to leave the agent
with a policy that is broad but shallow, and virtually guarantee
that it will “fall off policy” during execution. Instead of admis-
sibility, we must find a heuristic function that will cause the
agent to tend to build policies that trade off considerations of
optimal choice against completeness/robustness of the policy.
It is possible that this heuristic should be time-dependent—
as the agent runs out of time for policy development, the



IU’s heuristic should focus more on robustness and less on
optimality.

6. COORDINATION

When we consider multiple COORDINATOR agents, the
problem expands to finding an optimaljoint policy. This
problem is challenging because:

• The number of possible local policies for agents is in
general very large, so the product space of joint policies
to search through can be astronomical.

• The size and distribution of the problem makes reasoning
about the global behavior of the system impossible.

To address these practical limitations, our COORDINATOR

agents do not try to solve the full optimal joint policy problem.
Instead, they make several simplifying assumptions and restrict
the forms of solutions they will be able to find, making
the search for an approximately-optimal joint solution more
tractable. Our agents use limited forms of negotiation to es-
tablish a set of inter-agent commitments. These commitments
represent a partial set of agreements about which agent is
performing which methods, at what times. The agents then
rely on those commitments when generating their partial MDP
policies. The commitments are used as both assumptions (e.g.,
another agent has agreed to perform a method that will enable
my action) and as obligations (e.g., I have agreed to perform
a method that will enable another agent). Assumptions such
as remote enablement agreements can be built into the local
problem model by including “proxy” methods that enable the
local method at the agreed-upon time. Obligations to execute
methods by a particular time are met by adding extra reward
to the MDP in states that satisfy the commitment. These two
mechanisms bias the MDP policy-generation process towards
policies that rely upon and satisfy the agent’s commitments.

There are several ways in which this approach may result in
sub-optimal behavior. For example, the actual optimal policy
set may not adhere to a static set of commitments: to behave
optimally, agents may have to adjust which enablements they
will accomplish depending on how prior methods execute. To
mitigate this weakness, our agents deliberate and negotiate
continually, so that they can manage and adapt their commit-
ment set and policies on the fly as methods execute.

7. CONCLUSIONS

Our multi-agent coordination system uses limited forms of
negotiated commitments to bias partial-MDP policy derivation.
The resulting agents are able to very quickly create initial
coordinated policies, improve those policies given more delib-
eration time, and adapt the policies as new information arrives,
including both method outcomes and new C-TÆMS problems.

In the context of coalition operations, where different agents
may not be able to share some portions of their intentions,
these techniques can still be applied. Enforcing information
security or privacy policies could be done on a local-agent
level, preventing the agent from establishing commitments
about private intentions (e.g., not telling other agents that it
intends to execute a particular method or task). The resulting

system would be expected to perform less-optimally, given
the restrictions on its search for joint policies, but the system
should still be robust and capable of establishing coordinated
behavior on the portions of the problem over which agents are
willing to communicate.
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