
Appears in 3rd International NASA Workshop on Planning and Scheduling for Space
October 27-29, 2002; Houston, TX 

Building Coordinated Real-Time Control Plans

David J. Musliner, Michael J.S. Pelican, Kurt D. Krebsbach∗

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

{david.musliner,mike.pelican}@honeywell.com

Abstract

We are interested in developing multi-agent systems
that can provide real-time performance guarantees for
critical missions that require cooperation. In partic-
ular, we are developing methods for teams of CIRCA
agents to build coordinated plans that include explicit
runtime communications to support distributed real-
time reactivity to the environment. These teams can
build plans in which different agents use their unique
capabilities to guarantee that the team will respond
in a coordinated fashion to mission-critical events. By
reasoning explicitly about different agent roles, the
agents can identify what communications must be ex-
changed in different situations. And, by reasoning ex-
plicitly about domain deadlines and communication
time, the agents can build reactive plans that provide
end-to-end performance guarantees spanning multi-
agent teams.

Introduction

We are extending the existing Cooperative Intelligent

Real-TimeControl Architecture (CIRCA) for real-time

planning and control (Musliner, Durfee, & Shin 1993;

1995) into distributed applications such as constella-

tions of satellites, cooperative teams of space probes,

and coordinated UAVs. In such coarse-grain dis-

tributed applications, multiple autonomous agents are

each controlled by a CIRCA system, each of which

builds a control plan incorporating run-time coopera-

tion to achieve team goals in mission-critical domains.

We are particularly interested in extending the real-

time performance guarantees that CIRCA provides for

single agents to small teams of coordinating CIRCA

agents. In this paper, we use a simple example in-

volving multiple spacecraft to describe CIRCA’s new
∗Now at Lawrence University in Appleton, WI,
kurt.krebsbach@lawrence.edu.

Hi-res-required F FAILURE

preempted

Event-occurs
Hi-res-required T

(event)

Activate-hi-res

(action)

Observation-missed

Figure 1: A simple single-agent, single-action pre-

emption example.

capabilities to negotiate coordinated roles, plan run-

time communication to support coordination, and ex-

ecute automatically-generated plans that ensure real-

time coordination across a team of agents.

Individual CIRCA agents make guarantees of system

safety by automatically building reactive control plans

that guarantee to preempt all forms of system failure.

By preempt, we mean that an action is planned to dis-

able the preconditions of a potential failure, and that

the action is time-constrained to definitely occur be-

fore the failure could possibly occur. For example, sup-

pose a spacecraft’s mission requires it to monitor for

some events across a broad area and, when one of those

events occurs, to focus a higher-resolution sensor on the

area of interest within a short deadline (to ensure that

the high-resolution sensor observes the phenomenon of

interest). This situation might arise in a mission to ob-

serve geothermal activity or to identify strategic mis-

sile launches. Figure 1 shows a simple example of a

state space diagram for preemption in which the agent

will activate the high-resolution sensor in time to avoid

missing the observation. If the system has guaranteed

to detect a state in which (Hi-res-required T) holds,

and perform a responsive action before the window for



observation closes, then this action preempts the tem-

poral transition to the failure state. System safety is

guaranteed by planning actions that preempt all fail-

ures (Musliner, Durfee, & Shin 1995).

Now suppose one satellite has a wide angle infra-red

imaging sensor which identifies sites of interest that

require further sensing using a high-resolution visual

band sensor carried by a different satellite. The two

spacecraft must coordinate their activities to preempt

the missed observation failure. By coordinated preemp-

tion, we mean a set of complementary plans that can be

executed by distributed agents to detect and react to

situations before system failure occurs. How can two

(or more) distributed agents build their plans to ac-

complish a coordinated preemption: “You sense the

opportunity and I’ll act on it”?

A key observation is that this really devolves into

two separate issues:

Planned communication — The agents must rec-

ognize the need to explicitly communicate (both

sending and receiving) at a rate fast enough to sat-

isfy the coordinated preemption timing constraint.

In our example, the sensing agent must agree not

only to detect the hot spot fast enough, but also to

tell the other agent about the opportunity quickly

enough. Likewise, the acting agent must focus suf-

ficient attention on “listening” for a message from

the sensing agent at a high enough frequency that it

can guarantee to both receive the message and act

on the opportunity, all before the deadline.

Distributed causal links — The distributed agents

must be able to represent and reason about changes

to their world that are not directly under their con-

trol, but which are predictable enough to be relied

upon for a preemption guarantee. For example, in

our scenario, the sensing agent must rely on the act-

ing agent to take the appropriate action in time to

guarantee that the data collection is performed in

time. In complementary fashion, the acting agent

must construct a plan that honors its commitment

to the acting agent. If one of the agents cannot con-

struct a plan that satisfies its commitments, it must

inform the others.

Adaptive
Mission
Planner

Real
Time

Subsystem

Feedback Data
Reactive Plans

The WorldOther RTSs

Runtime Coordination

Module
Synthesis
Controller

Feedback Data

Subgoals,
Problem Configurations

Other AMPs

Role Negotiation

Figure 2: The CIRCA architecture combines intel-

ligent planning and adaptation with real-

time performance guarantees.

Brief Overview of CIRCA

CIRCA uses a suite of planning and scheduling compo-

nents to reason about high-level problems that require

powerful but potentially unbounded AI methods, while

a separate real-time subsystem (RTS) reactively exe-

cutes the automatically-generated plans and enforces

guaranteed response times (Musliner, Durfee, & Shin

1993; 1995; Musliner et al. 1998).

All three of CIRCA’s planning and execution subsys-

tems operate in parallel. The Adaptive Mission Plan-

ner (AMP) reasons about collaborations at the level

of mission roles and responsibilities using a Contract

Net negotiation protocol (Musliner & Krebsbach 2001;

Smith 1977). When an AMP has negotiated a respon-

sibility for handling a particular threat or goal during a

phase of a mission, it can configure a planning problem

for the lower-level Controller Synthesis Module (CSM)

to solve. The CSM takes in problem configurations in

the form of a set of transitions (see Figure 3). The CSM

reasons about an internal model of the world deduced

from these transitions and dynamically programs the

RTS with a planned set of reactions (Musliner, Durfee,

& Shin 1995; Goldman et al. 1997). While the RTS

is executing those reactions, ensuring that the system

avoids failure, the AMP and CSM continue planning to

find the next appropriate set of reactions. The deriva-

tion of this new set of reactions does not need to meet



a hard deadline, because the reactions concurrently ex-

ecuting on the RTS will continue handling all events,

maintaining system safety. When the new reaction set

has been developed, it can be downloaded to the RTS.

The CSM reasons about transitions of four types:

Action transitions represent actions performed by

the RTS. These parallel the operators of a conven-

tional planning system. Associated with each action

is a worst case execution time (wcet): an upper bound

on the delay (∆(a) ≤ T ) before the action completes.

Temporal transitions represent uncontrollable pro-

cesses, some of which may need to be preempted.

Associated with each temporal transition is a lower

bound on the delay before the temporal transition

could possibly occur (∆(tt) ≥ T ). Transition delays

with a lower bound of zero are referred to as events,

and are handled specially for efficiency reasons.

Reliable temporal transitions represent continu-

ous processes that may need to be employed by the

CIRCA agent. For example, a CIRCA agent might

turn on a piece of equipment to initiate the process of

warming up that equipment. The action itself will

take a relatively short period of time to complete,

however, the warming process might complete after

a much longer delay. Reliable temporal transitions

have both upper and lower bounds on their delays.

As we will see, reliable temporals are especially im-

portant for modeling multi-agent interactions.

Figure 3 contains three very simple transitions from

a single-agent version of our example observation satel-

lite domain, corresponding to the planned state space

diagram in Figure 1. The event-occurs event tran-

sition represents the occurrence of the phenomenon of

interest, out of the agent’s control. That event sets

the preconditions for the observation-missed tem-

poral transition, which may occur as little as 500 mil-

liseconds after the preconditions are established. Be-

cause the postconditions of observation-missed in-

clude (failure T), it is a temporal transition to

failure (TTF). To preempt that failure, the CIRCA

agent will plan to take the activate-hi-res action in

the intervening state.

CIRCA builds its reactive plans in the form of Test-

Action Pairs (TAPs) that test for a particular situa-

tion and invoke a planned response. Figure 4 shows

;;; The initial sensed event can occur

;;; at any time.

(def-event ’event-occurs

:preconds ’((hi-res-required F))

:postconds ’((hi-res-required T)))

;;; If you dont do hi-res sensing by 500

;;; milliseconds, you fail.

(def-temporal ’observation-missed

:preconds ’((hi-res-required T))

:postconds ’((failure T))

:min-delay 500)

;;; In the simple single-agent case, doing

;;; this handles the event.

(def-action activate-hi-res

:preconds ’()

:postconds ’((hi-res-required F))

:wcet 300)

Figure 3: CIRCA domains capture agent capabili-

ties and world dynamics as transitions.

#<TAP 1>

Tests: (HI-RES-REQUIRED T)

Acts : ACTIVATE-HI-RES

Figure 4: Single agent Test-Action Pair to activate

a high-resolution sensor when an observa-

tion is required.



TAP 2 TAP 1 TAP 3 TAP 1TAP 1 TAP 4

Figure 5: A TAP schedule loop in which TAP 1

must be run more often than the others.

the TAP automatically generated and scheduled by

CIRCA to implement the simple preemption in our

running single-agent example. Each TAP has an asso-

ciated worst-case execution time (wcet), which includes

the worst-case time to complete the test plus the max-

imum amount of time to complete the action (if the

condition is true). The CIRCA CSM uses its world

model to derive the maximum allowable response time

before a failure could possibly occur. Based on this

and the wcet, it computes how often the given TAP

must be executed to guarantee preempting transition

to a failure state.

The CSM then attempts to build a cyclic schedule

that runs each TAP at least as frequently as required.

It is crucial to preemption that the maximum response

time be strictly shorter than the minimum time for one

of the undesirable transitions to occur. Figure 5 pro-

vides an example cyclic schedule in which TAP 1 must

be run more often than the other TAPs. If the sched-

uler cannot build a satisfactory polling loop, the prob-

lem is overconstrained, and the planner must backtrack

in its search to compute a feasible plan.

In this paper, we are interested in extending CIRCA

to handle preemptive plans that require at least two

CIRCA agents to execute. But what does it mean to

spread a preemption over two agents? Imagine our

original example: “You sense, I’ll act”. Whereas in

single agent CIRCA, both parts would be encapsulated

within a single TAP, the test now belongs to one agent,

and the action to the other, implying at least one TAP

for each agent. But for the two agents to preserve the

original semantics of the preemption, they will have to

communicate, and that communication will also have

occur in a predictable and timely manner.

Negotiating Coordinated Roles

How do the agents decide which role they are play-

ing, and what to communicate about? In our current

implementation, each CIRCA agent has a representa-

tion of its own capabilities, expressed as the classes

(def-event ’event-occurs

:preconds ’((saw-event F))

:postconds ’((saw-event T)))

;;; If you don’t do hi-res sensing by

;;; 500 msec, fail.

(def-temporal ’hi-res-observation-missed

:preconds ’((saw-event T))

:postconds ’((failure T))

:min-delay 500)

;;; All the sensor agent can do is notify

;;; the hi-res agent.

(def-action ’notify-hi-res

:preconds ’((notified-hi-res F))

:postconds ’((notified-hi-res T))

:wcet 10)

;;; This reliable temporal represents

;;; sensor agent’s model of actor agent’s

;;; commitment to respond.

(def-reliable ’hi-res-observes

:preconds ’((saw-event T)

(notified-hi-res T))

:postconds ’((saw-event F)

(notified-hi-res F))

:delay (make-range 250 400))

Figure 6: The sensor agent can detect the impend-

ing failure, but cannot directly prevent it.



;;; The uncontrollable event can occur

;;; at any time.

(def-event ’hear-about-event

:preconds ’((heard-about-event F))

:postconds ’((heard-about-event T)))

(def-action ’simple-observe-event

:preconds ’((heard-about-event T))

:postconds ’((heard-about-event F))

:wcet 300)

;;; If you don’t observe event in hi-res by

;;; 400 ms after notification, you’ve failed.

(def-temporal ’observation-missed

:preconds ’((heard-about-event T))

:postconds ’((failure T))

:min-delay 400)

Figure 7: The simplest actor model gets a message

and must respond.

of goals and threats (potential failures) it can handle.

When a new mission is presented to a multi-CIRCA

system, the agents each bid on the component goals

and threats that make up the mission, based on their

capabilities.

In our running example, the mission is character-

ized by two distinct threats, one representing the sen-

sor agent’s need to send a message to the actor agent

by a deadline, and one representing the actor agent’s

need to respond to the message by a deadline. The

respective agents bid to handle these threats, and win

their appropriate roles on the team. It is worth noting

that this decomposition is already present in the mis-

sion description entered by the system programmer or

tasking agent; future versions may be able to decide

themselves whether to tackle the response to a threat

in a centralized or cooperative distributed fashion.

To get the CSMs to plan the coordination communi-

cation explicitly, the Adaptive Mission Planner (AMP)

must “trick” the individual agents into building collab-

orative plans by presenting them with controller syn-

thesis problems that have been automatically crafted

to represent their joint behavior commitments. The

sensing agent’s AMP tells its CSM that it cannot au-

tonomously defeat the threat, but that if it can com-

municate a warning quickly enough, this warning will

lead to the defeat of the threat (see Figure 6). The

actor agent’s AMP tells its CSM that it cannot sense

the threat directly, but that a warning may arrive at

any time, after which it must take an action before an

upper bound delay or face catastrophic consequences

(see Figure 7).

Building Coordinated Plans

For a coordinated preemption, we must decompose the

timing constraint imposed by a temporal transition to

failure into a set of tighter constraints corresponding to

bounds on the sensing, communication, and action de-

lays of the distributed agents responding to the threat.

For example, suppose our example threat (a criti-

cal high-resolution observation) has a minimum delay

of 500 milliseconds (i.e., at least 500 milliseconds must

elapse after the appropriate surface event has occurred,

before the phenomenon disappears or expires, causing

the team to have missed an observation). This would

correspond to the minimum expected phenomenon du-

ration, and hence the worst case that makes it hardest

to observe.

In a single-agent preemption, the CIRCA agent

would simply have to ensure that it would detect the

event and respond with hi-res sensor activation in no

more than the given 500 milliseconds. If the hi-res sen-

sor takes no more than 300 milliseconds to capture its

observation, then CIRCA would recognize that it could

activate the hi-res sensor as much as 200 milliseconds

after the event and still remain safe. So, CIRCA would

build a TAP that must be polled no more than 200 mil-

liseconds apart.

In the coordinated preemption case, we break up the

overall response time constraint (∆T ) into two parts

(∆A and ∆B) corresponding to the time that can be

used by the two agents. The sensing agent (Agent A)

will have to detect the threat and then send a mes-

sage to the acting agent (Agent B), all within ∆A time

units. Note that the communication action will mimic

a regular domain action, having some associated delay

(∆Ac) and being triggered by a polling TAP just as

above. Figure 8 and Figure 9 illustrate this type of

plan (and corresponding TAP) for Agent A. Note that

Agent A’s model contains an explicit representation of

Agent B’s commitment to act in response to the mes-



HI_RES_OBSERVES

State 4

(NOTIFIED−HI−RES T)

(SAW−EVENT T)

TTF HI_RES_OBSERVATION_MISSED

NOTIFY_HI_RES

State 1

(NOTIFIED−HI−RES F)

(SAW−EVENT T)

TTF HI_RES_OBSERVATION_MISSED

EVENT_OCCURS

State 0

(NOTIFIED−HI−RES F)

(SAW−EVENT F)

event

reliable
temporal

action

Figure 8: Agent A detects the threat and warns

Agent B with a message guaranteed to be

sent after no more than ∆A seconds.

#<Agent A TAP>

Tests: (AND (SAW-EVENT T)

(NOTIFIED-HI-RES F))

Acts : NOTIFY-HI-RES

Figure 9: Agent A’s TAP for coordinating a pre-

emption with Agent B. A’s responsibility

is to sense the condition and notify B.

SIMPLE_OBSERVE_EVENT

State 1

(HEARD−ABOUT−EVENT T)

TTF OBSERVATION_MISSED

HEAR_ABOUT_EVENT

State 0

(HEARD−ABOUT−EVENT F)

event

action

Figure 10: Agent B guarantees to detect the mes-

sage from Agent A and activate its hi-res

sensor within ∆B seconds, thus ensuring

that the “round-trip” delay from sensing

to communication to action is bounded
within the maximum available time con-
straint.

#<Agent B TAP>

Tests: (HEARD-ABOUT-EVENT T)

Acts : SIMPLE-OBSERVE-EVENT

Figure 11: Agent B’s TAP for listening for A’s

warning and taking the preemptive ac-

tion in time to avoid mission failure.

sage. The bold hi-res-observes arrow represents a

reliable temporal transition, indicating that Agent B’s

action places both a lower and upper delay bound on

the transition’s source state(s). When setting up CSM

problem configurations for a coordinated preemption,

the respective AMPs will include these types of “vir-

tual transitions” to represent the commitments of other

agents.

Figure 10 and Figure 11 show that Agent B is given

a representation of Agent A’s possible notification of

the event, but no explicit representation of that event

itself. This captures the notion that Agent B cannot

actually sense the threat directly, and relies on other

agents for information. As with the reliable temporal



transition representing Agent B’s action to Agent A,

here we have an event representing Agent A’s action

(sending a message) to Agent B. The threat of the im-

pending observation deadline is translated into a more

abstract threat with a minimum delay of ∆B. Agent B

must detect the warning and activate its hi-res sensor

to preempt the perceived deadline, and does so in the

normal single-agent fashion.

Of course, this trivial example makes the problem

look simple. The challenge arises when the sensing,

communicating, and acting responsibilities are more

complicated, and must be intertwined with other agent

activities. To give an idea of the complexity that

rapidly sets in, consider an example only slightly more

complicated. Suppose that the agent with the hi-res

sensor must actually activate a fine-grain alignment

system to point the sensor, and only when that align-

ment system is maintaining tight alignment can the

hi-res sensor be used. In that case, the domain descrip-

tion is not much larger (see Figure 12), but the state

space that results becomes considerably more compli-

cated (see Figure 13).

Handling this complexity growth is an ongoing re-

search challenge; promising approaches include using

automatic, dynamic abstraction to omit state informa-

tion when feasible (Goldman et al. 1997) and using

decision-theoretic methods to trade off completeness

for computability (Goldman, Musliner, & Krebsbach

2001).

Related Work

Other work on multi-agent team coordination has fo-

cussed on “joint intentions” and using explicit models

of team plans to define individual agent plans (Tambe

1997), often using constraint satisfaction and on-line

repairs to adapt to evolving environments and conflicts

between agent plans (Jung, Tambe, & Kulkarni 2001;

Tate, Levine, & Dalton 1999). While the higher levels

of the CIRCA architecture do support elements of this

approach, our current work is focused on building plans

that accurately model and control the dynamics of co-

ordination between agents at run-time. In particular

we are interested in real-time, dependable interactions

between teammates.

For the most part, other planning and execution sys-

tems for spacecraft handle multi-agent coordination in

a more mission-specific fashion. For example, the auto-

mated mission planner for the Modified Antarctic Map-

ping Mission (MAMM) coordinates downlinks from

RADARSAT to ground stations (Smith, Englehardt,

& Mutz 2002). However, the mission planner does not

plan ground station activities except as implied by the

spacecraft plan. And although the MAMM’s domain is

certainly dynamic, the mission planner treats it as pre-

dictable. The mission plan is fixed. If an observation

is missed, the remaining mission must be replanned.

CASPER, like CIRCA, provides a soft real-time on-

board planning facility (Chien et al. 1999). Unlike

CIRCA, CASPER builds plans for a sequential task

executive, and repairs them when necessary to react to

environment dynamics. CIRCA’s TAP schedules in-

corporate real-time reactions to an unpredictable en-

vironment; environmental dynamics can be handled in

the executive directly. Dynamics that exceed the scope

of the pre-planned reactions are handled by on-the-fly

replanning at the CSM and AMP levels.

All of the ASPEN family of planners, includ-

ing CASPER and the MAMM mission planner, in-

clude specific resource models and constraint check-

ing (Chien et al. 2000). CIRCA represents resources

implicitly, as postcondition or precondition features in

the CSM and as roles or capabilities in the AMP. Plans

for future work include explicit resource representation

and checking.

Both the Three Corner Sat Mission and the Au-

tonomous Sciencecraft Constellation projects are ex-

tending ASPEN-based planners to handle distributed

teams of spacecraft like those described in our exam-

ples (Chien et al. 2001a; 2001b).

Conclusion

In this paper, we have discussed the notion of coordi-

nated preemption, a multi-agent extension of guaran-

teed failure preemption in CIRCA. Coordinated pre-

emption allows a team of distributed CIRCA agents to

build and execute synchronized plans that include joint

actions such as “You sense, I’ll act”. This new capa-

bility furthers our goal of extending CIRCA to multi-

agent, real-time, mission-critical domains. We have im-

plemented coordinated preemptions in CIRCA, using

inter-agent communication for both plan-time negoti-

ation (between different agents’ AMPs), and for run-



(def-action ’align-hi-res-sensor

:preconds ’()

:postconds ’((hi-res-sensor-aligned T)

(hi-res-sensor-effective T))

:wcet 10)

;; Once you align sensor, can trigger it and take detailed reading.

(def-action ’begin-hi-res-sensing

:preconds ’((sensing normal)(hi-res-sensor-aligned T)

(hi-res-sensor-effective T))

:postconds ’((sensing hi-res))

:wcet 10)

;; After a while, the sensor alignment expires...

(def-temporal ’sensor-alignment-expires

:preconds ’((hi-res-sensor-aligned T))

:postconds ’((hi-res-sensor-aligned F))

:min-delay 100)

;; After sensor alignment expires, a while later the effectiveness is gone;

;; we should preempt this transition to keep the sensing reliable temporal working.

(def-temporal ’sensor-ineffective

:preconds ’((hi-res-sensor-aligned F)(hi-res-sensor-effective T))

:postconds ’((hi-res-sensor-effective F))

:min-delay 100)

;; need hi-res-sensor-effective, or the sensing doesn’t work...

(def-reliable ’observe-event

:preconds ’((heard-about-event T) (sensing hi-res)

(hi-res-sensor-effective T))

:postconds ’((heard-about-event F))

:delay (make-range 250 300))

(def-action ’end-hi-res-sensing

:preconds ’((sensing hi-res))

:postconds ’((sensing normal))

:wcet 10)

Figure 12: A few additional transitions can define a much more complex plan space.



SENSOR_INEFFECTIVE HEAR_ABOUT_EVENT

State 20

(HEARD−ABOUT−EVENT F)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING NORMAL)

SENSOR_ALIGNMENT_EXPIRESHEAR_ABOUT_EVENT

State 17

(HEARD−ABOUT−EVENT F)

(HI−RES−SENSOR−ALIGNED T)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING NORMAL)

END_HI_RES_SENSINGHEAR_ABOUT_EVENT

State 15

(HEARD−ABOUT−EVENT F)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING HI−RES)

END_HI_RES_SENSINGSENSOR_ALIGNMENT_EXPIRESHEAR_ABOUT_EVENT

State 12

(HEARD−ABOUT−EVENT F)

(HI−RES−SENSOR−ALIGNED T)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING HI−RES)

ALIGN_HI_RES_SENSOR OBSERVE_EVENT

State 10

(HEARD−ABOUT−EVENT T)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING HI−RES)

OBSERVE_EVENTSENSOR_ALIGNMENT_EXPIRES

State 8

(HEARD−ABOUT−EVENT T)

(HI−RES−SENSOR−ALIGNED T)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING HI−RES)

ALIGN_HI_RES_SENSORSENSOR_INEFFECTIVE

State 6

(HEARD−ABOUT−EVENT T)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING NORMAL)

BEGIN_HI_RES_SENSING SENSOR_ALIGNMENT_EXPIRES

State 4

(HEARD−ABOUT−EVENT T)

(HI−RES−SENSOR−ALIGNED T)

(HI−RES−SENSOR−EFFECTIVE T)

(SENSING NORMAL)

ALIGN_HI_RES_SENSOR

State 1

(HEARD−ABOUT−EVENT T)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE F)

(SENSING NORMAL)

HEAR_ABOUT_EVENT

State 0

(HEARD−ABOUT−EVENT F)

(HI−RES−SENSOR−ALIGNED F)

(HI−RES−SENSOR−EFFECTIVE F)

(SENSING NORMAL)

temporal

event

reliable
temporal

action

Figure 13: When Agent B must maintain sensor alignment, the reachable state space grows quickly.



time coordination (between agents’ RTSs).

Several research questions also remain. For exam-

ple, how should the available response delay ∆T , orig-

inally for one agent, be split into two or more com-

ponents? How much of the delay should each agent

receive, considering that these load levels influence

the plan’s schedulability for each agent? Because the

knowledge needed to determine a feasible distribution

of the available response time (if it exists) is itself dis-

tributed across agents, we will consider iterative nego-

tiation between the coordinating agents as a first ap-

proach.

Acknowledgments

This material is based upon work supported by

DARPA/ITO and the Air Force Research Laboratory

under Contract No. F30602-00-C-0017.

References

Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.;

and Rabideau, G. 1999. Using iterative repair to

increase the responsiveness of planning and scheduling

for autonomous spacecraft. In IJCAI99 Workshop on

Scheduling and Planning meet Real-time Monitoring

in a Dynamic and Uncertain World.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.;

Engelhardt, B.; Mutz, D.; Estlin, T.; Smith, B.;

Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D.

2000. ASPEN – Automating space mission opera-

tions using automated planning and scheduling. In

SpaceOps 2000.

Chien, S.; Engelhardt, B.; Knight, R.; Rabideau, G.;

Sherwood, R.; Hansen, E.; Ortiviz, A.; Wilklow, C.;

and Wichman, S. 2001a. Onboard autonomy on the

Three Corner Sat mission. In Proceedings of ISAIRAS

2001.

Chien, S.; Sherwood, R.; Burl, M.; Knight, R.; Ra-

bideau, G.; Engelhardt, B.; Davies, A.; Zetocha, P.;

Wainright, R.; Klupar, P.; Cappelaere, P.; Surka, D.;

Williams, B.; Greeley, R.; Baker, V.; and Doan, J.

2001b. The Techsat-21 autonomous sciencecraft con-

stellation demonstration. In Proceedings of ISAIRAS

2001.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;

and Boddy, M. S. 1997. Dynamic abstraction plan-

ning. In Proceedings of the Fourteenth National Con-

ference on Artificial Intelligence, 680–686. Menlo

Park, CA: American Association for Artificial Intelli-

gence.

Goldman, R. P.; Musliner, D. J.; and Krebsbach,

K. D. 2001. Managing online self-adaptation in real-

time environments. In Proc. Second Int’l Workshop

on Self Adaptive Software.

Jung, H.; Tambe, M.; and Kulkarni, S. 2001. Argu-

mentation as distributed constraint satisfaction: ap-

plications and results. In Proc. of the Fifth Int’l Conf.

on Autonomous Agents, 324–331.

Musliner, D. J., and Krebsbach, K. D. 2001. Multi-

agent mission coordination via negotiation. In Work-

ing Notes of the AAAI Fall Symposium on Negotiation

Methods for Autonomous Cooperative Systems.

Musliner, D. J.; Krebsbach, K. D.; Pelican, M.; Gold-

man, R. P.; and Boddy, M. S. 1998. Issues in dis-

tributed planning for real-time control (extended ab-

stract). In Working Notes of the AAAI Fall Sympo-

sium on Distributed Continual Planning.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.

CIRCA: a cooperative intelligent real-time control ar-

chitecture. IEEE Transactions on Systems, Man and

Cybernetics 23(6):1561–1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.

World modeling for the dynamic construction of real-

time control plans. Artificial Intelligence 74(1):83–

127.

Smith, B. D.; Englehardt, B. E.; and Mutz, D. H.

2002. The RADARSAT-MAMM automated mission

planner. AI Magazine.

Smith, R. 1977. The contract net: A formalism for

the control of distributed p roblem solving. In Proc.

Int’l Joint Conf. on Artificial Intelligence, volume 1,

472.

Tambe, M. 1997. Implementing agent teams in dy-

namic multi-agent environments. Applied Artificial

Intelligence.

Tate, A.; Levine, J.; and Dalton, J. 1999. Using ai

planning techniques for army small unit operations. In

Proc. of the Fifth Int’l Conf. on Artificial Intelligence

Planning and Scheduling Systems (AIPS 2000).


